Common Fixed Points of (α,Ψ,φ)- Almost Generalized Weakly Contractive Maps in S-metric spaces

Document Type : Original Article


1 Department of Mathematics, Andhra University, Visakhapatnam-530 003, INDIA.

2 Department of Mathematics, Lendi Institute of Engineering and Technology, Vizianagaram-535 005, INDIA.

3 Department of Mathematics, Satya Institute of Technology and Management, Vizianagaram-535 002, INDIA.


In this paper, we introduce a pair of (α,Ψ,φ)-almost generalized weakly contractive maps in S-metric spaces and prove the existence and uniqueness of common fixed points of such maps under weakly compatible property. Our results extend and generalize the results of Babu and Leta to a pair of maps in S-metric spaces and also generalize the result of Sedghi, Shobe, and Aliouche. We provide examples in support of our results.


[1] M. Aamri, and D. EI. Moutawakil, Some New Common Fixed Point Theorems under Strict Contractive Conditions, J. Math. Anal. Appl. 270(2002), 181-188.

[2] G. V. R. Babu, Dasari Ratna Babu, Kanuri Nageswara Rao, Bendi Venkata Siva Kumar, Fixed Points Of 
Almost Weakly Contractive Maps in G-Metric Spaces, Applied Mathematics E- Notes, 4(2014), 69-85.

[3] G. V. R. Babu, Leta Bekere Kumssa, Fixed Points of - Generalized Weakly Contractive Maps and Property (P) in S-metric spaces, Filomat 1:14(2017),4469-4481,Doi 10.2298/FIL1714469B.
[4] V. Berinde, Approximating Fixed Points Of Weak Contractions Using The Picard Iteration, Nonlinear Anal. Forum, 9(2004),43-53.

[5] V. Berinde, General Constructive Fixed Point Theorems for Ciric-type Almost Contractions in Metric Spaces, Carpath. J. Math., 4(2008),10-19.
[6] D. Doric, Common Fixed Point For Generalized ( ; ')-Weak Contractions, Appl. Math.Lett., 2(2009),1896-1900.
[7] T. Dosenovic, S. Radenovic, A. Rezvani and S. Sedghi, Coincidence Point Theorems In S-Metric Spaces Using
Integral Type Of Contraction, U. P. B. Sci. Bull, Series A, vol. 79, Iss. 4, 2017, ISSN, 1223-7027.
[8] N. V. Dung, N.T. Hieu, and S.Radojevic, Fixed Point Theorems for g-Monotone Maps on Partially Ordered S-metric spaces, Filomat 28:9(2014),1885-1898 DOI 10.2298/FIL 1409885D.
[9] P. N. Dutta and B. S. Choudhury, A Generalization Contraction Principle in Metric Spaces, Fixed Point Theory and Appl. (2008), Article ID 406368, 8 pages.
[10] G. Jungck, Commuting Mappings And Fixed Points, Amer. Math. 83(1976), 261{263.
[11] G. Jungck, Compatible Mappings and Common Fixed Points, Int. J. Math. and Math. Sci., 9(1986),771-779.
[12] G. Jungck and B. E. Rhodes, Fixed Points For Set Valued Functions Without Continuity, Indian J. Pure and appl. Math.29(1998),227-238.
[13] M. S. Khan, M. Swaleh and S.Sessa, Fixed Point Theorems By Altering Distance Between Points, Bull. Aust. Math. Soc. 30(1)(1984),1-9.
[14] Z. Mustafa, B. Sims, A New Approach To Generalized Metric Spaces, J. Nonlinear and Convex Anal., 7(2006), 289-297.
[15] N. Y. Ozgur and N. Tas, Some Fixed Point Theorems on S-Metric Spaces, Math. Vesnik, 69(1), 2017,39-52.

[16] S. Sedghi, N. Shobe , and H. Zhou, A Common Fixed Point Theorem In D- Metric Spaces, Fixed Point Theory Appl.(2007), Article ID 27906, (2007),13 pages.

[17] S. Sedghi, N. Shobe and A. Aliouche, A Generalization Of Fixed Point Theorem In S-Metric Spaces, Math. Vesnik 64 (2012),258-266.
[18] S. Sedghi and N. V. Dung, Fixed Point Theorems On S-Metric Spaces, Math. Vesnik 66 (2014), 113-124.

[19] H.H. Alsulami, R.P. Agarwal, E. Karapnar, F. Khojasteh, A short note on C*-valued contraction mappings Journal
of Inequalities and Applications, 2016,50 (2016), doi:10.1186/s13660-016-0992-5

[20] M. Javahernia, A. Razani, F. Khojasteh, Common fixed point of the generalized Mizoguchi-Takahashi's type contractions, Fixed Point Theory Appl 2014, 195 (2014) doi:10.1186/1687-1812-2014-195