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Abstract

In this paper, we study some fixed point theorems for self-mappings satisfying certain contraction princi-
ples on a S-complete convex Hausdorff uniform space, these theorems generalize previously obtained results
in convex metric space and convex partial metric space.
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1. Introduction

In 1970, Takahashi [16] introduced the notion of convexity in metric spaces and studied some fixed point
theorems for nonexpansive mappings in such spaces. A convex metric space is a generalization of some
spaces. For example, every normed space and Banach space is a convex metric space and complete convex
metric space respectively. Subsequently, Beg [2], Beg and Abbas [3, 4], Chang, Kim and Jin [8], Ciric [9],
Shimizu and Takahashi [14], Tian [15], Ding [10], Moosaei [12] and others studied fixed point theorems in
convex metric spaces.
One of the abstract spaces in literature that generalises the metric and pseudometric spaces is the uniform
space. Weil [18] was the first to characterise uniform spaces in terms of a family of pseudometrics and
Bourbaki [7] provided the definition of a uniform structure in terms of entourages. Aamri and El Moutawakil
[1] gave some results on common fixed point for some contractive and expansive maps in uniform spaces
and provided the definition of A-distance and E-distance. Olisama et al. [13] introduced the concept of
JAV -distance (an analogue of b-metric), in Hausdorff uniform spaces and investigated the existence and
uniqueness of best proximity points for these modified contractive mappings.
The purpose of this paper is to study the existence of a fixed point for a self-mapping defined on a nonempty
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closed convex subset of a S-complete convex Hausdorff uniform space that satisfies certain conditions. Since
the uniform space is a generalization of metric space, our results improve and extend some of Beg’s results
in [2], Beg and Olatinwo’s results in [5] from a complete convex metric space to an S-complete convex
Hausdorff uniform space.

2. Preliminaries

Definition 2.1. [7] A uniform space (X,Γ) is a nonempty set X equipped with a uniform structure which
is a family Γ of subsets of Cartesian product X ×X which satisfy the following conditions:

(i) If U ∈ Γ, then U contains the diagonal ∆ = {(x, x) : x ∈ X}.
(ii) If U ∈ Γ, then U−1 = {(y, x) : (x, y) ∈ U} is also in Γ.

(iii) If U, V ∈ Γ, then U ∩ V ∈ Γ.

(iv) If U ∈ Γ, and V ⊆ X ×X, which contains U, then V ∈ Γ.

(v) If U ∈ Γ, then there exists V ∈ Γ such that whenever (x, y) and (y, z) are in V , then (x, z) is in U.

Γ is called the uniform structure or uniformity of U and its elements are called entourages, neighbourhoods,
surroundings, or vicinities.

Definition 2.2. [1] Let (X,Γ) be a uniform space. A function p : X ×X → <+ is said to be an

(a) A-distance if, for any V ∈ Γ, there exists δ > 0 such that if p(z, x) ≤ δ and p(z, y) ≤ δ for some z ∈ X,
then (x, y) ∈ V ;

(b) E-distance if p is an A-distance and p(x, z) ≤ p(x, y) + p(y, z), ∀x, y, z ∈ X.

Definition 2.3. [13] Let (X,Γ) be a uniform space. A function p : X × X → <+ is said to be a JAV -
distance if

(a) p is an A - distance,

(b) p(x, y) ≤ s[p(x, z) + p(z, y)], ∀x, y, z ∈ X, s ≥ 1.

Note that the function p reduces to an E-distance if the constant s is taken to be 1.

Definition 2.4. [7] Let (X,Γ) be a uniform space and p an A-distance on X.

(a) If V ∈ Γ, (x, y) ∈ V , and (y, x) ∈ V , x and y are said to be V -close. A sequence (xn) is a Cauchy
sequence for Γ if, for any V ∈ Γ, there exists N ≥ 1 such that xn and xm are V -close for n,m ≥ N .
The sequence (xn) ∈ X is a p-Cauchy sequence if for every ε > 0 there exists n0 ∈ N such that
p(xn, xm) < ε for all n,m ≥ N .

(b) X is S-complete if for any p-Cauchy sequence {xn}, there exists x ∈ X such that lim
n→∞

p(xn, x) = 0.

(c) f : X → X is p-continuous if lim
n→∞

p(xn, x) = 0 implies lim
n→∞

p(f(xn), f(x)) = 0.

(d) X is said to be p-bounded if δp(X) = sup{p(x, y) : x, y ∈ X} <∞.

To guarantee the uniqueness of the limit of the Cauchy sequence for Γ, the uniform space (X,Γ) needs
to be Hausdorff.

Definition 2.5. [7] A uniform space (X,Γ) is said to be Hausdorff if and only if the intersection of all the
V ∈ Γ reduces to the diagonal ∆ of X, ∆ = {(x, x), x ∈ X}. In other words, (x, y) ∈ V for all V ∈ Γ implies
x = y.

The following Lemma will be used efficiently in the sequel.

Lemma 2.6. [17] Let (X,Γ) be a Hausdorff uniform space and p be an A-distance on X. Let {xn}∞n=∞,
{yn}∞n=∞ be arbitrary sequences in X and {αn}∞n=∞, {βn}∞n=∞ be sequences in <+ converging to 0. Then,
for x, y, z ∈ X the following holds:
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(a) If p(xn, y) ≤ αn and p(xn, z) ≤ βn ∀n ∈ N, then y = z. In particular, if p(x, y) = 0 and p(x, z) = 0,
then y = z;

(b) If p(xn, yn) = p(A,B) and p(xn, zn) = p(A,B), then yn = zn;

(c) If p(xn, yn) ≤ αn and p(xn, z) ≤ βn ∀n ∈ N, then {yn}∞n=0 converges to z;

(d) If p(xn, xm) ≤ αn ∀m > n, then {xn}∞n=0 is a p-Cauchy sequence in (X,Γ).

We now define convexity in uniform spaces.

Definition 2.7. Let (X,Γ) be a uniform space such that p is an E-distance on X and I = [0, 1]. A mapping
W : X ×X × I → X is said to be a convex structure on X if for each (x, y, λ) ∈ X ×X × I and u ∈ X,

p(u,W (x, y, λ)) ≤ λp(u, x) + (1− λ)p(u, y). (2.1)

A uniform space (X,Γ) together with a convex structure W is called a convex uniform space, which is
denoted by (X,Γ,W ).

Definition 2.8. Let (X,Γ,W ) be a convex uniform space. A nonempty subset E of (X,Γ,W ) is said to be
convex if (W,x, y, λ) ∈ E whenever (x, y, λ) ∈ E×E× [0, 1]. Clearly, we have from (2.1) that W (x, x, λ) = x.

We give an example of a convex uniform space

Example 2.9. Consider X = [0,∞) and define for all x, y ∈ X,

p(x, y) =

{
x− y, if x ≥ y,
1 if otherwise.

Then X is a convex Hausdorff uniform space such that p is an E-distance on X. We define analogue
of k-Lipschitzian [2], (k, L)-Lipschitzian [15] and involution mappings [11] in a uniform space.

Definition 2.10. Let E be a nonempty subset of a convex uniform space such that p is an E-distance on
X. A mapping T : E → E is said to be k-Lipschitzian if there exists a k ∈ [0,∞) such that

p(Tx, Ty) ≤ kp(x, y),∀x, y ∈ E. (2.2)

Definition 2.11. Let (X,Γ,W ) be an S-complete convex Hausdorff uniform space such that p is an E-
distance on X and E a nonempty closed convex subset of X. A mapping T : E → E is said to be (k, L)-
Lipschitzian if there exists a k ∈ [1,∞), L ∈ [0, 1) such that

p(Tx, Ty) ≤ Lp(x, Tx) + kp(x, y),∀x, y ∈ E. (2.3)

Definition 2.12. Let (X,Γ,W ) be an S-complete convex Hausdorff uniform space and E a nonempty
convex subset of X. A mapping T : E → E is said to be an involution mapping if T 2(x) = x.

Definition 2.13. [6] A function φ : <+ → <+ is called a comparison function if:

(i) φ is monotone increasing; and

(ii) lim
n→∞

φn(t) = 0, ∀t ∈ <+.

Several iterative processes for approximating fixed points of various mappings are available in the liter-
ature. The equivalence of the convergence of those iterations for the quasi-contraction mappings in convex
metric spaces was proved in [19]. In this paper, we intend to prove our result by using the Krasnoselskii
iteration method to state the iteration process in the context of convex Hausdorff uniform space.
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3. Main Result

An analogous definition in [2] is given in S-complete convex Hausdorff uniform space.
Let E be a nonempty closed convex subset of an S-complete convex Hausdorff uniform space X and
T : E → E. For x0 ∈ E, we define,

xn+1 = W (xn, Txn,
1

2
), n ≥ 0.

If there exists a real number c ∈ [0, 1) such that

p(xn+2, xn+1) ≤ cp(xn+1, xn), n = 0, 1, 2, ...

Then {xn} converges to a point x∗ ∈ E.

Similarily, if there exists a comparison function φ : <+ → <+ such that

p(xn+2, xn+1) ≤ φ(p(xn+1, xn))

then {xn} converges to a point x∗ ∈ E.

Theorem 3.1. Let X be an S-complete convex Hausdorff uniform space such that p is an E-distance on
X. Let E be a closed convex subset of X and T : E → E be a k-Lipschitzian map. Suppose there exists real
constants a, b such that 0 ≤ a < 1 and b > 0. If for arbitrary x ∈ E there exists u ∈ E such that

(i) p(Tu, u) ≤ ap(Tx, x), and

(ii) p(u, x) ≤ bp(Tx, x).

Then T has a fixed point x∗ ∈ E.

Proof. Let x0 ∈ E be an arbitrary point. Consider a sequence {xn} ⊂ E which satisfies the following
conditions

p(Txn+1, xn+1) ≤ ap(Txn, xn), (3.1)

and
p(xn+1, xn) ≤ bp(Txn, xn), n = 0, 1, 2, ... (3.2)

We get by induction in (3.1) that,

p(Txn+1, xn+1) ≤ ap(Txn, xn) ≤ a2p(Txn−1, xn−1)

≤ ... ≤ an+1p(Tx0, x0). (3.3)

Using (3.3) in (3.2) gives

p(xn+1, xn) ≤ banp(Tx0, x0)→ 0 as n→∞. (3.4)

Thus {xn} is a Cauchy sequence in E. Since E is S-complete, there exists x∗ ∈ E such that lim
n→∞

xn = x∗.

By (2.2), (3.3) and triangle inequality, we have

p(Tx∗, x∗) ≤ p(Tx∗, Txn) + p(Txn, xn) + p(xn, x
∗)

≤ kp(x∗, xn) + p(Txn, xn) + p(xn, x
∗)

= (1 + k)p(xn, x
∗) + anp(Tx0, x0) → 0 as n→∞.

Hence Tx∗ = x∗ and x∗ is a fixed point of T.
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Theorem 3.2. Let X be an S-complete convex Hausdorff uniform space such that p is an E-distance on
X. Let E be a closed convex subset of X and T : E → E be a k-Lipschitzian involution. If 1 ≤ k < 2 then
T has a fixed point x∗ ∈ E.

Proof. For any x ∈ E, let u = W (x, Tx, 12). Then,

p(u, x) = p(W (x, Tx,
1

2
)x) ≤ 1

2
p(Tx, x), (3.5)

and

p(u, Tu) = p(W (x, Tx,
1

2
), Tu)

≤ 1

2
[p(x, Tu) + p(Tx, Tu)]

=
1

2

[
p(T 2x, Tu) + p(Tx, Tu)

]
≤ k

2
[p(Tx, u) + p(x, u)]

=
k

2

[
p(Tx,W (x, Tx,

1

2
)) + p(x,W (x, Tx,

1

2
))

]

≤ k

2
p(Tx, x), (3.6)

where k
2 < 1. For x0 ∈ E, we define a sequence {xn} ⊂ E by

xn+1 = W (xn, Txn,
1

2
), n = 0, 1, 2, ...

By induction using (3.6) and as in Theorem 3.1 above, we have

p(Txn+1, xn+1) ≤
k

2
(p(Txn, xn)) ≤

(
k

2

)2

p(Txn−1, xn−1)

≤ ... ≤
(
k

2

)n

p(Tx0, x0). (3.7)

Using (3.7) in (3.5) gives

p(xn+1, xn) ≤
(

1

2

)(
k

2

)n

p(Tx0, x0)→ 0 as n→∞.

Therefore, the sequence {xn} is Cauchy in E. Since E is S-complete, there exists x∗ ∈ E such that
lim
n→∞

xn = x∗. By (2.2), (3.7) and triangle inequality we have,

p(Tx∗, x∗) ≤ p(Tx∗, Txn) + p(Txn, xn) + p(xn, x
∗)

≤ kp(x∗, xn) + p(Txn, xn) + p(xn, x
∗)

= (1 + k)p(xn, x
∗) +

(
k

2

)n

p(Tx0, x0) → 0 as n→∞.

Hence Tx∗ = x∗ and x∗ is a fixed point of T.

Theorem 3.3. Let X be an S-complete convex Hausdorff uniform space such that p is an E-distance on
X. Let E be a closed convex subset of X, T : E → E be a (k, L)-Lipschitzian map and φ : <+ → <+ be a
comparison function such that for arbitrary x ∈ E there exist u ∈ E such that;
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(i) p(Tu, u) ≤ φ(p(Tx, x)),

(ii) p(u, x) ≤ bp(Tx, x), b > 0.

Then T has a fixed point in E.

Proof. Let x0 ∈ E be an arbitrary point. Consider a sequence {xn} ⊂ E which satisfies conditions (i)
and (ii), we have,

p(Txn+1, xn+1) ≤ φ(p(Txn, xn)), (3.8)

and
p(xn+1, xn) ≤ bp(Txn, xn), n = 0, 1, 2, ... (3.9)

We get by induction in (3.7) that,

p(Txn+1, xn+1) ≤ φ(p(Txn, xn)) ≤ φ2(p(Txn−1, xn−1))

≤ ... ≤ φn+1(p(Tx0, x0)). (3.10)

Using (3.10) in (3.9) gives

p(xn+1, xn) ≤ bφn(p(Tx0, x0))→ 0 as n→∞. (3.11)

Thus {xn} is a Cauchy sequence in E. Since E is S-complete, there exists x∗ ∈ E such that lim
n→∞

xn = x∗.

By (2.3), (3.10) and triangle inequality, we have

p(Tx∗, x∗) ≤ p(Tx∗, Txn) + p(Txn, xn) + p(xn, x
∗)

≤ Lp(Txn, xn) + kp(xn, x
∗) + p(Txn, xn) + p(xn, x

∗)

= (1 + L)p(Txn, xn) + (1 + k)p(xn, x
∗)

≤ (1 + L)φn(p(Tx0, x0)) + (1 + k)p(xn, x
∗) → 0 as n→∞.

Hence Tx∗ = x∗ and x∗ is a fixed point of T.

Theorem 3.4. Let X be an S-complete convex Hausdorff uniform space such that p is an E-distance on
X. Let E be a closed convex subset of X and T : E → E be a (k, L)-Lipschitzian involution. If 1 ≤ k < 2,
then T has a fixed point in E.

Proof. For any x ∈ E, let u = W (x, Tx, 12), then

p(u, x) = p(W (x, Tx,
1

2
)x) ≤ 1

2
p(Tx, x), (3.12)

and

p(u, Tu) = p(W (x, Tx,
1

2
), Tu)

≤ 1

2
[p(x, Tu) + p(Tx, Tu)]

=
1

2

[
p(T 2x, Tu) + p(Tx, Tu)

]
≤ 1

2

[
Lp(Tx, Tx2) + kp(Tx, u) + Lp(x, Tx) + kp(x, u)

]
≤ 1

2
[L (Lp(x, Tx) + kp(x, u)) + kp(Tx, u) + Lp(x, Tx) + kp(x, u)]

=
1

2

(
L2 + L

)
p(Tx, x) + (kL+ k) p(x, u) + kp(Tx, u)

≤ 1

4

[
2(L2 + L) + (k(L+ 2)

]
p(Tx, x)
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= φ (p(Tx, x)) , (3.13)

where φ = 1
4

[
2(L2 + L) + (k(L+ 2)

]
and 1 ≤ k < 2. For arbitrary x0 ∈ E, we define a sequence {xn} ⊂ E

by

xn+1 = W (xn, Txn,
1

2
), n = 0, 1, 2, ...

By induction using (3.13) and as in Theorem 3.2, we have

p(Txn+1, xn+1) ≤ βp(Txn, xn) ≤ β2p(Txn−1, xn−1)

≤ ... ≤ φn+1p(Tx0, x0). (3.14)

Substitute (3.14) in (3.12) to get

p(xn+1, xn) ≤ bφnp(Tx0, x0)→ 0 as n→∞.

Therefore, the sequence {xn} is Cauchy in E. Since E is S-complete, there exists x∗ ∈ E such that lim
n→∞

xn =

x∗. By (2.3), (3.14) and triangle inequality we have

p(Tx∗, x∗) ≤ p(Tx∗, Txn) + p(Txn, xn) + p(xn, x
∗)

≤ (1 + L)p(Txn, xn) + (1 + k)p(xn, x
∗)

≤ (1 + L)φnp(Tx0, x0) + (1 + k)p(xn, x
∗) → 0 as n→∞.

Hence Tx∗ = x∗ and x∗ is a fixed point of T.

Example 3.5. Let X = [0,∞) be a uniform space such that p is an E distance on X. Let p be defined by

p(x, y) =

{
x− y, x ≥ y,
y, otherwise.

Consider the mapping T : X → X defined by T (x) = 1
x for all x ≥ 1. We note that X is an S-complete

convex Hausdorff uniform space such that p is an E-distance on X. T is a (k, L)-Lipschitzian map and if we
define the function φ : <+ → <+ by φ(t) = t

2 . All conditions of Theorem 3.3 and Theorem 3.4 are satisfied
and x = 1 is a fixed point in X.

Remark 3.6. Note that in the example given, X is a uniform space but not a metric space. Thus, these
results are generalizations of Beg ([2], Theorem 3.1), Beg and Olatinwo ([5], Theorem 2.1 and 2.3). We are
also able to improve Theorem 2.3 in [5] by giving less restrictions.
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