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Abstract

We prove that the modified CR-iteration procedure converges strongly to a fixed point of a nonlinear quasi
contractive map in convex metric spaces which is the main result of this paper. The convergence of Picard-S
iteration procedure follows as a corollary to our main result.
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1. Introduction and preliminaries

In 1970, Takahashi [11] introduced the concept of convexity in metric spaces as follows.

Definition 1.1. Let (X, d) be a metric space. A map W : X × X × [0, 1] → X is said to be a ‘convex
structure’ on X if

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y) (1.1)

for x, y, u ∈ X and λ ∈ [0, 1].

A metric space (X, d) together with a convex structure W is called a convex metric space and we denote
it by (X, d,W ). We note that W (x, y, 1) = x and W (x, y, 0) = y. A nonempty subset K of X is said to be
‘convex’ if W (x, y, λ) ∈ K for x, y ∈ K and λ ∈ [0, 1].

Remark 1.2. Every normed linear space (X, ||.||) is a convex metric space with the convex sructure W defined
by W (x, y, λ) = (1 − λ)y + λx for x, y ∈ X, λ ∈ [0, 1]. But there are convex meric spaces which are not
normed linear spaces [1, 8, 11].
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In 1974, Ćirić [3] introduced quasi-contraction maps in the setting of metric spaces and proved that the
Picard iterative sequence converges to the fixed point in complete metric spaces.

Definition 1.3. Let (X, d) be a metric space. A selfmap T : X → X is said to be a quasi-contraction map
if there exists a real number 0 ≤ k < 1 such that

d(Tx, Ty) ≤ kM(x, y) (1.2)

where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} (1.3)

for x, y ∈ X.

Let K be a nonempty convex subset of a normed linear space X and let {αn}∞n=0 and {βn}∞n=0 be
sequences in [0, 1]. The Ishikawa iteration procedure [7] in the setting of normed linear spaces is as follows :
For x0 ∈ K,

yn = (1− βn)xn + βnTxn
xn+1 = (1− αn)xn + αnTyn, for n = 0, 1, 2, ... .

(1.4)

Ding [5] considered the Ishikawa iteration procedure in the setting of convex metric spaces as follows :
Let K be a nonempty convex subset of a convex metric space (X, d,W ), and let {αn}∞n=0 and {βn}∞n=0 be
the sequences in [0, 1]. For x0 ∈ K,

yn = W (Txn, xn, βn)
xn+1 = W (Tyn, xn, αn) for n = 0, 1, 2, ...

(1.5)

and proved that the Ishikawa iteration procedure (1.5) converges strongly to a unique fixed point of a
quasi-contraction map in the setting of convex metric spaces, provided

∑∞
n=0 αn =∞.

In 1999, Ćirić [4] introduced a more general quasi-contraction map and proved the convergence of an
Ishikawa iteration procedure in convex metric spaces to the unique fixed point and the result is the following.

Theorem 1.4. (Ćirić [4]) Let K be a nonempty closed convex subset of a complete convex metric space X
and let T : K → K be a selfmap satisfying

d(Tx, Ty) ≤ w(M(x, y)), (1.6)

where M(x, y) is as defined in (1.3) for x, y ∈ K and
w : (0,∞)→ (0,∞) is a map which satisfies (i) 0 < w(t) < t for each t > 0,
(ii) w increases, and the following conditions :

lim
t→∞

(t− w(t)) =∞ : and (1.7)

either t− w(t) is increasing on (0,∞) (1.8)

or w(t) is strictly increasing and lim
n→∞

wn(t) = 0 for t > 0. (1.9)

Let {αn}∞n=0 and {βn}∞n=0 be sequences in [0, 1] such that
∑∞

n=0 αn =∞. For x0 ∈ K, the Ishikawa iteration
procedure {xn}∞n=0 defined in (1.5) converges strongly to the unique fixed point of T .

Sastry, Babu and Srinivasa Rao [10] improved Theorem 1.4 by replacing (1.8) and (1.9) with a single
condition, namely 0 < w(t+) < t for each t > 0 and proved the following theorem.
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Theorem 1.5. [10] Let (X, d,W ) be a complete convex metric space and T : X → X be a map that satisfies

d(Tx, Ty) ≤ w(M(x, y)) (1.10)

where M(x, y) is defined as in (1.3) for x, y ∈ X and w : (0,∞)→ (0,∞) is a map such that (i) w increases,
(ii) lim

t→∞
(t− w(t)) =∞ (iii) 0 < w(t+) < t for t > 0.

Let {αn}∞n=0 and {βn}∞n=0 be sequences in [0, 1] such that
∑∞

n=0 αn =∞.
Then for any x0 ∈ K, the sequence {xn}∞n=0 generated by the iteration procedure (1.5) converges strongly

to a unique fixed point of T .

Here we note that a map that satisfies (1.10) is said to be a nonlinear quasi contractive map on X.

Remark 1.6. (i) and (iii) of Theorem 1.5 imply that 0 < w(t) < t for each t > 0.

Remark 1.7. If w(t) = kt for t ∈ (0,∞) and 0 ≤ k < 1 then the map T of Theorem 1.5 reduces to a quasi
contraction map.

In 2012, Chugh, Kumar and Kumar [2] introduced ‘CR-iteration procedure’ as follows:
Let K be a nonempty convex subset of a normed linear space X, and let {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 be
sequences in [0, 1].
For x0 ∈ K,

zn = (1− γn)xn + γnTxn
yn = (1− βn)Txn + βnTzn,
xn+1 = (1− αn)yn + αnTyn, for n = 0, 1, 2, ... .

(1.11)

By choosing αn ≡ 1 for all n in (1.11), we have the following.
For x0 ∈ K,

zn = (1− γn)xn + γnTxn
yn = (1− βn)Txn + βnTzn,
xn+1 = Tyn, for n = 0, 1, 2, ... .

(1.12)

The iteration procedure (1.12) is called the ‘Picard-S iteration procedure’ [6].
In 2014, Chugh and Malik [9] introduced an anlaogue of CR-iteration procedure (1.11) in convex metric

spaces as follows:
Let K be a nonempty convex subset of a convex metric space (X, d,W ).

For any x0 ∈ K,
zn = W (Txn, xn, γn)
yn = W (Tzn, Txn, βn)
xn+1 = W (Tyn, yn, αn)

(1.13)

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are in [0, 1].
We call the iteration procedure {xn} defined in (1.13) is a ‘modified CR-iteration procedure’ in convex

metric spaces.
If αn ≡ 1 then the iteration procedure (1.13) reduces to the following which is an analogue of Picard-S
iteration procedure (1.12) in a convex metric space.
For x0 ∈ K,

zn = W (Txn, xn, γn)
yn = W (Tzn, Txn, βn)
xn+1 = Tyn

(1.14)

where {βn}∞n=0 and {γn}∞n=0 are in [0, 1].
We call the iteration {xn} defined in (1.14) is a ‘modified Picard-S iteration procedure’.
Motivated by the results of Ćirić [4] and Sastry, Babu and Srinivasa Rao [10], in Section 2 of this paper,

we prove the strong convergence of modified CR-iteration procedure to a fixed point of a nonlinear quasi
contractive map (Theorem 2.2) which is the main result of this paper. The convergence of modified Picard-S
iteration procedure (1.14) follows as a corollary to our main result.
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2. Main results

Lemma 2.1. Let (X, d,W ) be a convex metric space, and let K be a nonempty convex subset of X. Let
T : K → K be a map such that

d(Tx, Ty) ≤ w(M(x, y)) for x, y ∈ K, (2.1)

where M(x, y) is defined in (1.3) with M(x, y) > 0 and w : (0,∞) → (0,∞) is a map such that (i) w is
increasing on (0,∞) (ii) lim

t→∞
(t − w(t)) = ∞, and (iii) 0 < w(t+) < t for each t > 0. For x0 ∈ K, let

{xn}, {yn} and {zn} be the sequences generated by the modified CR-iteration procedure (1.13). Then the
sequences {xn}, {yn}, {zn}, {Txn}, {Tyn} and {Tzn} are bounded.

Proof. For each positive integer n, we define the set
An = {xi}ni=0 ∪ {yi}ni=0 ∪ {zi}ni=0 ∪ {Txi}ni=0 ∪ {Tyi}ni=0 ∪ {Tzi}ni=0.
We denote the diameter of An by an. We show that {an}∞n=1 is bounded. For this purpose,
we define bn = max{ sup

0≤i≤n
d(x0, Txi), sup

0≤i≤n
d(x0, T yi), sup

0≤i≤n
d(x0, T zi)} for n = 1, 2, ... .

We now show that an = bn for n = 1, 2, ... .
Clearly, bn ≤ an for n = 1, 2, ... .
Without loss of generality, we assume that an > 0 for n = 1, 2, ... .
Case (i) : an = d(Txi, Txj) for some 0 ≤ i, j ≤ n.
Now, an = d(Txi, Txj) ≤ w(M(xi, xj)) ≤ w(an) < an,
a contradiction.
Hence, an 6= d(Txi, Txj) for any 0 ≤ i, j ≤ n.
With the similar reason, it is easy to see that an 6= d(Txi, Tyj), an 6= d(Txi, T zj),
an 6= d(Tyi, T yj), an 6= d(Tyi, T zj), and an 6= d(Tzi, T zj) for any 0 ≤ i, j ≤ n.
Case (ii) : an = d(yi, Txj) for some 0 ≤ i, j ≤ n.
an = d(yi, Txj) = d(w(Tzi, Txi, βi), Txj) ≤ βid(Tzi, Txj) + (1− βi)d(Txi, Txj)

≤ max{d(Tzi, Txj), d(Txi, Txj)} ≤ an so that
an = d(Tzi, Txj) or an = d(Txi, Txj),
which fails to hold by Case (i).
Therefore an 6= d(yi, Txj) for any 0 ≤ i, j ≤ n.
Similarly, it is easy to see that an 6= d(yi, T yj) and an 6= d(yi, T zj) for any 0 ≤ i, j ≤ n.
Case (iii) : an = d(yi, yj) for some 0 ≤ i, j ≤ n.
an = d(yi, yj) ≤ d(W (Tzi, Txi, βi), yj) ≤ βid(yj , T zi) + (1− βi)d(yj , Txi)

≤ max{d(yj , T zi), d(yj , Txi)} ≤ an so that
an = d(yj , T zi) or an = d(yj , Txi),
which fails to hold by Case (ii).
Therefore, an 6= d(yi, yj) for any 0 ≤ i, j ≤ n.
Case (iv) : an = d(xi, Txj) for some 0 ≤ i, j ≤ n.
If i > 0 then an = d(xi, Txj) = d(W (Tyi−1, yi−1, αi−1), Txj)

≤ αi−1d(Tyi−1, Txj) + (1− αi−1)d(yi−1, Txj)
≤ max{d(Tyi−1, Txj), d(yi−1, Txj)} ≤ an so that

an = d(Tyi−1, Txj) or an = d(yi−1, Txj),
which is absurd by Case (i) and Case (ii).
Therefore i = 0 and hence an = d(x0, Txj) so that an ≤ bn.
Case (v) : Either an = d(xi, T yj) or d(xi, T zj) for some 0 ≤ i, j ≤ n.
By the similar argument as in Case (iv), i = 0 and hence an ≤ bn.
Case (vi) : an = d(xi, yj) for some 0 ≤ i, j ≤ n.
an = d(xi, yj) = d(xi,W (Tzj , Txj , βj)) ≤ βjd(xi, T zj) + (1− βj)d(xi, Txj)

≤ max{d(xi, T zj), d(xi, Txj)} ≤ an so that
an = d(xi, T zj) or d(xi, Txj). By Case (iv) and Case (v), we have
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an = d(x0, Txj) or d(x0, T zj) so that an ≤ bn.
Case (vii) : an = d(xi, xj) for some 0 ≤ i < j ≤ n.
an = d(xi, xj) = d(xi,W (Tyj−1, yj−1, αj−1)) ≤ αj−1d(xi, Tyj−1) + (1− αj−1)d(xi, yj−1)

≤ max{d(xi, T yj−1), d(xi, yj−1)} ≤ an
so that an = d(xi, Tyj−1) or d(xi, yj−1).
Hence, an ≤ bn follows from from Case (v) and Case (vi).
Case (viii) : an = d(xi, zj) for some 0 ≤ i, j ≤ n.
an = d(xi, zj) = d(xi,W (Txj , xj , γj)) ≤ γjd(xi, Txj) + (1− γj)d(xi, xj)

≤ max{d(xi, Txj), d(xi, xj)} ≤ an so that
an = d(xi, Txj) or d(xi, xj).
Hence, an ≤ bn follows from Case (iv) and Case (vii).
Case (ix) : an = d(yi, zj) for some 0 ≤ i, j ≤ n.
an = d(yi, zj) = d(yi,W (Txj , xj , γj)) ≤ γjd(yi, Txj) + (1− γj)d(yi, xj)

≤ max{d(yi, Txj), d(yi, xj)} ≤ an so that
an = d(yi, Txj) or d(yi, xj).
By Case (ii), an 6= d(yi, Txj).
Therefore an = d(yi, xj) and hence an ≤ bn follows from Case (vi).
Case (x) : an = d(zi, Txj) for some 0 ≤ i, j ≤ n.
an = d(zi, Txj) = d(W (Txi, xi, γi), Txj) ≤ γid(Txi, Txj) + (1− γi)d(xi, Txj)

≤ max{d(Txi, Txj), d(xi, Txj)} ≤ an so that
an = d(Txi, Txj) or d(xi, Txj).
By Case (i), an 6= d(Txi, Txj).
Therefore an = d(xi, Txj) and hence an ≤ bn follows from Case (iv).
Case (xi) : an = d(zi, zj) for some 0 ≤ i, j ≤ n.
an = d(zi, zj) = d(zi,W (Txj , xj , γj)) ≤ γjd(zi, Txj) + (1− γj)d(zi, xj)

≤ max{d(zi, Txj), d(zi, xj)} ≤ an so that
an = d(zi, xj) or d(zi, , Txj). Hence it follows from Case (viii) and Case (x) that an ≤ bn.
Case (xii) : Either an = d(zi, Tyj) or an = d(zi, T zj).
In this case, clearly an ≤ bn.
Hence, by considering all the above cases, it follows that an ≤ bn so that an = bn for n = 1, 2, ... .

Now for any 0 ≤ i ≤ n,
d(x0, Txi) ≤ d(x0, Tx0) + d(Tx0, Txi)

≤ A+ w(M(x0, xi))
≤ A+ w(an), where A = d(x0, Tx0).

Similarly, it is easy to see that
d(x0, T yi) ≤ A+ w(an) for 0 ≤ i ≤ n and
d(x0, T zi) ≤ A+ w(an) for 0 ≤ i ≤ n.
Therefore bn ≤ A+ w(an) so that

an − w(an) ≤ A (2.2)

for n = 1, 2, ..., since bn = an.
Since lim

t→∞
(t− w(t)) =∞, there exists c > 0 such that t− w(t) > A for all t > c.

If an > c for some n ≥ 1 then an − w(an) > A,
a contradiction.
Thus an ≤ c for all n, i.e., the sequence {an}∞n=1 is bounded.
Hence the conclusion of the lemma follows.

Theorem 2.2. Let (X, d,W ) be a complete convex metric space and K be a nonempty closed convex subset
of X. Let T : K → K satisfy all the hypotheses of Lemma 2.1. Let {αn}∞n=0, {βn}∞n=0, and {γn}∞n=0 be
sequences in [0, 1] such that

∑∞
n=0 αn =∞. Then the sequence {xn} generated by the modified CR-iteration

procedure (1.13) converges strongly to a unique fixed point of T .
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Proof. Without loss of generality, we assume that xn 6= Txn for any n = 0, 1, 2, ... .
For each integer n ≥ 0, we let
Cn = {xi}∞i=n ∪ {yi}∞i=n ∪ {zi}∞i=n ∪ {Txi}∞i=n ∪ {Tyi}∞i=n ∪ {Tzi}∞i=n.
By Lemma 2.1, Cn is bounded. We denote the diameter of Cn by cn.
Let dn = max{sup

i≥n
d(xn, Txi), sup

i≥n
d(xn, T yi), sup

i≥n
d(xn, T zi)} for n = 0, 1, 2, ... .

Then it is easy to see that cn = dn for n = 0, 1, 2, ... .
Clearly, the sequence {cn} is a decreasing sequence of nonnegative real numbers so that lim

n→∞
cn exists, we

let it be c.
Now we prove that c = 0. On the contrary, we assume that c > 0 so that cn > 0 for n = 0, 1, 2, ... .
For each positive integer n and for each j ≥ n, we have
d(xn, Txj) = d(Txj ,W (Tyn−1, yn−1, αn−1))

≤ αn−1d(Txj , T yn−1) + (1− αn−1)d(Txj , yn−1)
≤ αn−1w(M(xj , yn−1)) + (1− αn−1)d(Txj , yn−1)
≤ αn−1w(cn−1) + (1− αn−1)cn−1 so that

sup
j≥n

d(xn, Txj) ≤ αn−1w(cn−1) + (1− αn−1)cn−1.

Similarly, sup
j≥n

d(xn, T yj) ≤ αn−1w(cn−1) + (1− αn−1)cn−1 and

sup
j≥n

d(xn, T zj) ≤ αn−1w(cn−1) + (1− αn−1)cn−1 hold.

Therefore
dn ≤ αn−1w(cn−1) + (1− αn−1)cn−1 for n = 1, 2, ... .

Since cn = dn, we have

αn−1(cn−1 − w(cn−1)) ≤ cn−1 − cn for n = 1, 2, ... . (2.3)

Let s = inf{cn − w(cn) : n ≥ 0}. If s = 0 then there exists a subsequence {cn(k)} of the sequence {cn} such
that lim

k→∞
(cn(k) − w(cn(k))) = 0, i.e., c− w(c+) = 0,

a contradiction, from (iii) of Lemma 2.1.
Therefore s > 0 so that there exists a real number η > 0 such that cn − w(cn) ≥ η for n = 0, 1, 2, ... .
It follows from the inequality (2.3) that ηαn−1 ≤ cn−1 − cn for n = 1, 2, ... .

Since the sequence {cn} is convergent, we have the series
∑
αn <∞,

a contradiction.
Therefore c = 0 so that the sequence {xn} is Cauchy and hence there exists x ∈ K such that lim

n→∞
xn = x.

Since c = 0, we have lim
n→∞

d(xn, Txn) = 0 so that lim
n→∞

Txn = x.

Now, we prove that x is a fixed point of T .
Since T satisfies the inequality (2.1), we have

d(Txn, Tx) ≤ w(M(xn, x)) for n = 0, 1, 2... (2.4)

Since M(xn, x) ≥ d(x, Tx) for n = 0, 1, 2, ... and lim
n→∞

M(xn, x) = d(x, Tx), we have

lim
n→∞

w(M(xn, x)) = w(d(x, Tx)+) so that d(x, Tx) ≤ w(d(x, Tx)+).

Hence x is a fixed point of T by using (iii) of Lemma 2.1.
Now from the inequality (2.1) and Remark 1.6, clearly the uniquness of fixed point of T follows.

If αn ≡ 1 in the modified CR-iteration procedure (1.13) then we have the following corollary from
Theorem 2.2.

Corollary 2.3. Let X,K, T be as in Theorem 2.2. Let {βn}∞n=0 and {γn}∞n=0 be sequences in [0, 1]. For
x0 ∈ K, let the sequence {xn}∞n=0 be generated by the modified Picard-S iteration procedure (1.14). Then
{xn}∞n=0 converges to a unique fixed point of T .
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In the following, we prove that CR-iteration procedure (1.11) and Picard-S iteration procedure (1.12)
converge to a unique fixed point of a quasi-contraction map under certain hypotheses in the setting of
Banach spaces.

Corollary 2.4. Let X be a Banach space, K be a nonempty closed convex subset of X, and T : K → K be a
quasi contraction map. Let {αn}∞n=0, {βn}∞n=0, and {γn}∞n=0 be sequences in [0, 1] such that

∑∞
n=0 αn =∞.

For x0 ∈ K, let {xn} be the sequence generated by either CR-iteration procedure (1.11) or by Picard-S
iteration procedure (1.12). Then {xn} converges strongly to a unique fixed point of T .

Proof. Follows from Remark 1.7, Theorem 2.2 and Corollary 2.3.
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