Fixed Point Theorems for Dislocated Quasi G -Fuzzy Metric Spaces

Document Type: Original Article

Authors

1 P.G and Research Department of Mathematics, Raja Doraisingam Govt. Arts College, Sivaganga - 630561, Tamil Nadu, India.

2 Department of Mathematics , Govt. Arts College For Women, Sivagangai, India.

3 Department of Mathematics, Thapar University, Patiala, Punjab, India.

Abstract

The aim of this paper is to introduce the new concept of ordered complete dislocated quasi G-fuzzy metric
space. The notion of dominated mappings is applied to approximate the unique solution of nonlinear
functional equations. In this paper, we nd the fixed point results for mappings satisfying the locally
contractive conditions on a closed ball in an ordered complete dislocated quasi G-fuzzy metric space.

Keywords


[1]M. Arshad, A. Shoaib, I. Beg, Fixed point of a pair of contractive dominated mappings on a closed ball in an
ordered complete dislocated metric space, Fixed Point Theory Appl. 2013 (2013) 115, 15 pages.

[2]M. Asadi, E. Karapinar, P. Salimi, A new approach to G-metric and related fi xed point theorems, J. Inequal.
Appl. 2013 (2013) 12 pages.

[3]H. Aydi, N. Bilgili, E. Karapinar, Common fixed point results from quasi metric space to G metric space, J.
Egyptian Math. Soc. 23 (2015).

[4]A. Azam, S. Hussain, M. Arshad, Common fi xed points of Kannan type fuzzy mappings on closed balls, Appl.
Math. Inf. Sci. Lett. 1 (2)(2013), 7-10.

[5]A. Azam, S. Hussain, M. Arshad, Common fi xed points of Chatterjea type fuzzy mappings on closed balls, Neural
Comput. Appl. 21 (2012), 5313{5317.

[6]A. Azam, M. Waseem, M. Rashid, Fixed point theorems for fuzzy contractive mappings in quasi-pseudo-metric
spaces, Fixed Point Theory Appl. 27 (2013) 14 pages.

[7]H. Hydi, W. Shatanawi, C. Vetro, On generalized weak G-contraction mappings in G-metric spaces, Comput.
Math. Appl. 62(2011), 4223-4229.

[8]M. Jleli, B. Samet, Remarks on G-metric spaces and fixed point theorems, Fixed Point Theory Appl. 210 (2012).

[9]I. Kramosil and J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11(5) (1975), 336-344.

[10]Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006) 289-297.

[11]Z. Mustafa, H. Obiedat, F. Awawdeh, Some fixed point theorem for mappings on a complete G-metric space,
Fixed Point Theory Appl. 2008 (2008) 12 pages.

[12]H. Obiedat, Z. Mustafa, Fixed point results on a non-symmetric G-metric space, Jordan J. Math. Stat. 3 (2010)
65-79.
M. Jeyaraman, D. Poovaragavan, S. Sowndrarajan, S. Manro, Commun. Nonlinear Anal. 1 (2019), 23-31

[13]B. Samet, C. Vetro, F. Vetro, Remarks on G-metric spaces, Int. J. Anal. 2013 (2013) 6 pages.

[14]A. Shoaib, M. Arshad, J. Ahmad, Fixed point results of locally contractive mappings in ordered quasi-partial metric
spaces, Sci. World J. 2013 (2013) 14 pages.

[15]S. Zhou, F. Gu, Some new fi xed points in G-metric spaces, J. Hangzhou Normal University 11 (2010) 47-50.

[16]L. A. Zadeh , Fuzzy sets, Inform. and Control, 8 (1965), 338-353.