Communications in Nonlinear Analysis

Convergence of $C R$-iteration procedure for a nonlinear quasi contractive map in convex metric spaces

G. V. R. Babu ${ }^{\text {a }}$, G. Satyanarayana ${ }^{\text {b,* }}$
${ }^{a}$ Department of Mathematics, Andhra University, Visakhapatnam-530 003, India.
${ }^{b}$ Department of Mathematics, Dr. Lankapalli Bullayya college, Visakhapatnam-530 013, India.

Abstract

We prove that the modified $C R$-iteration procedure converges strongly to a fixed point of a nonlinear quasi contractive map in convex metric spaces which is the main result of this paper. The convergence of Picard-S iteration procedure follows as a corollary to our main result.

Keywords: Convex metric space, quasi contraction map, $C R$-iteration procedure and Picard-S iteration procedure.
2010 MSC: 47H10, 54H25.

1. Introduction and preliminaries

In 1970, Takahashi [11] introduced the concept of convexity in metric spaces as follows.
Definition 1.1. Let (X, d) be a metric space. A map $W: X \times X \times[0,1] \rightarrow X$ is said to be a 'convex structure' on X if

$$
\begin{equation*}
d(u, W(x, y, \lambda)) \leq \lambda d(u, x)+(1-\lambda) d(u, y) \tag{1.1}
\end{equation*}
$$

for $x, y, u \in X$ and $\lambda \in[0,1]$.
A metric space (X, d) together with a convex structure W is called a convex metric space and we denote it by (X, d, W). We note that $W(x, y, 1)=x$ and $W(x, y, 0)=y$. A nonempty subset K of X is said to be 'convex' if $W(x, y, \lambda) \in K$ for $x, y \in K$ and $\lambda \in[0,1]$.
Remark 1.2. Every normed linear space ($X,\|\|$.$) is a convex metric space with the convex sructure W$ defined by $W(x, y, \lambda)=(1-\lambda) y+\lambda x$ for $x, y \in X, \lambda \in[0,1]$. But there are convex meric spaces which are not normed linear spaces $[1,8,11]$.

[^0]In 1974, Ćirić [3] introduced quasi-contraction maps in the setting of metric spaces and proved that the Picard iterative sequence converges to the fixed point in complete metric spaces.

Definition 1.3. Let (X, d) be a metric space. A selfmap $T: X \rightarrow X$ is said to be a quasi-contraction map if there exists a real number $0 \leq k<1$ such that

$$
\begin{equation*}
d(T x, T y) \leq k M(x, y) \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
M(x, y)=\max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\} \tag{1.3}
\end{equation*}
$$

for $x, y \in X$.
Let K be a nonempty convex subset of a normed linear space X and let $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ be sequences in $[0,1]$. The Ishikawa iteration procedure [7] in the setting of normed linear spaces is as follows : For $x_{0} \in K$,

$$
\begin{align*}
y_{n} & =\left(1-\beta_{n}\right) x_{n}+\beta_{n} T x_{n} \\
x_{n+1} & =\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T y_{n}, \quad \text { for } \quad n=0,1,2, \ldots \tag{1.4}
\end{align*}
$$

Ding [5] considered the Ishikawa iteration procedure in the setting of convex metric spaces as follows : Let K be a nonempty convex subset of a convex metric space (X, d, W), and let $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ be the sequences in $[0,1]$. For $x_{0} \in K$,

$$
\begin{align*}
y_{n} & =W\left(T x_{n}, x_{n}, \beta_{n}\right) \tag{1.5}\\
x_{n+1} & =W\left(T y_{n}, x_{n}, \alpha_{n}\right) \text { for } n=0,1,2, \ldots
\end{align*}
$$

and proved that the Ishikawa iteration procedure (1.5) converges strongly to a unique fixed point of a quasi-contraction map in the setting of convex metric spaces, provided $\sum_{n=0}^{\infty} \alpha_{n}=\infty$.

In 1999, Ćirić [4] introduced a more general quasi-contraction map and proved the convergence of an Ishikawa iteration procedure in convex metric spaces to the unique fixed point and the result is the following.

Theorem 1.4. (Ćirić [4]) Let K be a nonempty closed convex subset of a complete convex metric space X and let $T: K \rightarrow K$ be a selfmap satisfying

$$
\begin{equation*}
d(T x, T y) \leq w(M(x, y)) \tag{1.6}
\end{equation*}
$$

where $M(x, y)$ is as defined in (1.3) for $x, y \in K$ and
$w:(0, \infty) \rightarrow(0, \infty)$ is a map which satisfies $(i) 0<w(t)<t$ for each $t>0$,
(ii) w increases, and the following conditions :

$$
\begin{equation*}
\lim _{t \rightarrow \infty}(t-w(t))=\infty: \quad \text { and } \tag{1.7}
\end{equation*}
$$

$$
\begin{equation*}
\text { either } t-w(t) \text { is increasing on }(0, \infty) \tag{1.8}
\end{equation*}
$$

$$
\begin{equation*}
\text { or } w(t) \text { is strictly increasing and } \lim _{n \rightarrow \infty} w^{n}(t)=0 \text { for } t>0 \text {. } \tag{1.9}
\end{equation*}
$$

Let $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ be sequences in $[0,1]$ such that $\sum_{n=0}^{\infty} \alpha_{n}=\infty$. For $x_{0} \in K$, the Ishikawa iteration procedure $\left\{x_{n}\right\}_{n=0}^{\infty}$ defined in (1.5) converges strongly to the unique fixed point of T.

Sastry, Babu and Srinivasa Rao [10] improved Theorem 1.4 by replacing (1.8) and (1.9) with a single condition, namely $0<w\left(t^{+}\right)<t$ for each $t>0$ and proved the following theorem.

Theorem 1.5. [10] Let (X, d, W) be a complete convex metric space and $T: X \rightarrow X$ be a map that satisfies

$$
\begin{equation*}
d(T x, T y) \leq w(M(x, y)) \tag{1.10}
\end{equation*}
$$

where $M(x, y)$ is defined as in (1.3) for $x, y \in X$ and $w:(0, \infty) \rightarrow(0, \infty)$ is a map such that (i) w increases, (ii) $\lim _{t \rightarrow \infty}(t-w(t))=\infty$ (iii) $0<w\left(t^{+}\right)<t \quad$ for $t>0$.

Let $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ be sequences in $[0,1]$ such that $\sum_{n=0}^{\infty} \alpha_{n}=\infty$.
Then for any $x_{0} \in K$, the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ generated by the iteration procedure (1.5) converges strongly to a unique fixed point of T.

Here we note that a map that satisfies (1.10) is said to be a nonlinear quasi contractive map on X.
Remark 1.6. (i) and (iii) of Theorem 1.5 imply that $0<w(t)<t$ for each $t>0$.
Remark 1.7. If $w(t)=k t$ for $t \in(0, \infty)$ and $0 \leq k<1$ then the map T of Theorem 1.5 reduces to a quasi contraction map.

In 2012, Chugh, Kumar and Kumar [2] introduced ' $C R$-iteration procedure' as follows:
Let K be a nonempty convex subset of a normed linear space X, and let $\left\{\alpha_{n}\right\}_{n=0}^{\infty},\left\{\beta_{n}\right\}_{n=0}^{\infty}$ and $\left\{\gamma_{n}\right\}_{n=0}^{\infty}$ be sequences in $[0,1]$.
For $x_{0} \in K$,

$$
\begin{align*}
& z_{n}=\left(1-\gamma_{n}\right) x_{n}+\gamma_{n} T x_{n} \\
& y_{n}=\left(1-\beta_{n}\right) T x_{n}+\beta_{n} T z_{n}, \tag{1.11}\\
& x_{n+1}=\left(1-\alpha_{n}\right) y_{n}+\alpha_{n} T y_{n}, \quad \text { for } \quad n=0,1,2, \ldots
\end{align*}
$$

By choosing $\alpha_{n} \equiv 1$ for all n in (1.11), we have the following.
For $x_{0} \in K$,

$$
\begin{align*}
& z_{n}=\left(1-\gamma_{n}\right) x_{n}+\gamma_{n} T x_{n} \\
& y_{n}=\left(1-\beta_{n}\right) T x_{n}+\beta_{n} T z_{n} \tag{1.12}\\
& x_{n+1}=T y_{n}, \quad \text { for } \quad n=0,1,2, \ldots
\end{align*}
$$

The iteration procedure (1.12) is called the 'Picard-S iteration procedure' [6].
In 2014, Chugh and Malik [9] introduced an anlaogue of $C R$-iteration procedure (1.11) in convex metric spaces as follows:

Let K be a nonempty convex subset of a convex metric space (X, d, W).
For any $x_{0} \in K$,

$$
\begin{align*}
& z_{n}=W\left(T x_{n}, x_{n}, \gamma_{n}\right) \\
& y_{n}=W\left(T z_{n}, T x_{n}, \beta_{n}\right) \tag{1.13}\\
& x_{n+1}=W\left(T y_{n}, y_{n}, \alpha_{n}\right)
\end{align*}
$$

where $\left\{\alpha_{n}\right\}_{n=0}^{\infty},\left\{\beta_{n}\right\}_{n=0}^{\infty}$ and $\left\{\gamma_{n}\right\}_{n=0}^{\infty}$ are in $[0,1]$.
We call the iteration procedure $\left\{x_{n}\right\}$ defined in (1.13) is a 'modified $C R$-iteration procedure' in convex metric spaces.
If $\alpha_{n} \equiv 1$ then the iteration procedure (1.13) reduces to the following which is an analogue of Picard-S iteration procedure (1.12) in a convex metric space.
For $x_{0} \in K$,

$$
\begin{align*}
& z_{n}=W\left(T x_{n}, x_{n}, \gamma_{n}\right) \\
& y_{n}=W\left(T z_{n}, T x_{n}, \beta_{n}\right) \tag{1.14}\\
& x_{n+1}=T y_{n}
\end{align*}
$$

where $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ and $\left\{\gamma_{n}\right\}_{n=0}^{\infty}$ are in $[0,1]$.
We call the iteration $\left\{x_{n}\right\}$ defined in (1.14) is a 'modified Picard-S iteration procedure'.
Motivated by the results of Ćirić [4] and Sastry, Babu and Srinivasa Rao [10], in Section 2 of this paper, we prove the strong convergence of modified $C R$-iteration procedure to a fixed point of a nonlinear quasi contractive map (Theorem 2.2) which is the main result of this paper. The convergence of modified Picard-S iteration procedure (1.14) follows as a corollary to our main result.

2. Main results

Lemma 2.1. Let (X, d, W) be a convex metric space, and let K be a nonempty convex subset of X. Let $T: K \rightarrow K$ be a map such that

$$
\begin{equation*}
d(T x, T y) \leq w(M(x, y)) \text { for } x, y \in K \tag{2.1}
\end{equation*}
$$

where $M(x, y)$ is defined in (1.3) with $M(x, y)>0$ and $w:(0, \infty) \rightarrow(0, \infty)$ is a map such that $(i) w$ is increasing on $(0, \infty)$ (ii) $\lim _{t \rightarrow \infty}(t-w(t))=\infty$, and (iii) $0<w\left(t^{+}\right)<t$ for each $t>0$. For $x_{0} \in K$, let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ be the sequences generated by the modified $C R$-iteration procedure (1.13). Then the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\},\left\{T x_{n}\right\},\left\{T y_{n}\right\}$ and $\left\{T z_{n}\right\}$ are bounded.

Proof. For each positive integer n, we define the set
$A_{n}=\left\{x_{i}\right\}_{i=0}^{n} \cup\left\{y_{i}\right\}_{i=0}^{n} \cup\left\{z_{i}\right\}_{i=0}^{n} \cup\left\{T x_{i}\right\}_{i=0}^{n} \cup\left\{T y_{i}\right\}_{i=0}^{n} \cup\left\{T z_{i}\right\}_{i=0}^{n}$.
We denote the diameter of A_{n} by a_{n}. We show that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is bounded. For this purpose,
we define $b_{n}=\max \left\{\sup _{0 \leq i \leq n} d\left(x_{0}, T x_{i}\right), \sup _{0 \leq i \leq n} d\left(x_{0}, T y_{i}\right), \sup _{0 \leq i \leq n} d\left(x_{0}, T z_{i}\right)\right\}$ for $n=1,2, \ldots$.
We now show that $a_{n}=b_{n}$ for $n=1,2, \ldots$.
Clearly, $b_{n} \leq a_{n}$ for $n=1,2, \ldots$.
Without loss of generality, we assume that $a_{n}>0$ for $n=1,2, \ldots$.
$\operatorname{Case}(i): a_{n}=d\left(T x_{i}, T x_{j}\right)$ for some $0 \leq i, j \leq n$.
$\overline{\text { Now, } a_{n}}=d\left(T x_{i}, T x_{j}\right) \leq w\left(M\left(x_{i}, x_{j}\right)\right) \leq w\left(a_{n}\right)<a_{n}$,
a contradiction.
Hence, $a_{n} \neq d\left(T x_{i}, T x_{j}\right)$ for any $0 \leq i, j \leq n$.
With the similar reason, it is easy to see that $a_{n} \neq d\left(T x_{i}, T y_{j}\right), a_{n} \neq d\left(T x_{i}, T z_{j}\right)$,
$a_{n} \neq d\left(T y_{i}, T y_{j}\right), a_{n} \neq d\left(T y_{i}, T z_{j}\right)$, and $a_{n} \neq d\left(T z_{i}, T z_{j}\right)$ for any $0 \leq i, j \leq n$.
Case (ii) : $a_{n}=d\left(y_{i}, T x_{j}\right)$ for some $0 \leq i, j \leq n$.
$\left.\overline{a_{n}=d\left(y_{i}\right.}, T x_{j}\right)=d\left(w\left(T z_{i}, T x_{i}, \beta_{i}\right), T x_{j}\right) \leq \beta_{i} d\left(T z_{i}, T x_{j}\right)+\left(1-\beta_{i}\right) d\left(T x_{i}, T x_{j}\right)$ $\leq \max \left\{d\left(T z_{i}, T x_{j}\right), d\left(T x_{i}, T x_{j}\right)\right\} \leq a_{n}$ so that
$a_{n}=d\left(T z_{i}, T x_{j}\right)$ or $a_{n}=d\left(T x_{i}, T x_{j}\right)$,
which fails to hold by Case (i).
Therefore $a_{n} \neq d\left(y_{i}, T x_{j}\right)$ for any $0 \leq i, j \leq n$.
Similarly, it is easy to see that $a_{n} \neq d\left(y_{i}, T y_{j}\right)$ and $a_{n} \neq d\left(y_{i}, T z_{j}\right)$ for any $0 \leq i, j \leq n$.
Case (iii) : $a_{n}=d\left(y_{i}, y_{j}\right)$ for some $0 \leq i, j \leq n$.
$\left.\overline{a_{n}=d\left(y_{i}\right.}, y_{j}\right) \leq d\left(W\left(T z_{i}, T x_{i}, \beta_{i}\right), y_{j}\right) \leq \beta_{i} d\left(y_{j}, T z_{i}\right)+\left(1-\beta_{i}\right) d\left(y_{j}, T x_{i}\right)$ $\leq \max \left\{d\left(y_{j}, T z_{i}\right), d\left(y_{j}, T x_{i}\right)\right\} \leq a_{n}$ so that
$a_{n}=d\left(y_{j}, T z_{i}\right)$ or $a_{n}=d\left(y_{j}, T x_{i}\right)$,
which fails to hold by Case (ii).
Therefore, $a_{n} \neq d\left(y_{i}, y_{j}\right)$ for any $0 \leq i, j \leq n$.
Case (iv) : $a_{n}=d\left(x_{i}, T x_{j}\right)$ for some $0 \leq i, j \leq n$.
If $i>0$ then $a_{n}=d\left(x_{i}, T x_{j}\right)=d\left(W\left(T y_{i-1}, y_{i-1}, \alpha_{i-1}\right), T x_{j}\right)$

$$
\begin{aligned}
& \leq \alpha_{i-1} d\left(T y_{i-1}, T x_{j}\right)+\left(1-\alpha_{i-1}\right) d\left(y_{i-1}, T x_{j}\right) \\
& \leq \max \left\{d\left(T y_{i-1}, T x_{j}\right), d\left(y_{i-1}, T x_{j}\right)\right\} \leq a_{n} \text { so that }
\end{aligned}
$$

$a_{n}=d\left(T y_{i-1}, T x_{j}\right)$ or $a_{n}=d\left(y_{i-1}, T x_{j}\right)$,
which is absurd by Case (i) and Case (ii).
Therefore $i=0$ and hence $a_{n}=d\left(x_{0}, T x_{j}\right)$ so that $a_{n} \leq b_{n}$.
$\operatorname{Case}(v)$: Either $a_{n}=d\left(x_{i}, T y_{j}\right)$ or $d\left(x_{i}, T z_{j}\right)$ for some $0 \leq i, j \leq n$.
By the similar argument as in Case (iv), $i=0$ and hence $a_{n} \leq b_{n}$.
Case (vi) : $a_{n}=d\left(x_{i}, y_{j}\right)$ for some $0 \leq i, j \leq n$.
$\left.\overline{a_{n}=d\left(x_{i}\right.}, y_{j}\right)=d\left(x_{i}, W\left(T z_{j}, T x_{j}, \beta_{j}\right)\right) \leq \beta_{j} d\left(x_{i}, T z_{j}\right)+\left(1-\beta_{j}\right) d\left(x_{i}, T x_{j}\right)$

$$
\leq \max \left\{d\left(x_{i}, T z_{j}\right), d\left(x_{i}, T x_{j}\right)\right\} \leq a_{n} \text { so that }
$$

$a_{n}=d\left(x_{i}, T z_{j}\right)$ or $d\left(x_{i}, T x_{j}\right)$. By Case (iv) and Case (v), we have
$a_{n}=d\left(x_{0}, T x_{j}\right)$ or $d\left(x_{0}, T z_{j}\right)$ so that $a_{n} \leq b_{n}$.
Case (vii) : $a_{n}=d\left(x_{i}, x_{j}\right)$ for some $0 \leq i<j \leq n$.
$\left.\overline{a_{n}=d\left(x_{i},\right.} x_{j}\right)=d\left(x_{i}, W\left(T y_{j-1}, y_{j-1}, \alpha_{j-1}\right)\right) \leq \alpha_{j-1} d\left(x_{i}, T y_{j-1}\right)+\left(1-\alpha_{j-1}\right) d\left(x_{i}, y_{j-1}\right)$ $\leq \max \left\{d\left(x_{i}, T y_{j-1}\right), d\left(x_{i}, y_{j-1}\right)\right\} \leq a_{n}$
so that $a_{n}=d\left(x_{i}, T y_{j-1}\right)$ or $d\left(x_{i}, y_{j-1}\right)$.
Hence, $a_{n} \leq b_{n}$ follows from from Case (v) and Case (vi).
Case (viii) : $a_{n}=d\left(x_{i}, z_{j}\right)$ for some $0 \leq i, j \leq n$.
$a_{n}=d\left(x_{i}, z_{j}\right)=d\left(x_{i}, W\left(T x_{j}, x_{j}, \gamma_{j}\right)\right) \leq \gamma_{j} d\left(x_{i}, T x_{j}\right)+\left(1-\gamma_{j}\right) d\left(x_{i}, x_{j}\right)$

$$
\leq \max \left\{d\left(x_{i}, T x_{j}\right), d\left(x_{i}, x_{j}\right)\right\} \leq a_{n} \text { so that }
$$

$a_{n}=d\left(x_{i}, T x_{j}\right)$ or $d\left(x_{i}, x_{j}\right)$.
Hence, $a_{n} \leq b_{n}$ follows from Case (iv) and Case (vii).
Case $(i x)$: $a_{n}=d\left(y_{i}, z_{j}\right)$ for some $0 \leq i, j \leq n$.
$\left.\overline{a_{n}=d\left(y_{i}\right.}, z_{j}\right)=d\left(y_{i}, W\left(T x_{j}, x_{j}, \gamma_{j}\right)\right) \leq \gamma_{j} d\left(y_{i}, T x_{j}\right)+\left(1-\gamma_{j}\right) d\left(y_{i}, x_{j}\right)$

$$
\leq \max \left\{d\left(y_{i}, T x_{j}\right), d\left(y_{i}, x_{j}\right)\right\} \leq a_{n} \text { so that }
$$

$a_{n}=d\left(y_{i}, T x_{j}\right)$ or $d\left(y_{i}, x_{j}\right)$.
By Case (ii), $a_{n} \neq d\left(y_{i}, T x_{j}\right)$.
Therefore $a_{n}=d\left(y_{i}, x_{j}\right)$ and hence $a_{n} \leq b_{n}$ follows from Case (vi).
$\underline{\operatorname{Case}(x)}: a_{n}=d\left(z_{i}, T x_{j}\right)$ for some $0 \leq i, j \leq n$.
$\overline{a_{n}}=d\left(z_{i}, T x_{j}\right)=d\left(W\left(T x_{i}, x_{i}, \gamma_{i}\right), T x_{j}\right) \leq \gamma_{i} d\left(T x_{i}, T x_{j}\right)+\left(1-\gamma_{i}\right) d\left(x_{i}, T x_{j}\right)$ $\leq \max \left\{d\left(T x_{i}, T x_{j}\right), d\left(x_{i}, T x_{j}\right)\right\} \leq a_{n}$ so that
$a_{n}=d\left(T x_{i}, T x_{j}\right)$ or $d\left(x_{i}, T x_{j}\right)$.
By Case (i), $a_{n} \neq d\left(T x_{i}, T x_{j}\right)$.
Therefore $a_{n}=d\left(x_{i}, T x_{j}\right)$ and hence $a_{n} \leq b_{n}$ follows from Case (iv).
Case (xi) : $a_{n}=d\left(z_{i}, z_{j}\right)$ for some $0 \leq i, j \leq n$.
$a_{n}=d\left(z_{i}, z_{j}\right)=d\left(z_{i}, W\left(T x_{j}, x_{j}, \gamma_{j}\right)\right) \leq \gamma_{j} d\left(z_{i}, T x_{j}\right)+\left(1-\gamma_{j}\right) d\left(z_{i}, x_{j}\right)$
$\leq \max \left\{d\left(z_{i}, T x_{j}\right), d\left(z_{i}, x_{j}\right)\right\} \leq a_{n}$ so that
$a_{n}=d\left(z_{i}, x_{j}\right)$ or $d\left(z_{i}, T x_{j}\right)$. Hence it follows from Case (viii) and Case (x) that $a_{n} \leq b_{n}$.
Case (xii) : Either $a_{n}=d\left(z_{i}, T y_{j}\right)$ or $a_{n}=d\left(z_{i}, T z_{j}\right)$.
In this case, clearly $a_{n} \leq b_{n}$.
Hence, by considering all the above cases, it follows that $a_{n} \leq b_{n}$ so that $a_{n}=b_{n}$ for $n=1,2, \ldots$.
Now for any $0 \leq i \leq n$,

$$
\begin{aligned}
d\left(x_{0}, T x_{i}\right) & \leq d\left(x_{0}, T x_{0}\right)+d\left(T x_{0}, T x_{i}\right) \\
& \leq A+w\left(M\left(x_{0}, x_{i}\right)\right) \\
& \leq A+w\left(a_{n}\right), \text { where } A=d\left(x_{0}, T x_{0}\right)
\end{aligned}
$$

Similarly, it is easy to see that
$d\left(x_{0}, T y_{i}\right) \leq A+w\left(a_{n}\right)$ for $0 \leq i \leq n$ and
$d\left(x_{0}, T z_{i}\right) \leq A+w\left(a_{n}\right)$ for $0 \leq i \leq n$.
Therefore $b_{n} \leq A+w\left(a_{n}\right)$ so that

$$
\begin{equation*}
a_{n}-w\left(a_{n}\right) \leq A \tag{2.2}
\end{equation*}
$$

for $n=1,2, \ldots$, since $b_{n}=a_{n}$.
Since $\lim _{t \rightarrow \infty}(t-w(t))=\infty$, there exists $c>0$ such that $t-w(t)>A$ for all $t>c$.
If $a_{n}>c$ for some $n \geq 1$ then $a_{n}-w\left(a_{n}\right)>A$,
a contradiction.
Thus $a_{n} \leq c$ for all n, i.e., the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is bounded.
Hence the conclusion of the lemma follows.
Theorem 2.2. Let (X, d, W) be a complete convex metric space and K be a nonempty closed convex subset of X. Let $T: K \rightarrow K$ satisfy all the hypotheses of Lemma 2.1. Let $\left\{\alpha_{n}\right\}_{n=0}^{\infty},\left\{\beta_{n}\right\}_{n=0}^{\infty}$, and $\left\{\gamma_{n}\right\}_{n=0}^{\infty}$ be sequences in $[0,1]$ such that $\sum_{n=0}^{\infty} \alpha_{n}=\infty$. Then the sequence $\left\{x_{n}\right\}$ generated by the modified $C R$-iteration procedure (1.13) converges strongly to a unique fixed point of T.

Proof. Without loss of generality, we assume that $x_{n} \neq T x_{n}$ for any $n=0,1,2, \ldots$.
For each integer $n \geq 0$, we let
$C_{n}=\left\{x_{i}\right\}_{i=n}^{\infty} \cup\left\{y_{i}\right\}_{i=n}^{\infty} \cup\left\{z_{i}\right\}_{i=n}^{\infty} \cup\left\{T x_{i}\right\}_{i=n}^{\infty} \cup\left\{T y_{i}\right\}_{i=n}^{\infty} \cup\left\{T z_{i}\right\}_{i=n}^{\infty}$.
By Lemma 2.1, C_{n} is bounded. We denote the diameter of C_{n} by c_{n}.
Let $d_{n}=\max \left\{\sup _{i \geq n} d\left(x_{n}, T x_{i}\right), \sup _{i \geq n} d\left(x_{n}, T y_{i}\right), \sup _{i \geq n} d\left(x_{n}, T z_{i}\right)\right\}$ for $n=0,1,2, \ldots$.
Then it is easy to see that $c_{n}=d_{n}$ for $n=0,1,2, \ldots$.
Clearly, the sequence $\left\{c_{n}\right\}$ is a decreasing sequence of nonnegative real numbers so that $\lim _{n \rightarrow \infty} c_{n}$ exists, we let it be c.
Now we prove that $c=0$. On the contrary, we assume that $c>0$ so that $c_{n}>0$ for $n=0,1,2, \ldots$.
For each positive integer n and for each $j \geq n$, we have

$$
\begin{aligned}
d\left(x_{n}, T x_{j}\right) & =d\left(T x_{j}, W\left(T y_{n-1}, y_{n-1}, \alpha_{n-1}\right)\right) \\
& \leq \alpha_{n-1} d\left(T x_{j}, T y_{n-1}\right)+\left(1-\alpha_{n-1}\right) d\left(T x_{j}, y_{n-1}\right) \\
& \leq \alpha_{n-1} w\left(M\left(x_{j}, y_{n-1}\right)\right)+\left(1-\alpha_{n-1}\right) d\left(T x_{j}, y_{n-1}\right) \\
& \leq \alpha_{n-1} w\left(c_{n-1}\right)+\left(1-\alpha_{n-1}\right) c_{n-1} \text { so that }
\end{aligned}
$$

$\sup _{j \geq n} d\left(x_{n}, T x_{j}\right) \leq \alpha_{n-1} w\left(c_{n-1}\right)+\left(1-\alpha_{n-1}\right) c_{n-1}$.
$j \geq n$
Similarly, $\sup d\left(x_{n}, T y_{j}\right) \leq \alpha_{n-1} w\left(c_{n-1}\right)+\left(1-\alpha_{n-1}\right) c_{n-1}$ and
$\sup _{j \geq n} d\left(x_{n}, \stackrel{j \geq n}{T \geq z_{j}}\right) \leq \alpha_{n-1} w\left(c_{n-1}\right)+\left(1-\alpha_{n-1}\right) c_{n-1}$ hold.
Therefore

$$
d_{n} \leq \alpha_{n-1} w\left(c_{n-1}\right)+\left(1-\alpha_{n-1}\right) c_{n-1} \quad \text { for } \quad n=1,2, \ldots
$$

Since $c_{n}=d_{n}$, we have

$$
\begin{equation*}
\alpha_{n-1}\left(c_{n-1}-w\left(c_{n-1}\right)\right) \leq c_{n-1}-c_{n} \quad \text { for } \quad n=1,2, \ldots \tag{2.3}
\end{equation*}
$$

Let $s=\inf \left\{c_{n}-w\left(c_{n}\right): n \geq 0\right\}$. If $s=0$ then there exists a subsequence $\left\{c_{n(k)}\right\}$ of the sequence $\left\{c_{n}\right\}$ such that $\lim _{k \rightarrow \infty}\left(c_{n(k)}-w\left(c_{n(k)}\right)\right)=0$, i.e., $c-w\left(c^{+}\right)=0$,
a contradiction, from (iii) of Lemma 2.1.
Therefore $s>0$ so that there exists a real number $\eta>0$ such that $c_{n}-w\left(c_{n}\right) \geq \eta$ for $n=0,1,2, \ldots$.
It follows from the inequality (2.3) that $\eta \alpha_{n-1} \leq c_{n-1}-c_{n}$ for $n=1,2, \ldots$.
Since the sequence $\left\{c_{n}\right\}$ is convergent, we have the series $\sum \alpha_{n}<\infty$,
a contradiction.
Therefore $c=0$ so that the sequence $\left\{x_{n}\right\}$ is Cauchy and hence there exists $x \in K$ such that $\lim _{n \rightarrow \infty} x_{n}=x$. Since $c=0$, we have $\lim _{n \rightarrow \infty} d\left(x_{n}, T x_{n}\right)=0$ so that $\lim _{n \rightarrow \infty} T x_{n}=x$.

Now, we prove that x is a fixed point of T.
Since T satisfies the inequality (2.1), we have

$$
\begin{equation*}
d\left(T x_{n}, T x\right) \leq w\left(M\left(x_{n}, x\right)\right) \text { for } n=0,1,2 \ldots \tag{2.4}
\end{equation*}
$$

Since $M\left(x_{n}, x\right) \geq d(x, T x)$ for $n=0,1,2, \ldots$ and $\lim _{n \rightarrow \infty} M\left(x_{n}, x\right)=d(x, T x)$, we have
$\lim _{n \rightarrow \infty} w\left(M\left(x_{n}, x\right)\right)=w\left(d(x, T x)^{+}\right)$so that $d(x, T x) \leq w\left(d(x, T x)^{+}\right)$.
Hence x is a fixed point of T by using (iii) of Lemma 2.1.
Now from the inequality (2.1) and Remark 1.6, clearly the uniquness of fixed point of T follows.
If $\alpha_{n} \equiv 1$ in the modified $C R$-iteration procedure (1.13) then we have the following corollary from Theorem 2.2.

Corollary 2.3. Let X, K, T be as in Theorem 2.2. Let $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ and $\left\{\gamma_{n}\right\}_{n=0}^{\infty}$ be sequences in [0, 1]. For $x_{0} \in K$, let the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ be generated by the modified Picard-S iteration procedure (1.14). Then $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges to a unique fixed point of T.

In the following, we prove that $C R$-iteration procedure (1.11) and Picard-S iteration procedure (1.12) converge to a unique fixed point of a quasi-contraction map under certain hypotheses in the setting of Banach spaces.

Corollary 2.4. Let X be a Banach space, K be a nonempty closed convex subset of X, and $T: K \rightarrow K$ be a quasi contraction map. Let $\left\{\alpha_{n}\right\}_{n=0}^{\infty},\left\{\beta_{n}\right\}_{n=0}^{\infty}$, and $\left\{\gamma_{n}\right\}_{n=0}^{\infty}$ be sequences in $[0,1]$ such that $\sum_{n=0}^{\infty} \alpha_{n}=\infty$. For $x_{0} \in K$, let $\left\{x_{n}\right\}$ be the sequence generated by either $C R$-iteration procedure (1.11) or by Picard-S iteration procedure (1.12). Then $\left\{x_{n}\right\}$ converges strongly to a unique fixed point of T.

Proof. Follows from Remark 1.7, Theorem 2.2 and Corollary 2.3.

References

[1] M. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin, Heidelberg, New York, 1999. 1.2
[2] R. Chugh, V. Kumar, and S. Kumar, Strong convergence of a new three step iterative scheme in Banach spaces, Amer. J. Compu. Math., 2 (2012) 345-357. 1
[3] L. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45(2) (1974), 267-273. 1
[4] L. B. Ćirić, Convergence theorems for a sequence of Ishikawa iterations for nonlinear quasi contractive mappings, Indian J. pure appl. Math., 30(4), (1999) 425-433. 1, 1.4, 1
[5] X. P. Ding, Iteration process for Nonlinear mappings in Convex metric spaces, J. Math. Anal. Appl., 132, (1988), 114-122. 1
[6] F. Gürusoy and V. Karakaya, A Picad-S Hybrid type iteration method for solving a differential equation with retarted argument, arXiv:1403.2546v2. 1
[7] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147-150. 1
[8] M. Moosaei, Fixed point theorems in convex metric spaces, Fixed Point Theory and Appl., Vol. 2012, article 164, (2012) 6 pages. 1.2
[9] Renu Chugh, Preety Malik, Convergence and fixed point theorems in convex metric spaces : a survey, International Journal of Applied Mathematical Research, 3(2) (2014)133-160. 1
[10] K. P. R. Sastry, G. V. R. Babu and Ch. Srinivasa Rao, Convergence of an Ishikawa iteration scheme for non linear quasi-contractive mappings in convex metric spaces, Tamkang J. Math., 32 (2), (2001), 117-126.
[11] W. Takahashi, A convexity in metric space and nonexpansive mappings, Kodai Math. Sem. Rep., 22 (1970), 142-149. 1, 1.5, 1
1, 1.2

[^0]: *Corresponding author
 Email addresses: gvr_babu@hotmail.com (G. V. R. Babu), gedalasatyam@gmail.com (G. Satyanarayana)

