Communications in Nonlinear Analysis

Journal Homepage: www.cna-journal.com

Fixed Point Results for Multivalued Operator in G-metric Space

A. Gupta ${ }^{\text {a }}$, T. Singh ${ }^{\text {b }}$, R. Kaur ${ }^{\text {c }}$, S. Manro ${ }^{\text {d,* }}$
${ }^{a}$ Department of Mathematics, Sagar Institute of Engineering, Technology and Research, Ratibad Bhopal (M.P.), India
${ }^{b}$ Department of Mathematics, Desh Bhagat University, Mandi Gobindgarh, Punjab, India
${ }^{c}$ Department of Mathematics, Desh Bhagat University, Mandi Gobindgarh, Punjab, India
${ }^{d}$ Department of Mathematics, Thapar University, Patiala, Punjab, India.

Abstract

In this paper, we shall give some results on fixed points of multivalued operator on G-metric spaces by using the method of Kikkawa [6]. Our results generalize and extend some old fixed point theorems to the multivalued case.

Keywords: Fixed point, G-metric space, Multivalued operator.
2010 MSC: $47 \mathrm{H} 09,47 \mathrm{H} 10,54 \mathrm{H} 25$.

1. Introduction and preliminaries

Mustafa and Sims [8] introduced the notion of G-metric space. Based on the notion of generalized metric space or G-metric space, many authors obtained some fixed point theorems for self mapping under some contractive conditions (e.g., [1, 9, 10, 11, 12]). Consistent with Mustafa and Sims [8], the following definitions and results will be needed in the sequel.

Definition 1.1. [8] Let X be a non empty set, $G: X \times X \times X \rightarrow \mathbb{R}^{+}$be a function satisfying the following properties:
$\left(G_{1}\right) \mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$ if $\mathrm{x}=\mathrm{y}=\mathrm{z}$,
$\left(G_{2}\right) 0<\mathrm{G}(\mathrm{x}, \mathrm{x}, \mathrm{y})$ for all $x, y \in X$ with $x \neq y$,
$\left(G_{3}\right) \mathrm{G}(\mathrm{x}, \mathrm{x}, \mathrm{y}) \leq \mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ for all $x, y, z \in X$ with $x \neq y$,
$\left(G_{4}\right) \mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{G}(\mathrm{x}, \mathrm{z}, \mathrm{y})=\mathrm{G}(\mathrm{y}, \mathrm{z}, \mathrm{x})=\ldots$ (symmetry in all three variables),
$\left(G_{5}\right) \mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \leq \mathrm{G}(\mathrm{x}, \mathrm{a}, \mathrm{a})+\mathrm{G}(\mathrm{a}, \mathrm{y}, \mathrm{z})$ for all $x, y, z, a \in X$ (rectangle inequality).

[^0]Then the function G is called a generalized metric, or, more specially, a G - metric on X, and the pair (X, G) is called a G- metric space.

Definition 1.2. [8] Let (X, G) be a G - metric space, and let $\left\{x_{n}\right\}$ be a sequence of points of X, therefore, we say that $\left\{x_{n}\right\}$ is G - convergent to $x \in X$ if $\lim _{n, m \rightarrow+\infty} G\left(x, x_{n}, x_{m}\right)=0$, that is, for any $\epsilon>0$, there exists a positive integer N such that $G\left(x, x_{n}, x_{m}\right)<\epsilon$ for all $n, m \geq N$. We call x the limit of the sequence and write $x_{n} \rightarrow x$ or $\lim _{n \rightarrow+\infty} x_{n}=x$.

Lemma 1.3. [8] Let (X, G) be a G-metric space. The following statements are equivalent:

1. $\left\{x_{n}\right\}$ is G-convergent to x,
2. $G\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow+\infty$,
3. $G\left(x_{n}, x, x\right) \rightarrow 0$ as $n \rightarrow+\infty$,
4. $G\left(x_{n}, x_{m}, x\right) \rightarrow 0$ as $n, m \rightarrow+\infty$,

Definition 1.4. [8] Let (X, G) be a G - metric space. A sequence $\left\{x_{n}\right\}$ is called a G - Cauchy sequence if, for any $\epsilon>0$, there exists a positive integer N such that $G\left(x_{n}, x_{m}, x_{l}\right)<\epsilon$ for all $n, m, l \geq N$, that is, $G\left(x_{n}, x_{m}, x_{l}\right) \rightarrow 0$ as $n, m, l \rightarrow+\infty$.

Lemma 1.5. [8] Let (X, G) be a G-metric space. The following statements are equivalent:

1. The sequence $\left\{x_{n}\right\}$ is G-Cauchy,
2. for any $\epsilon>0$, there exists a positive integer N such that $G\left(x_{n}, x_{m}, x_{m}\right)<\epsilon$ for all $m, n \geq N$.

Definition 1.6. [8] A G - metric space (X, G) is called G-complete if every G - Cauchy sequence is G convergent in (X, G).

Every G - metric on X defines a metric d_{G} on X given by

$$
d_{G}=G(x, y, y)+G(y, x, x) \text { for all } x, y \in X
$$

Lemma 1.7. [8] If (X, G) is a G - metric space, then $G(x, y, y)=2 G(y, x, x)$ for all $x, y \in X$.
Lemma 1.8. [8] If (X, G) is a G-metric space, then $G(x, x, y)=G(x, x, z)+G(z, z, y)$ for all $x, y, z \in X$.
Nadler [13] initiated the study of fixed points for multi-valued contraction mappings. There are many works about fixed point for multivalued mappings (cited in $[7,2,3,4,5]$) and weakly Picard maps (see in $[15,16,17])$.

We shall denote the set of all nonempty closed subset of X by $P_{c l}(X)$. Also, we shall denote the set of fixed points of a multifunction T by $F i x(T)$. Let X be a nonempty set and consider the space \mathbb{R}_{+}^{m} endowed with the usual component-wise partial order. We denote by $M_{m, m}\left(\mathbb{R}^{+}\right)$the set of all $m \times m$ matrices with positive elements and by I the identity $m \times m$ matrix. A matrix $\mathcal{A} \in M_{m, m}\left(\mathbb{R}^{+}\right)$is said to be converges to zero whenever $\mathcal{A} \backslash \rightarrow 0$.

Theorem 1.9. [14] Let $\mathcal{A} \in M_{m, m}\left(\mathbb{R}^{+}\right)$. The following are equivalent:
(i) $\mathcal{A}^{n} \rightarrow 0$.
(ii) The eigen values of \mathcal{A} are in the open unit disc, i.e., $|\lambda|<1$, for all $\lambda \in C$ with $\operatorname{det}(\mathcal{A}-\lambda I)=0$.
(iii) The matrix $(I-\mathcal{A})$ is non-singular and $(I-\mathcal{A})^{-1}=I+\mathcal{A}+\mathcal{A}^{2}+\ldots+\mathcal{A}^{n}+\ldots$.
(iv) The matrix $(I-\mathcal{A})$ is non-singular and $(I-\mathcal{A})^{-1}$ has non negative elements.
(v) $\mathcal{A}^{n} q \rightarrow 0$ and $q \mathcal{A}^{n} \rightarrow 0$, for all $q \in \mathbb{R}^{m}$.

By using Theorem $1.9(\mathrm{v})$, we have $-\mathcal{A}$ converges to zero whenever \mathcal{A} is converges to zero. Again, Theorem 1.9 implies that $(I+\mathcal{A})$ is invertible and $(I+\mathcal{A})^{-1} \leq(I-\mathcal{A})^{-1}$.

2. Main Result

Theorem 2.1. Let (X, G) be a complete G - metric space, a matrix $\mathcal{A} \in M_{m, m}\left(\mathbb{R}^{+}\right)$converges to zero and $T: X \times X \rightarrow P_{c l}(X)$ a multivalued operator. Suppose that for each $x, y, z, x^{\prime}, y^{\prime}, z^{\prime} \in X$,

$$
\left(I+\mathcal{A}^{-1}\right)\left[G\left(x, T\left(x, x^{\prime}\right), T^{2}\left(x, x^{\prime}\right)\right)+G\left(x^{\prime}, T\left(x^{\prime}, x\right), T^{2}\left(x^{\prime}, x\right)\right)\right] \leq\left(I-\mathcal{A}^{-1}\right)\left[G(x, y, z)+G\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right]
$$

implies that for each $u \in T\left(x, x^{\prime}\right), u^{\prime} \in T\left(x^{\prime}, x\right), v \in T\left(y, y^{\prime}\right), v^{\prime} \in T\left(y^{\prime}, y\right)$ there exist $w \in T\left(z, z^{\prime}\right), w^{\prime} \in$ $T\left(z^{\prime}, z\right)$ such that

$$
\begin{equation*}
G(u, v, w)+G\left(u^{\prime}, v^{\prime}, w^{\prime}\right) \leq \mathcal{A}\left[G(x, y, z)+G\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right] \tag{2.1}
\end{equation*}
$$

Then T has a coupled fixed point.
Proof. For each $\left(x, x^{\prime}\right) \in X \times X$,

$$
\begin{aligned}
& \left(I+\mathcal{A}^{-1}\right)\left[G\left(x, T\left(x, x^{\prime}\right), T^{2}\left(x, x^{\prime}\right)\right)+G\left(x^{\prime}, T\left(x^{\prime}, x\right), T^{2}\left(x^{\prime}, x\right)\right)\right] \\
\leq \quad & \left.\left(I-\mathcal{A}^{-1}\right)\left[G\left(x, T\left(x, x^{\prime}\right), T^{2}\left(x, x^{\prime}\right)\right)+G\left(x^{\prime}, T\left(x^{\prime}, x\right), T^{2}\left(x^{\prime}, x\right)\right)\right]\right)
\end{aligned}
$$

Let $\left(x_{0}, x_{0}^{\prime}\right) \in X \times X$ and take $x_{1} \in T\left(x_{0}, x_{0}^{\prime}\right), x_{1}^{\prime} \in T\left(x_{0}^{\prime}, x_{0}\right), x_{2} \in T\left(x_{1}, x_{1}^{\prime}\right), x_{2}^{\prime} \in T\left(x_{1}^{\prime}, x_{1}\right)$. If $x_{0}=x_{1}=x_{2}$ and $x_{0}^{\prime}=x_{1}^{\prime}=x_{2}^{\prime}$ then $\left(x_{0}, x_{0}^{\prime}\right)$ is a coupled fixed point of T. Let any one of x_{0}, x_{1}, x_{2} and $x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}$ be not equal to other, from (2.1), there exist $x_{3} \in T\left(x_{2}, x_{2}^{\prime}\right), x_{3}^{\prime} \in T\left(x_{2}^{\prime}, x_{2}\right)$ such that

$$
\begin{equation*}
G\left(x_{1}, x_{2}, x_{3}\right)+G\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) \leq \mathcal{A}\left[G\left(x_{0}, x_{1}, x_{2}\right)+G\left(x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right)\right] \tag{2.2}
\end{equation*}
$$

If $x_{1}=x_{2}=x_{3}$ and $x_{1}^{\prime}=x_{2}^{\prime}=x_{3}^{\prime}$ then $\left(x_{1}, x_{1}^{\prime}\right)$ is a coupled fixed point of T. Let any one of x_{1}, x_{2}, x_{3} and $x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$ be not equal to other, from (2.1) and (2.2), there exist $x_{4} \in T\left(x_{5}, x_{5}^{\prime}\right), x_{4}^{\prime} \in T\left(x_{5}^{\prime}, x_{5}\right)$ such that

$$
\begin{align*}
G\left(x_{2}, x_{3}, x_{4}\right)+G\left(x_{2}^{\prime}, x_{3}^{\prime}, x_{4}^{\prime}\right) & \leq \mathcal{A}\left[G\left(x_{1}, x_{2}, x_{3}\right)+G\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)\right] \\
& \leq \mathcal{A}^{2}\left[G\left(x_{0}, x_{1}, x_{2}\right)+G\left(x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right)\right] \tag{2.3}
\end{align*}
$$

Now by induction, we construct sequences $\left\{x_{n}\right\}_{n \geq 0},\left\{x_{n}^{\prime}\right\}_{n \geq 0}$ in X such that $x_{n+1} \in T\left(x_{n}, x_{n}^{\prime}\right), x_{n+1}^{\prime} \in$ $T\left(x_{n}^{\prime}, x_{n}\right)$ and

$$
\begin{equation*}
G\left(x_{n}, x_{n+1}, x_{n+2}\right)+G\left(x_{n}^{\prime}, x_{n+1}^{\prime}, x_{n+2}^{\prime}\right) \leq \mathcal{A}^{n}\left[G\left(x_{0}, x_{1}, x_{2}\right)+G\left(x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right)\right] \tag{2.4}
\end{equation*}
$$

for all $n \geq 0$. From Theorem 1.9, for all $m, n \in \mathbb{N}, n<m$ and by $\left(G_{3}\right)$ and $\left(G_{5}\right)$ we obtain

$$
\begin{aligned}
G\left(x_{n}, x_{m}, x_{m}\right)+G\left(x_{n}^{\prime}, x_{m}^{\prime}, x_{m}^{\prime}\right) \leq & G\left(x_{n}, x_{n+1}, x_{n+1}\right)+G\left(x_{n+1}, x_{n+2}, x_{n+2}\right)+G\left(x_{n+2}, x_{n+3}, x_{n+3}\right) \\
& +\cdots+G\left(x_{m-1}, x_{m}, x_{m}\right)+G\left(x_{n}^{\prime}, x_{n+1}^{\prime}, x_{n+1}^{\prime}\right)+G\left(x_{n+1}^{\prime}, x_{n+2}^{\prime}, x_{n+2}^{\prime}\right) \\
& +G\left(x_{n+2}^{\prime}, x_{n+3}^{\prime}, x_{n+3}^{\prime}\right)+\cdots+G\left(x_{m-1}^{\prime}, x_{m}^{\prime}, x_{m}^{\prime}\right) \\
\leq & G\left(x_{n}, x_{n+1}, x_{n+2}\right)+G\left(x_{n+1}, x_{n+2}, x_{n+3}\right)+G\left(x_{n+2}, x_{n+3}, x_{n+4}\right) \\
& +\cdots+G\left(x_{m-1}, x_{m}, x_{m+1}\right)+G\left(x_{n}^{\prime}, x_{n+1}^{\prime}, x_{n+2}^{\prime}\right)+G\left(x_{n+1}^{\prime}, x_{n+2}^{\prime}, x_{n+3}^{\prime}\right) \\
& +G\left(x_{n+2}^{\prime}, x_{n+3}^{\prime}, x_{n+4}^{\prime}\right)+\cdots+G\left(x_{m-1}^{\prime}, x_{m}^{\prime}, x_{m+1}^{\prime}\right) \\
\leq & \left(\mathcal{A}^{n}+\mathcal{A}^{n+1}+\mathcal{A}^{n+2}+\cdots+\mathcal{A}^{m-1}\right)\left[G\left(x_{0}, x_{1}, x_{2}\right)+G\left(x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right)\right] \\
\leq & \mathcal{A}^{n}\left(I+\mathcal{A}+\mathcal{A}^{2}+\cdots+\mathcal{A}^{m-1-n}\right)\left[G\left(x_{0}, x_{1}, x_{2}\right)+G\left(x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right)\right] \\
\leq & \mathcal{A}^{n}(I-\mathcal{A})^{-1}\left[G\left(x_{0}, x_{1}, x_{2}\right)+G\left(x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right)\right]
\end{aligned}
$$

that is,
$\left[G\left(x_{n}, x_{m}, x_{m}\right)+G\left(x_{n}^{\prime}, x_{m}^{\prime}, x_{m}^{\prime}\right)\right] \rightarrow 0$ as $n \rightarrow \infty$.
Hence $\left\{x_{n}\right\}_{n \geq 0},\left\{x_{n}^{\prime}\right\}_{n \geq 0}$ are Cauchy sequence in the complete $G-\operatorname{metric}$ space (X, G). Choose $\left(x^{*}, x^{* *}\right) \in$ $X \times X$ such that $x_{n} \rightarrow x^{*}$ and $x_{n}^{\prime} \rightarrow x^{* *}$ as $n \rightarrow \infty$. We claim that $\left(x, x^{\prime}\right) \in(X \times X) \backslash\left(\left\{x^{*}\right\},\left\{x^{* *}\right\}\right)$,

$$
\begin{equation*}
\left[G\left(x^{*}, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right)+G\left(x^{*}, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right)\right] \leq \mathcal{A}\left[G\left(x^{*}, x, x\right)+G\left(x^{*}, x^{\prime}, x^{\prime}\right)\right] \tag{2.5}
\end{equation*}
$$

Let $\left(x, x^{\prime}\right) \in(X \times X) \backslash\left(\left\{x^{*}\right\},\left\{x^{* *}\right\}\right)$. Choose a natural number N such that

$$
\left[G\left(x_{n}, x^{*}, x^{*}\right)+G\left(x_{n}^{\prime}, x^{\prime *}, x^{\prime *}\right)\right]<\frac{1}{4}\left[G\left(x, x^{*}, x^{*}\right)+G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)\right]
$$

for all $n \geq N$. Hence, for each $n \geq N$ we have

$$
\begin{aligned}
G\left(x_{n}, T\left(x_{n}, x_{n}^{\prime}\right), T\left(x_{n}, x_{n}^{\prime}\right)\right)+G\left(x_{n}^{\prime}, T\left(x_{n}, x_{n}^{\prime}\right), T\left(x_{n}, x_{n}^{\prime}\right)\right) \leq & G\left(x_{n}, x_{n+1}, x_{n+1}\right)+G\left(x_{n}^{\prime}, x_{n+1}^{\prime}, x_{n+1}^{\prime}\right) \\
\leq & G\left(x_{n}, x^{*}, x^{*}\right)+G\left(x^{*}, x_{n+1}, x_{n+1}\right) \\
& +G\left(x_{n}^{\prime}, x^{\prime *}, x^{\prime *}\right)+G\left(x^{\prime *}, x_{n+1}^{\prime}, x_{n+1}^{\prime}\right) \\
\leq & G\left(x_{n}, x^{*}, x^{*}\right)+2 G\left(x_{n+1}, x^{*}, x^{*}\right) \\
& +G\left(x_{n}^{\prime}, x^{\prime *}, x^{\prime *}\right)+2 G\left(x_{n+1}^{\prime}, x^{\prime *}, x^{\prime *}\right) \\
\leq & \frac{3}{4}\left[G\left(x, x^{*}, x^{*}\right)+G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)\right] \\
\leq & G\left(x, x^{*}, x^{*}\right)+G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right) \\
& -\frac{1}{4}\left[G\left(x, x^{*}, x^{*}\right)+G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)\right] \\
\leq & G\left(x, x^{*}, x^{*}\right)+G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right) \\
& -\left[G\left(x_{n}, x^{*}, x^{*}\right)+G\left(x_{n}^{\prime}, x^{\prime *}, x^{\prime *}\right)\right] \\
G\left(x_{n}, T\left(x_{n}, x_{n}^{\prime}\right), T\left(x_{n}, x_{n}^{\prime}\right)\right)+G\left(x_{n}^{\prime}, T\left(x_{n}, x_{n}^{\prime}\right), T\left(x_{n}, x_{n}^{\prime}\right)\right) \leq & G\left(x_{n}, x^{*}, x^{*}\right)+G\left(x_{n}^{\prime}, x^{\prime *}, x^{\prime *}\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& (I+\mathcal{A})^{-1}\left[G\left(x_{n}, T\left(x_{n}, x_{n}^{\prime}\right), T\left(x_{n}, x_{n}^{\prime}\right)\right)+G\left(x_{n}^{\prime}, T\left(x_{n}, x_{n}^{\prime}\right), T\left(x_{n}, x_{n}^{\prime}\right)\right)\right] \\
\leq & (I-\mathcal{A})^{-1}\left[G\left(x_{n}, T\left(x_{n}, x_{n}^{\prime}\right), T\left(x_{n}, x_{n}^{\prime}\right)\right)+G\left(x_{n}^{\prime}, T\left(x_{n}, x_{n}^{\prime}\right), T\left(x_{n}, x_{n}^{\prime}\right)\right)\right] \\
\leq & (I-\mathcal{A})^{-1}\left[G\left(x_{n}, x, x\right)+G\left(x_{n}^{\prime}, x^{\prime}, x^{\prime}\right)\right]
\end{aligned}
$$

for $n \geq N$.
Since $x_{n+1} \in T\left(x_{n}, x_{n}^{\prime}\right), x_{n+1}^{\prime} \in T\left(x_{n}^{\prime}, x_{n}\right)$, by using (2.1), for each $n \geq N$ there exist $u_{n} \in T\left(x, x^{\prime}\right)$ and $u_{n}^{\prime} \in T\left(x^{\prime}, x\right)$ such that

$$
G\left(u_{n}, x_{n+1}, x_{n+1}\right)+G\left(u_{n}^{\prime}, x_{n+1}^{\prime}, x_{n+1}^{\prime}\right) \leq \mathcal{A}\left[G\left(x_{n}, x, x\right)+G\left(x_{n}^{\prime}, x^{\prime}, x^{\prime}\right)\right] .
$$

Hence

$$
G\left(x_{n+1}, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right)+G\left(x_{n+1}^{\prime}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right) \leq \mathcal{A}\left[G\left(x_{n}, x, x\right)+G\left(x_{n}^{\prime}, x^{\prime}, x^{\prime}\right)\right]
$$

and so

$$
\lim _{n \rightarrow \infty}\left[G\left(x_{n+1}, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right)+G\left(x_{n+1}^{\prime}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right)\right] \leq \lim _{n \rightarrow \infty}\left[G\left(x_{n}, x, x\right)+G\left(x_{n}^{\prime}, x^{\prime}, x^{\prime}\right)\right] .
$$

Thus

$$
G\left(x^{*}, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right)+G\left(x^{\prime *}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right) \leq \mathcal{A}\left[G\left(x^{*}, x, x\right)+G\left(x^{\prime *}, x^{\prime}, x^{\prime}\right)\right]
$$

for all $\left(x, x^{\prime}\right) \in(X \times X) \backslash\left(\left\{x^{*}\right\},\left\{x^{\prime *}\right\}\right)$.
Now we show that for each $\left(x, x^{\prime}\right) \in X \times X$ and $u \in T\left(x, x^{\prime}\right), u^{\prime} \in T\left(x^{\prime}, x\right)$ there exist $v \in T\left(x^{*}, x^{\prime *}\right)$, $v^{\prime} \in T\left(x^{\prime *}, x^{*}\right)$ such that

$$
G(u, v, v)+G\left(u^{\prime}, v^{\prime}, v^{\prime}\right) \leq \mathcal{A}\left[G\left(x, x^{*}, x^{*}\right)+G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)\right] .
$$

If $x_{n} \rightarrow x^{*}$ and $x_{n}^{\prime} \rightarrow x^{\prime *}$ we have nothing to prove. Let $x \neq x^{*}$ and $x^{\prime} \neq x^{\prime *}$. By definition of $G\left(x^{*}, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right), G\left(x^{\prime *}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right)$ and for each $n \geq 1$ there exist $y_{n} \in T\left(x, x^{\prime}\right)$ and $y_{n}^{\prime} \in$ $T\left(x^{\prime}, x\right)$ such that

$$
\begin{aligned}
G\left(x^{*}, y_{n}, y_{n}\right)+G\left(x^{\prime *}, y_{n}^{\prime}, y_{n}^{\prime}\right) \leq & G\left(x^{*}, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right)+G\left(x^{\prime *}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right) \\
& +\frac{1}{n}\left[G\left(x, x^{*}, x^{*}\right)+G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)\right] .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
G\left(x, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right)+G\left(x^{\prime}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right) \leq & G\left(x, y_{n}, y_{n}\right)+G\left(x^{\prime}, y_{n}^{\prime}, y_{n}^{\prime}\right) \\
\leq & G\left(x, x^{*}, x^{*}\right)+G\left(x^{*}, y_{n}, y_{n}\right) \\
& +G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)+G\left(x^{\prime *}, y_{n}^{\prime}, y_{n}^{\prime}\right) \\
\leq & G\left(x, x^{*}, x^{*}\right)+G\left(x^{*}, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right)+\frac{1}{n} G\left(x, x^{*}, x^{*}\right) \\
& +G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)+G\left(x^{\prime *}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right)+\frac{1}{n} G\left(x^{\prime}, x^{\prime *}, x\right.
\end{aligned}
$$

From (2.5),

$$
\begin{aligned}
(I+\mathcal{A})^{-1}\left[G\left(x, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right)+G\left(x^{\prime}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right)\right] \leq & G\left(x, x^{*}, x^{*}\right)+\frac{1}{n}(I+\mathcal{A})^{-1} G\left(x, x^{*}, x^{*}\right) \\
& +G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)+\frac{1}{n}(I+\mathcal{A})^{-1} G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)
\end{aligned}
$$

for all $n \geq 1$.
Thus

$$
\begin{aligned}
(I+\mathcal{A})^{-1}\left[G\left(x, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right)+G\left(x^{\prime}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right)\right] & \leq G\left(x, x^{*}, x^{*}\right)+G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right) \\
& \leq(I-\mathcal{A})^{-1}\left[G\left(x, x^{*}, x^{*}\right)+G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)\right]
\end{aligned}
$$

Now by using (2.1), for each $u \in T\left(x, x^{\prime}\right), u^{\prime} \in T\left(x^{\prime}, x\right)$, there exist $v \in T\left(x^{*}, x^{\prime *}\right), v^{\prime} \in T\left(x^{\prime *}, x^{*}\right)$ such that

$$
G(u, v, v)+G\left(u^{\prime}, v^{\prime}, v^{\prime}\right) \leq \mathcal{A}\left[G\left(x, x^{*}, x^{*}\right)+G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)\right] .
$$

Since $x_{n+1} \in T\left(x_{n}, x_{n}^{\prime}\right)$ and $x_{n+1}^{\prime} \in T\left(x_{n}^{\prime}, x_{n}\right)$ for all $n \geq 1$, there exist $v_{n} \in T\left(x^{*}, x^{\prime *}\right)$ and $v_{n}^{\prime} \in T\left(x^{\prime *}, x^{*}\right)$ such that

$$
G\left(v, x_{n}, x_{n+1}\right)+G\left(v^{\prime}, x_{n}^{\prime}, x_{n+1}^{\prime}\right) \leq \mathcal{A}\left[G\left(x_{n}, x^{*}, x^{*}\right)+G\left(x_{n}^{\prime}, x^{\prime *}, x^{\prime *}\right)\right] .
$$

Hence

$$
\begin{aligned}
G\left(v_{n}, x^{*}, x^{*}\right)+G\left(v_{n}^{\prime}, x^{\prime *}, x^{\prime *}\right) \leq & G\left(v_{n}, x_{n+1}, x_{n+1}\right)+G\left(x_{n+1}, x^{*}, x^{*}\right) \\
& +G\left(v_{n}^{\prime}, x_{n+1}^{\prime}, x_{n+1}^{\prime}\right)+G\left(x_{n+1}^{\prime}, x^{\prime *}, x^{\prime *}\right) \\
\leq & \mathcal{A} G\left(x_{n}, x^{*}, x^{*}\right)+G\left(x_{n+1}, x^{*}, x^{*}\right) \\
& +\mathcal{A} G\left(x_{n}^{\prime}, x^{\prime *}, x^{\prime *}\right)+G\left(x_{n+1}^{\prime}, x^{\prime *}, x^{\prime *}\right)
\end{aligned}
$$

for all $n \geq 1$. Therefore $v_{n} \rightarrow x^{*}$ and $v_{n}^{\prime} \rightarrow x^{\prime *}$.
Since $v_{n} \in T\left(x^{*}, x^{\prime *}\right)$ and $v_{n}^{\prime} \in T\left(x^{\prime *}, x^{*}\right)$ for all $n \geq 1$ and $T\left(x^{*}, x^{\prime *}\right)$ is a closed subset of $X \times X$, $x^{*} \in T\left(x^{*}, x^{\prime *}\right)$ and $x^{\prime *} \in T\left(x^{\prime *}, x^{*}\right)$.

Theorem 2.2. Let (X, G) be a complete G - metric space, a matrix $\mathcal{A} \in M_{m, m}\left(\mathbb{R}^{+}\right)$converges to zero and $T: X \times X \rightarrow P_{c l}(X)$ a multivalued operator. Suppose that for each $x, y, z, x^{\prime}, y^{\prime}, z^{\prime} \in X$,

$$
\left(I+\mathcal{A}^{-1}\right) \max \left\{G\left(x, T\left(x, x^{\prime}\right), T^{2}\left(x, x^{\prime}\right)\right), G\left(x^{\prime}, T\left(x^{\prime}, x\right), T^{2}\left(x^{\prime}, x\right)\right)\right\} \leq\left(I-\mathcal{A}^{-1}\right) \max \left\{G(x, y, z), G\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right\}
$$

implies that for each $u \in T\left(x, x^{\prime}\right), u^{\prime} \in T\left(x^{\prime}, x\right), v \in T\left(y, y^{\prime}\right), v^{\prime} \in T\left(y^{\prime}, y\right)$ there exist $w \in T\left(z, z^{\prime}\right), w^{\prime} \in$ $T\left(z^{\prime}, z\right)$ such that

$$
\max \left\{G(u, v, w), G\left(u^{\prime}, v^{\prime}, w^{\prime}\right)\right\} \leq \mathcal{A} \max \left\{\begin{array}{l}
G(x, y, z), G\left(x, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right), \tag{2.6}\\
G\left(y, T\left(y, y^{\prime}\right), T\left(y, y^{\prime}\right)\right), G\left(z, T\left(z, z^{\prime}\right), T\left(z, z^{\prime}\right)\right), \\
G\left(x^{\prime}, y^{\prime}, z^{\prime}\right), G\left(x^{\prime}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right), \\
G\left(y^{\prime}, T\left(y^{\prime}, y\right), T\left(y^{\prime}, y\right)\right), G\left(z^{\prime}, T\left(z^{\prime}, z\right), T\left(z^{\prime}, z\right)\right)
\end{array}\right\} .
$$

Then T has a coupled fixed point.
Proof. For each $\left(x, x^{\prime}\right) \in X \times X$,

$$
\begin{aligned}
& \left(I+\mathcal{A}^{-1}\right)\left[G\left(x, T\left(x, x^{\prime}\right), T^{2}\left(x, x^{\prime}\right)\right)+G\left(x^{\prime}, T\left(x^{\prime}, x\right), T^{2}\left(x^{\prime}, x\right)\right)\right] \\
\leq & \left.\left(I-\mathcal{A}^{-1}\right)\left[G\left(x, T\left(x, x^{\prime}\right), T^{2}\left(x, x^{\prime}\right)\right)+G\left(x^{\prime}, T\left(x^{\prime}, x\right), T^{2}\left(x^{\prime}, x\right)\right)\right]\right) .
\end{aligned}
$$

Let $\left(x_{0}, x_{0}^{\prime}\right) \in X \times X$ and take $x_{1} \in T\left(x_{0}, x_{0}^{\prime}\right), x_{1}^{\prime} \in T\left(x_{0}^{\prime}, x_{0}\right), x_{2} \in T\left(x_{1}, x_{1}^{\prime}\right), x_{2}^{\prime} \in T\left(x_{1}^{\prime}, x_{1}\right)$. If $x_{0}=x_{1}=x_{2}$ and $x_{0}^{\prime}=x_{1}^{\prime}=x_{2}^{\prime}$ then $\left(x_{0}, x_{0}^{\prime}\right)$ is a coupled fixed point of T. Let any one of x_{0}, x_{1}, x_{2} and $x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}$ be not equal to other. From (2.6) there exist $x_{3} \in T\left(x_{2}, x_{2}^{\prime}\right), x_{3}^{\prime} \in T\left(x_{2}^{\prime}, x_{2}\right)$ such that

$$
\begin{align*}
& \max \left\{G\left(x_{1}, x_{2}, x_{3}\right), G\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)\right\} \leq \mathcal{A} \max \left\{\begin{array}{l}
G\left(x_{0}, x_{1}, x_{2}\right), G\left(x_{0}, T\left(x_{0}, x_{0}^{\prime}\right), T\left(x_{0}, x_{0}^{\prime}\right)\right), \\
G\left(x_{1}, T\left(x_{1}, x_{1}^{\prime}\right), T\left(x_{1}, x_{1}^{\prime}\right)\right), G\left(x_{2}, T\left(x_{2}, x_{2}^{\prime}\right), T\left(x_{2}, x_{2}^{\prime}\right)\right), \\
G\left(x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right), G\left(x_{0}^{\prime}, T\left(x_{0}^{\prime}, x_{0}\right), T\left(x_{0}^{\prime}, x_{0}\right)\right), \\
G\left(x_{1}^{\prime}, T\left(x_{1}^{\prime}, x_{1}\right), T\left(x_{1}^{\prime}, x_{1}\right)\right), G\left(x_{2}^{\prime}, T\left(x_{2}^{\prime}, x_{2}\right), T\left(x_{2}^{\prime}, x_{2}\right)\right)
\end{array}\right\} \\
& \max \left\{G\left(x_{1}, x_{2}, x_{3}\right), G\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)\right\} \leq \mathcal{A} \max \left\{\begin{array}{l}
G\left(x_{0}, x_{1}, x_{2}\right), G\left(x_{0}, x_{1}, x_{1}\right), G\left(x_{1}, x_{2}, x_{2}\right), G\left(x_{2}, x_{3}, x_{3}\right) \\
G\left(x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right), G\left(x_{0}^{\prime}, x_{1}^{\prime}, x_{1}^{\prime}\right), G\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{2}^{\prime}\right), G\left(x_{2}^{\prime}, x_{3}^{\prime}, x_{3}^{\prime}\right)
\end{array}\right\}(2 \tag{2.7}
\end{align*}
$$

$$
\begin{equation*}
\max \left\{G\left(x_{1}, x_{2}, x_{3}\right), G\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)\right\} \leq \mathcal{A} \max \left\{G\left(x_{0}, x_{1}, x_{2}\right), G\left(x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right)\right\} \tag{2.8}
\end{equation*}
$$

If $x_{1}=x_{2}=x_{3}$ and $x_{1}^{\prime}=x_{2}^{\prime}=x_{3}^{\prime}$ then $\left(x_{1}, x_{1}^{\prime}\right)$ is a coupled fixed point of T. Let any one of x_{1}, x_{2}, x_{3} and $x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$ be not equal to other, from (2.1) and (2.8) there exist $x_{4} \in T\left(x_{5}, x_{5}^{\prime}\right), x_{4}^{\prime} \in T\left(x_{5}^{\prime}, x_{5}\right)$ such that

$$
\left.\begin{array}{rl}
\max \left\{G\left(x_{2}, x_{3}, x_{4}\right), G\left(x_{2}^{\prime}, x_{3}^{\prime}, x_{4}^{\prime}\right)\right\} & \leq \mathcal{A} \max \left\{\begin{array}{l}
G\left(x_{1}, x_{2}, x_{3}\right), G\left(x_{1}, T\left(x_{1}, x_{1}^{\prime}\right), T\left(x_{1}, x_{1}^{\prime}\right)\right), \\
G\left(x_{2}, T\left(x_{2}, x_{2}^{\prime}\right), T\left(x_{2}, x_{2}^{\prime}\right)\right), G\left(x_{3}, T\left(x_{3}, x_{3}^{\prime}\right), T\left(x_{3}, x_{3}^{\prime}\right)\right) \\
G\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right), G\left(x_{1}^{\prime}, T\left(x_{1}^{\prime}, x_{1}\right), T\left(x_{1}^{\prime}, x_{1}\right)\right), \\
G\left(x_{2}^{\prime}, T\left(x_{2}^{\prime}, x_{2}\right), T\left(x_{2}^{\prime}, x_{2}\right)\right), G\left(x_{3}^{\prime}, T\left(x_{3}^{\prime}, x_{3}\right), T\left(x_{3}^{\prime}, x_{3}\right)\right)
\end{array}\right\} \\
& \leq \mathcal{A} \max \left\{\begin{array}{l}
G\left(x_{1}, x_{2}, x_{3}\right), G\left(x_{1}, x_{2}, x_{2}\right), G\left(x_{2}, x_{3}, x_{3}\right), G\left(x_{3}, x_{4}, x_{4}\right) \\
G\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right), G\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{2}^{\prime}\right), G\left(x_{2}^{\prime}, x_{3}^{\prime}, x_{3}^{\prime}\right), G\left(x_{3}^{\prime}, x_{4}^{\prime}, x_{4}^{\prime}\right)
\end{array}\right\} \\
\max \left\{G\left(x_{2}, x_{3}, x_{4}\right), G\left(x_{2}^{\prime}, x_{3}^{\prime}, x_{4}^{\prime}\right)\right\} & \leq \mathcal{A} \operatorname{A} \operatorname{Axa}\left\{G\left(x_{1}, x_{2}, x_{3}\right), G\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)\right\}
\end{array}\right\}\left(\begin{array}{l}
\text { and } \left.\left., x_{1}, x_{2}\right), G\left(x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right)\right\} .
\end{array}\right.
$$

Now by induction we construct sequences $\left\{x_{n}\right\}_{n \geq 0},\left\{x_{n}^{\prime}\right\}_{n \geq 0}$ in X such that $x_{n+1} \in T\left(x_{n}, x_{n}^{\prime}\right), x_{n+1}^{\prime} \in$ $T\left(x_{n}^{\prime}, x_{n}\right)$ and

$$
\begin{equation*}
\max \left\{G\left(x_{n}, x_{n+1}, x_{n+2}\right), G\left(x_{n}^{\prime}, x_{n+1}^{\prime}, x_{n+2}^{\prime}\right)\right\} \leq \mathcal{A}^{n} \max \left\{G\left(x_{0}, x_{1}, x_{2}\right), G\left(x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right)\right\} \tag{2.10}
\end{equation*}
$$

which gives

$$
\begin{equation*}
G\left(x_{n}, x_{n+1}, x_{n+2}\right) \leq \mathcal{A}^{n} G\left(x_{0}, x_{1}, x_{2}\right) \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
G\left(x_{n}^{\prime}, x_{n+1}^{\prime}, x_{n+2}^{\prime}\right) \leq \mathcal{A}^{n} G G\left(x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right) \tag{2.12}
\end{equation*}
$$

for all $n \geq 0$.
From Theorem 1.9, for all $m, n \in N, n<m$ and by $\left(G_{3}\right)$ and $\left(G_{5}\right)$ we obtain

$$
\begin{aligned}
\max \left\{G\left(x_{n}, x_{m}, x_{m}\right), G\left(x_{n}^{\prime}, x_{m}^{\prime}, x_{m}^{\prime}\right)\right\} & \leq\left(\mathcal{A}^{n}+\mathcal{A}^{n+1}+\mathcal{A}^{n+2}+\cdots+\mathcal{A}^{m-1}\right) \max \left\{G\left(x_{0}, x_{1}, x_{2}\right), G\left(x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right)\right\} \\
& \leq \mathcal{A}^{n}\left(I+\mathcal{A}+\mathcal{A}^{2}+\cdots+\mathcal{A}^{m-1-n}\right) \max \left\{G\left(x_{0}, x_{1}, x_{2}\right), G\left(x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right)\right\} \\
& \leq \mathcal{A}^{n}(I-\mathcal{A})^{-1} \max \left\{G\left(x_{0}, x_{1}, x_{2}\right), G\left(x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right)\right\}
\end{aligned}
$$

that is, $\max \left\{G\left(x_{0}, x_{1}, x_{2}\right), G\left(x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right)\right\} \rightarrow 0$ as $n \rightarrow \infty$.
Hence $\left\{x_{n}\right\}_{n \geq 0},\left\{x_{n}^{\prime}\right\}_{n \geq 0}$ are Cauchy sequence in the complete G - metric space (X, G). Choose $\left(x^{*}, x^{* *}\right) \in$ $X \times X$ such that $x_{n} \rightarrow x^{*}$ and $x_{n}^{\prime} \rightarrow x^{\prime *}$ as $n \rightarrow \infty$. We claim that $\left(x, x^{\prime}\right) \in(X \times X) \backslash\left(\left\{x^{*}\right\},\left\{x^{\prime *}\right\}\right)$,

$$
\begin{equation*}
\max \left\{G\left(x^{*}, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right), G\left(x^{\prime *}, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right)\right\} \leq \mathcal{A} \max \left\{G\left(x^{*}, x, x\right), G\left(x^{\prime *}, x^{\prime}, x^{\prime}\right)\right\} . \tag{2.13}
\end{equation*}
$$

Let $\left(x, x^{\prime}\right) \in(X \times X) \backslash\left(\left\{x^{*}\right\},\left\{x^{* *}\right\}\right)$. Choose a natural number N such that

$$
\max \left\{G\left(x_{n}, x^{*}, x^{*}\right), G\left(x_{n}^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\}<\frac{1}{4} \max \left\{G\left(x, x^{*}, x^{*}\right), G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\}
$$

for all $n \geq N$. Hence, for each $n \geq N$ we have

$$
\begin{aligned}
\max \left\{G\left(x_{n}, T\left(x_{n}, x_{n}^{\prime}\right), T\left(x_{n}, x_{n}^{\prime}\right)\right), G\left(x_{n}^{\prime}, T\left(x_{n}, x_{n}^{\prime}\right), T\left(x_{n}, x_{n}^{\prime}\right)\right)\right\} \leq & \max \left\{G\left(x, x^{*}, x^{*}\right), G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\} \\
& -\max \left\{G\left(x_{n}, x^{*}, x^{*}\right), G\left(x_{n}^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\} \\
\max \left\{G\left(x_{n}, T\left(x_{n}, x_{n}^{\prime}\right), T\left(x_{n}, x_{n}^{\prime}\right)\right), G\left(x_{n}^{\prime}, T\left(x_{n}, x_{n}^{\prime}\right), T\left(x_{n}, x_{n}^{\prime}\right)\right)\right\} \leq & \max \left\{G\left(x_{n}, x^{*}, x^{*}\right), G\left(x_{n}^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& (I+\mathcal{A})^{-1} \max \left\{G\left(x_{n}, T\left(x_{n}, x_{n}^{\prime}\right), T\left(x_{n}, x_{n}^{\prime}\right)\right), G\left(x_{n}^{\prime}, T\left(x_{n}, x_{n}^{\prime}\right), T\left(x_{n}, x_{n}^{\prime}\right)\right)\right\} \\
\leq & (I-\mathcal{A})^{-1} \max \left\{G\left(x_{n}, T\left(x_{n}, x_{n}^{\prime}\right), T\left(x_{n}, x_{n}^{\prime}\right)\right), G\left(x_{n}^{\prime}, T\left(x_{n}, x_{n}^{\prime}\right), T\left(x_{n}, x_{n}^{\prime}\right)\right)\right\} \\
\leq & (I-\mathcal{A})^{-1} \max \left\{G\left(x_{n}, x, x\right), G\left(x_{n}^{\prime}, x^{\prime}, x^{\prime}\right)\right\}
\end{aligned}
$$

for $n \geq N$. Since $x_{n+1} \in T\left(x_{n}, x_{n}^{\prime}\right), x_{n+1}^{\prime} \in T\left(x_{n}^{\prime}, x_{n}\right)$, by using (2.1) for each $n \geq N$ there exist $u_{n} \in T\left(x, x^{\prime}\right)$ and $u_{n}^{\prime} \in T\left(x^{\prime}, x\right)$ such that

$$
G\left(u_{n}, x_{n+1}, x_{n+1}\right)+G\left(u_{n}^{\prime}, x_{n+1}^{\prime}, x_{n+1}^{\prime}\right) \leq \mathcal{A}\left[G\left(x_{n}, x, x\right)+G\left(x_{n}^{\prime}, x^{\prime}, x^{\prime}\right)\right] .
$$

Hence

$$
\max \left\{G\left(x_{n+1}, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right), G\left(x_{n+1}^{\prime}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right)\right\} \leq \mathcal{A} \max \left\{G\left(x_{n}, x, x\right), G\left(x_{n}^{\prime}, x^{\prime}, x^{\prime}\right)\right\}
$$

and so

$$
\lim _{n \rightarrow \infty} \max \left\{G\left(x_{n+1}, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right), G\left(x_{n+1}^{\prime}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right)\right\} \leq \lim _{n \rightarrow \infty} \max \left\{G\left(x_{n}, x, x\right), G\left(x_{n}^{\prime}, x^{\prime}, x^{\prime}\right)\right\} .
$$

Thus

$$
\max \left\{G\left(x^{*}, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right), G\left(x^{\prime *}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right)\right\} \leq \mathcal{A} \max \left\{G\left(x^{*}, x, x\right), G\left(x^{\prime *}, x^{\prime}, x^{\prime}\right)\right\}
$$

for all $\left(x, x^{\prime}\right) \in(X \times X) \backslash\left(\left\{x^{*}\right\},\left\{x^{\prime *}\right\}\right)$.
Now we show that for each $\left(x, x^{\prime}\right) \in X \times X$ and $u \in T\left(x, x^{\prime}\right), u^{\prime} \in T\left(x^{\prime}, x\right)$ there exist $v \in T\left(x^{*}, x^{\prime *}\right)$, $v^{\prime} \in T\left(x^{\prime *}, x^{*}\right)$ such that

$$
\max \left\{G(u, v, v), G\left(u^{\prime}, v^{\prime}, v^{\prime}\right)\right\} \leq \mathcal{A} \max \left\{G\left(x, x^{*}, x^{*}\right), G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\}
$$

If $x_{n} \rightarrow x^{*}$ and $x_{n}^{\prime} \rightarrow x^{* *}$ we have nothing to prove. Let $x \neq x^{*}$ and $x^{\prime} \neq x^{\prime *}$. By definition of $G\left(x^{*}, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right), G\left(x^{* *}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right)$ and for each $n \geq 1$ there exist $y_{n} \in T\left(x, x^{\prime}\right)$ and $y_{n}^{\prime} \in$ $T\left(x^{\prime}, x\right)$ such that

$$
\begin{aligned}
\max \left\{G\left(x^{*}, y_{n}, y_{n}\right), G\left(x^{\prime *}, y_{n}^{\prime}, y_{n}^{\prime}\right)\right\} \leq & \max \left\{G\left(x^{*}, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right), G\left(x^{\prime *}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right\}\right) \\
& +\frac{1}{n} \max \left\{G\left(x, x^{*}, x^{*}\right), G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\}
\end{aligned}
$$

Hence from 2.13, we have

$$
\begin{aligned}
(I+\mathcal{A})^{-1} \max \left\{G\left(x, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right), G\left(x^{\prime}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right)\right\} \leq & \max \left\{G\left(x, x^{*}, x^{*}\right), G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\} \\
& +\frac{1}{n}(I+\mathcal{A})^{-1} \max \left\{G\left(x^{\prime}, x^{\prime *}, x^{* *}\right), G\left(x, x^{*}\right.\right.
\end{aligned}
$$

for all $n \geq 1$. Thus

$$
\begin{aligned}
(I+\mathcal{A})^{-1} \max \left\{G\left(x, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right), G\left(x^{\prime}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right)\right\} & \leq \max \left\{G\left(x, x^{*}, x^{*}\right), G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\} \\
& \leq(I-\mathcal{A})^{-1} \max \left\{G\left(x, x^{*}, x^{*}\right), G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)\right.
\end{aligned}
$$

Now by using (2.1) for each $u \in T\left(x, x^{\prime}\right), u^{\prime} \in T\left(x^{\prime}, x\right)$ there exist $v \in T\left(x^{*}, x^{\prime *}\right), v^{\prime} \in T\left(x^{\prime *}, x^{*}\right)$ such that

$$
\max \left\{G(u, v, v), G\left(u^{\prime}, v^{\prime}, v^{\prime}\right)\right\} \leq \mathcal{A} \max \left\{G\left(x, x^{*}, x^{*}\right), G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\}
$$

Since $x_{n+1} \in T\left(x_{n}, x_{n}^{\prime}\right)$ and $x_{n+1}^{\prime} \in T\left(x_{n}^{\prime}, x_{n}\right)$ for all $n \geq 1$, there exist $v_{n} \in T\left(x^{*}, x^{*}\right)$ and $v_{n}^{\prime} \in T\left(x^{*}, x^{*}\right)$ such that

$$
\max \left\{G\left(v, x_{n}, x_{n+1}\right), G\left(v^{\prime}, x_{n}^{\prime}, x_{n+1}^{\prime}\right)\right\} \leq \mathcal{A} \max \left\{G\left(x_{n}, x^{*}, x^{*}\right), G\left(x_{n}^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\}
$$

Hence

$$
\begin{aligned}
\max \left\{G\left(v_{n}, x^{*}, x^{*}\right), G\left(v_{n}^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\} & \leq \max \left\{G\left(v_{n}, x_{n+1}, x_{n+1}\right)+G\left(x_{n+1}, x^{*}, x^{*}\right), G\left(v_{n}^{\prime}, x_{n+1}^{\prime}, x_{n+1}^{\prime}\right)+G\left(x_{n+1}^{\prime},\right.\right. \\
& \leq \mathcal{A} \max \left\{G\left(x_{n}, x^{*}, x^{*}\right)+G\left(x_{n+1}, x^{*}, x^{*}\right), G\left(x_{n}^{\prime}, x^{\prime *}, x^{\prime *}\right)+G\left(x_{n+1}^{\prime}, x^{\prime *}, x^{\prime *}\right.\right.
\end{aligned}
$$

for all $n \geq 1$. Therefore $v_{n} \rightarrow x^{*}$ and $v_{n}^{\prime} \rightarrow x^{*}$.
Since $v_{n} \in T\left(x^{*}, x^{* *}\right)$ and $v_{n}^{\prime} \in T\left(x^{* *}, x^{*}\right)$ for all $n \geq 1$ and $T\left(x^{*}, x^{*}\right)$ is a closed subset of $X \times X$, $x^{*} \in T\left(x^{*}, x^{* *}\right)$ and $x^{*} \in T\left(x^{*}, x^{*}\right)$, that is, $G\left(x_{n}, x_{m}, x_{m}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Hence $\left\{x_{n}\right\}_{n \geq 0}$ is Cauchy sequence in the complete $G-$ metric space (X, G). Choose $x^{*} \in X$ such that $x_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$. We claim that $x \in X \backslash\left\{x^{*}\right\}$,

Theorem 2.3. Let (X, G) be a complete G - metric space, a matrix $\mathcal{A} \in M_{m, m}\left(\mathbb{R}^{+}\right)$converges to zero and $T: X \times X \rightarrow P_{c l}(X)$ a multivalued operator and $F: \mathbb{R}_{+}^{m} \rightarrow \mathbb{R}_{+}^{m}$ an increasing sublinear continuous function such that $F(0)=0$ and $F(t)>0$ for all $t=\left(t_{i}\right)_{i=1}^{m} \in \mathbb{R}_{+}^{m}$ where

$$
\begin{equation*}
\mathbb{R}_{+}^{m}=\left\{\left(t_{1}, \ldots, t_{m}\right): t_{i}>0, \quad \text { for } i=1,2,3, \ldots, m\right\} \tag{2.14}
\end{equation*}
$$

Suppose that for each $x, y, z, x^{\prime}, y^{\prime}, z^{\prime} \in X$,
$\left(I+\mathcal{A}^{-1}\right) F\left(\max \left\{G(u, v, w), G\left(u^{\prime}, v^{\prime}, w^{\prime}\right)\right\}\right) \leq\left(I-\mathcal{A}^{-1}\right) F\left(\max \left\{G(x, y, z), G\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right\}\right)$
implies that for each $u \in T\left(x, x^{\prime}\right), u^{\prime} \in T\left(x^{\prime}, x\right), v \in T\left(y, y^{\prime}\right), v^{\prime} \in T\left(y^{\prime}, y\right)$ there exist $w \in T\left(z, z^{\prime}\right), w^{\prime} \in$ $T\left(z^{\prime}, z\right)$ such that

$$
F\left(\max \left\{G(u, v, w), G\left(u^{\prime}, v^{\prime}, w^{\prime}\right)\right\}\right) \leq \mathcal{A} F\left(\max \left\{\begin{array}{l}
G(x, y, z), G\left(x, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right) \tag{2.15}\\
G\left(y, T\left(y, y^{\prime}\right), T\left(y, y^{\prime}\right)\right), G\left(z, T\left(z, z^{\prime}\right), T\left(z, z^{\prime}\right)\right) \\
G\left(x^{\prime}, y^{\prime}, z^{\prime}\right), G\left(x^{\prime}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right), \\
G\left(y^{\prime}, T\left(y^{\prime}, y\right), T\left(y^{\prime}, y\right)\right), G\left(z^{\prime}, T\left(z^{\prime}, z\right), T\left(z^{\prime}, z\right)\right)
\end{array}\right\}\right)
$$

Then T has a coupled fixed point.
Proof. For each $\left(x, x^{\prime}\right) \in X \times X$,

$$
\begin{align*}
& \left(I+\mathcal{A}^{-1}\right) F\left(\max \left\{G\left(x, T\left(x, x^{\prime}\right), T^{2}\left(x, x^{\prime}\right)\right), G\left(x^{\prime}, T\left(x^{\prime}, x\right), T^{2}\left(x^{\prime}, x\right)\right)\right\}\right) \leq \tag{2.16}\\
& \quad\left(I-\mathcal{A}^{-1}\right) F\left(\max \left\{G\left(x, T\left(x, x^{\prime}\right), T^{2}\left(x, x^{\prime}\right)\right), G\left(x^{\prime}, T\left(x^{\prime}, x\right), T^{2}\left(x^{\prime}, x\right)\right)\right\}\right)
\end{align*}
$$

Let $\left(x_{0}, x_{0}^{\prime}\right) \in X \times X$ and take $x_{1} \in T\left(x_{0}, x_{0}^{\prime}\right), x_{1}^{\prime} \in T\left(x_{0}^{\prime}, x_{0}\right), x_{2} \in T\left(x_{1}, x_{1}^{\prime}\right), x_{2}^{\prime} \in T\left(x_{1}^{\prime}, x_{1}\right)$. If $x_{0}=x_{1}=x_{2}$ and $x_{0}^{\prime}=x_{1}^{\prime}=x_{2}^{\prime}$ then $\left(x_{0}, x_{0}^{\prime}\right)$ is a coupled fixed point of T. Let any one of x_{0}, x_{1}, x_{2} and $x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}$ be not equal to other. From (2.6), there exist $x_{3} \in T\left(x_{2}, x_{2}^{\prime}\right), x_{3}^{\prime} \in T\left(x_{2}^{\prime}, x_{2}\right)$ such that

$$
F\left(\max \left\{G\left(x_{1}, x_{2}, x_{3}\right), G\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)\right\}\right) \leq \mathcal{A} F\left(\max \left\{\begin{array}{l}
G\left(x_{0}, x_{1}, x_{2}\right), G\left(x_{0}, T\left(x_{0}, x_{0}^{\prime}\right), T\left(x_{0}, x_{0}^{\prime}\right)\right), \\
G\left(x_{1}, T\left(x_{1}, x_{1}^{\prime}\right), T\left(x_{1}, x_{1}^{\prime}\right)\right), G\left(x_{2}, T\left(x_{2}, x_{2}^{\prime}\right), T\left(x_{2}, x_{2}^{\prime}\right)\right), \\
G\left(x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right), G\left(x_{0}^{\prime}, T\left(x_{0}^{\prime}, x_{0}\right), T\left(x_{0}^{\prime}, x_{0}\right)\right), \\
G\left(x_{1}^{\prime}, T\left(x_{1}^{\prime}, x_{1}\right), T\left(x_{1}^{\prime}, x_{1}\right)\right), G\left(x_{2}^{\prime}, T\left(x_{2}^{\prime}, x_{2}\right), T\left(x_{2}^{\prime}, x_{2}\right)\right)
\end{array}\right\}\right)
$$

If $x_{1}=x_{2}=x_{3}$ and $x_{1}^{\prime}=x_{2}^{\prime}=x_{3}^{\prime}$ then $\left(x_{1}, x_{1}^{\prime}\right)$ is a coupled fixed point of T. Let any one of x_{1}, x_{2}, x_{3} and $x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$ be not equal to other, from (2.1) and (2.8) there exist $x_{4} \in T\left(x_{5}, x_{5}^{\prime}\right), x_{4}^{\prime} \in T\left(x_{5}^{\prime}, x_{5}\right)$ such that

$$
\begin{align*}
F\left(\max \left\{G\left(x_{2}, x_{3}, x_{4}\right), G\left(x_{2}^{\prime}, x_{3}^{\prime}, x_{4}^{\prime}\right)\right\}\right) & \leq \mathcal{A} F\left(\max \left\{G\left(x_{1}, x_{2}, x_{3}\right), G\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)\right\}\right) \\
& \leq \mathcal{A}^{2} F\left(\max \left\{G\left(x_{0}, x_{1}, x_{2}\right), G\left(x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right)\right\}\right) \tag{2.18}
\end{align*}
$$

Now by induction we construct sequences $\left\{x_{n}\right\}_{n \geq 0},\left\{x_{n}^{\prime}\right\}_{n \geq 0}$ in X such that $x_{n+1} \in T\left(x_{n}, x_{n}^{\prime}\right), x_{n+1}^{\prime} \in$ $T\left(x_{n}^{\prime}, x_{n}\right)$ and

$$
\begin{equation*}
F\left(\max \left\{G\left(x_{n}, x_{n+1}, x_{n+2}\right), G\left(x_{n}^{\prime}, x_{n+1}^{\prime}, x_{n+2}^{\prime}\right)\right\}\right) \leq \mathcal{A}^{n} F\left(\max \left\{G\left(x_{0}, x_{1}, x_{2}\right), G\left(x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right)\right\}\right) \tag{2.19}
\end{equation*}
$$

for all $n \geq 0$. Since \mathcal{A} converges to zero,

$$
F\left(\max \left\{G\left(x_{n}, x_{n+1}, x_{n+2}\right), G\left(x_{n}^{\prime}, x_{n+1}^{\prime}, x_{n+2}^{\prime}\right)\right\}\right) \rightarrow 0
$$

We claim that

$$
\max \left\{G\left(x_{n}, x_{n+1}, x_{n+2}\right), G\left(x_{n}^{\prime}, x_{n+1}^{\prime}, x_{n+2}^{\prime}\right)\right\} \rightarrow 0
$$

If

$$
\max \left\{G\left(x_{n}, x_{n+1}, x_{n+2}\right), G\left(x_{n}^{\prime}, x_{n+1}^{\prime}, x_{n+2}^{\prime}\right)\right\} \rightarrow 0
$$

is not true, then there exists $\gamma \in \mathbb{R}_{+}^{m}$ such that for each $k>0$ there is an integer number $n_{k} \geq k$ such that

$$
\max \left\{G\left(x_{n_{k}}, x_{n_{k}+1}, x_{n_{k}+2}\right), G\left(x_{n_{k}}^{\prime}, x_{n_{k}+1}^{\prime}, x_{n_{k}+2}^{\prime}\right)\right\} \geq \gamma
$$

Hence,

$$
0<F(\gamma) \leq F\left(\max \left\{G\left(x_{n}, x_{n+1}, x_{n+2}\right), G\left(x_{n}^{\prime}, x_{n+1}^{\prime}, x_{n+2}^{\prime}\right)\right\}\right) \rightarrow 0
$$

This contradiction shows that

$$
\max \left\{G\left(x_{n}, x_{n+1}, x_{n+2}\right), G\left(x_{n}^{\prime}, x_{n+1}^{\prime}, x_{n+2}^{\prime}\right)\right\} \rightarrow 0 .
$$

Now, from sublinearity of F Theorem (1.9), for all $m, n \in N, n<m$ and by $\left(G_{3}\right)$ and (G_{5}) we obtain

$$
F\left(\max \left\{G\left(x_{n}, x_{m}, x_{m}\right), G\left(x_{n}^{\prime}, x_{m}^{\prime}, x_{m}^{\prime}\right)\right\}\right) \leq \mathcal{A}^{n}(I-\mathcal{A})^{-1} F\left(\max \left\{G\left(x_{0}, x_{1}, x_{2}\right), G\left(x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right)\right\}\right)
$$

that is

$$
F\left(\max \left\{G\left(x_{n}, x_{m}, x_{m}\right), G\left(x_{n}^{\prime}, x_{m}^{\prime}, x_{m}^{\prime}\right)\right\}\right) \rightarrow 0
$$

as $n \rightarrow \infty$ and so

$$
\max \left\{G\left(x_{n}, x_{m}, x_{m}\right), G\left(x_{n}^{\prime}, x_{m}^{\prime}, x_{m}^{\prime}\right)\right\} \rightarrow 0
$$

If $x_{n} \rightarrow x^{*}$ and $x_{n}^{\prime} \rightarrow x^{\prime *}$ we have nothing to prove. Let $x \neq x^{*}$ and $x^{\prime} \neq x^{\prime *}$. By definition of $G\left(x^{*}, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right), G\left(x^{\prime *}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right)$ and for each $n \geq 1$ there exist $y_{n} \in T\left(x, x^{\prime}\right)$ and $y_{n}^{\prime} \in$ $T\left(x^{\prime}, x\right)$ such that

$$
\begin{aligned}
\max \left\{G\left(x^{*}, y_{n}, y_{n}\right), G\left(x^{\prime *}, y_{n}^{\prime}, y_{n}^{\prime}\right)\right\} \leq & \max \left\{G\left(x^{*}, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right), G\left(x^{\prime *}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right\}\right) \\
& +\frac{1}{n} \max \left\{G\left(x, x^{*}, x^{*}\right), G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\}
\end{aligned}
$$

Hence from (2.13), we have

$$
\begin{aligned}
(I+\mathcal{A})^{-1} \max \left\{G\left(x, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right), G\left(x^{\prime}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right)\right\} \leq & \max \left\{G\left(x, x^{*}, x^{*}\right), G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\} \\
& +\frac{1}{n}(I+\mathcal{A})^{-1} \max \left\{G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right), G\left(x, x^{*},\right.\right.
\end{aligned}
$$

for all $n \geq 1$. Thus

$$
\begin{aligned}
(I+\mathcal{A})^{-1} \max \left\{G\left(x, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right), G\left(x^{\prime}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right)\right\} & \leq \max \left\{G\left(x, x^{*}, x^{*}\right), G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\} \\
& \leq(I-\mathcal{A})^{-1} \max \left\{G\left(x, x^{*}, x^{*}\right), G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)\right.
\end{aligned}
$$

Now by using (2.1) for each $u \in T\left(x, x^{\prime}\right), u^{\prime} \in T\left(x^{\prime}, x\right)$ there exist $v \in T\left(x^{*}, x^{*}\right), v^{\prime} \in T\left(x^{\prime *}, x^{*}\right)$ such that

$$
\max \left\{G(u, v, v), G\left(u^{\prime}, v^{\prime}, v^{\prime}\right)\right\} \leq \mathcal{A} \max \left\{G\left(x, x^{*}, x^{*}\right), G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\} .
$$

Since $x_{n+1} \in T\left(x_{n}, x_{n}^{\prime}\right)$ and $x_{n+1}^{\prime} \in T\left(x_{n}^{\prime}, x_{n}\right)$ for all $n \geq 1$, there exist $v_{n} \in T\left(x^{*}, x^{\prime *}\right)$ and $v_{n}^{\prime} \in T\left(x^{* *}, x^{*}\right)$ such that

$$
\max \left\{G\left(v, x_{n}, x_{n+1}\right), G\left(v^{\prime}, x_{n}^{\prime}, x_{n+1}^{\prime}\right)\right\} \leq \mathcal{A} \max \left\{G\left(x_{n}, x^{*}, x^{*}\right), G\left(x_{n}^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\}
$$

Hence

$$
\begin{aligned}
\max \left\{G\left(v_{n}, x^{*}, x^{*}\right), G\left(v_{n}^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\} & \leq \max \left\{G\left(v_{n}, x_{n+1}, x_{n+1}\right)+G\left(x_{n+1}, x^{*}, x^{*}\right), G\left(v_{n}^{\prime}, x_{n+1}^{\prime}, x_{n+1}^{\prime}\right)+G\left(x_{n+1}^{\prime},\right.\right. \\
& \leq \mathcal{A} \max \left\{G\left(x_{n}, x^{*}, x^{*}\right)+G\left(x_{n+1}, x^{*}, x^{*}\right), G\left(x_{n}^{\prime}, x^{\prime *}, x^{\prime *}\right)+G\left(x_{n+1}^{\prime}, x^{\prime *}, x^{\prime *}\right.\right.
\end{aligned}
$$

for all $n \geq 1$. Therefore $v_{n} \rightarrow x^{*}$ and $v_{n}^{\prime} \rightarrow x^{* *}$.
Since $v_{n} \in T\left(x^{*}, x^{\prime *}\right)$ and $v_{n}^{\prime} \in T\left(x^{\prime *}, x^{*}\right)$ for all $n \geq 1$ and $T\left(x^{*}, x^{\prime *}\right)$ is a closed subset of $X \times X$, so $x^{*} \in T\left(x^{*}, x^{\prime *}\right)$ and $x^{\prime *} \in T\left(x^{*}, x^{*}\right)$. That is $G\left(x_{n}, x_{m}, x_{m}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Hence $\left\{x_{n}\right\}_{n \geq 0},\left\{x_{n}^{\prime}\right\}_{n \geq 0}$ are Cauchy sequence in the complete G - metric space (X, G). Choose $\left(x^{*}, x^{\prime *}\right) \in$ $X \times X$ such that $x_{n} \rightarrow x^{*}$ and $x_{n}^{\prime} \rightarrow x^{\prime *}$ as $n \rightarrow \infty$. We claim that $\left(x, x^{\prime}\right) \in(X \times X) \backslash\left(\left\{x^{*}\right\},\left\{x^{\prime *}\right\}\right)$,

$$
F\left(\max \left\{G\left(x^{*}, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right), G\left(x^{\prime *}, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right)\right\}\right) \leq \mathcal{A} F\left(\max \left\{G\left(x^{*}, x, x\right), G\left(x^{\prime *}, x^{\prime}, x^{\prime}\right)\right\} \nless 2.20\right)
$$

Let $\left(x, x^{\prime}\right) \in(X \times X) \backslash\left(\left\{x^{*}\right\},\left\{x^{* *}\right\}\right)$. Choose a natural number N such that

$$
\max \left\{G\left(x_{n}, x^{*}, x^{*}\right), G\left(x_{n}^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\}<\frac{1}{4} \max \left\{G\left(x, x^{*}, x^{*}\right), G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\}
$$

for all $n \geq N$. Hence, for each $n \geq N$ we have

$$
F\left(\max \left\{G\left(x_{n}, T\left(x_{n}, x_{n}^{\prime}\right), T\left(x_{n}, x_{n}^{\prime}\right)\right), G\left(x_{n}^{\prime}, T\left(x_{n}, x_{n}^{\prime}\right), T\left(x_{n}, x_{n}^{\prime}\right)\right)\right\}\right) \leq F\left(\max \left\{G\left(x_{n}, x^{*}, x^{*}\right), G\left(x_{n}^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\}\right) .
$$

Thus

$$
\begin{aligned}
& (I+\mathcal{A})^{-1} F\left(\max \left\{G\left(x_{n}, T\left(x_{n}, x_{n}^{\prime}\right), T\left(x_{n}, x_{n}^{\prime}\right)\right), G\left(x_{n}^{\prime}, T\left(x_{n}, x_{n}^{\prime}\right), T\left(x_{n}, x_{n}^{\prime}\right)\right)\right\}\right) \\
\leq & (I-\mathcal{A})^{-1} F\left(\max \left\{G\left(x_{n}, T\left(x_{n}, x_{n}^{\prime}\right), T\left(x_{n}, x_{n}^{\prime}\right)\right), G\left(x_{n}^{\prime}, T\left(x_{n}, x_{n}^{\prime}\right), T\left(x_{n}, x_{n}^{\prime}\right)\right)\right\}\right) \\
\leq & (I-\mathcal{A})^{-1} F\left(\max \left\{G\left(x_{n}, x, x\right), G\left(x_{n}^{\prime}, x^{\prime}, x^{\prime}\right)\right\}\right)
\end{aligned}
$$

for $n \geq N$. Since $x_{n+1} \in T\left(x_{n}, x_{n}^{\prime}\right), x_{n+1}^{\prime} \in T\left(x_{n}^{\prime}, x_{n}\right)$, by using (2.1) for each $n \geq N$ there exist $u_{n} \in T\left(x, x^{\prime}\right)$ and $u_{n}^{\prime} \in T\left(x^{\prime}, x\right)$ such that

$$
F\left(\max \left\{G\left(u_{n}, x_{n+1}, x_{n+1}\right), G\left(u_{n}^{\prime}, x_{n+1}^{\prime}, x_{n+1}^{\prime}\right)\right\}\right) \leq \mathcal{A} F\left(\max \left\{G\left(x_{n}, x, x\right), G\left(x_{n}^{\prime}, x^{\prime}, x^{\prime}\right)\right\}\right) .
$$

Hence

$$
F\left(\max \left\{G\left(x_{n+1}, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right), G\left(x_{n+1}^{\prime}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right)\right\}\right) \leq \mathcal{A} F\left(\max \left\{G\left(x_{n}, x, x\right), G\left(x_{n}^{\prime}, x^{\prime}, x^{\prime}\right)\right\}\right)
$$

and so
$\lim _{n \rightarrow \infty} F\left(\max \left\{G\left(x_{n+1}, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right), G\left(x_{n+1}^{\prime}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right)\right\}\right) \leq \lim _{n \rightarrow \infty} F\left(\max \left\{G\left(x_{n}, x, x\right), G\left(x_{n}^{\prime}, x^{\prime}, x^{\prime}\right)\right\}\right)$.
Thus $F\left(\max \left\{G\left(x^{*}, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right), G\left(x^{\prime *}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right)\right\}\right) \leq \mathcal{A} F\left(G\left(\max \left\{G\left(x^{*}, x, x\right), G\left(x^{\prime *}, x^{\prime}, x^{\prime}\right)\right\}\right)\right.$ for all $\left(x, x^{\prime}\right) \in(X \times X) \backslash\left(\left\{x^{*}\right\},\left\{x^{* *}\right\}\right)$.

Now we show that for each $\left(x, x^{\prime}\right) \in X \times X$ and $u \in T\left(x, x^{\prime}\right), u^{\prime} \in T\left(x^{\prime}, x\right)$ there exist $v \in T\left(x^{*}, x^{\prime *}\right)$, $v^{\prime} \in T\left(x^{\prime *}, x^{*}\right)$ such that

$$
F\left(\max \left\{G(u, v, v), G\left(u^{\prime}, v^{\prime}, v^{\prime}\right)\right\}\right) \leq \mathcal{A} F\left(\max \left\{G\left(x, x^{*}, x^{*}\right), G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\}\right) .
$$

From (2.20),

$$
\begin{aligned}
& (I+\mathcal{A})^{-1} F\left(\max \left\{G\left(x, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right), G\left(x^{\prime}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right)\right\}\right) \\
\leq & F\left(\max \left\{G\left(x, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right), G\left(x^{\prime}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right)\right\}\right) \\
& +\frac{1}{n}(I+\mathcal{A})^{-1} F\left(\max \left\{G\left(x, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right), G\left(x^{\prime}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right)\right\}\right)
\end{aligned}
$$

for all $n \geq 1$.
Thus

$$
\begin{aligned}
& (I+\mathcal{A})^{-1} F\left(\max \left\{G\left(x, T\left(x, x^{\prime}\right), T\left(x, x^{\prime}\right)\right), G\left(x^{\prime}, T\left(x^{\prime}, x\right), T\left(x^{\prime}, x\right)\right)\right\}\right) \\
\leq & F\left(\max \left\{G\left(x, x^{*}, x^{*}\right), G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\}\right) \\
\leq & (I-\mathcal{A})^{-1} F\left(\max \left\{G\left(x, x^{*}, x^{*}\right), G\left(x^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\}\right) .
\end{aligned}
$$

Now by using (2.15), for each $u \in T\left(x, x^{\prime}\right), u^{\prime} \in T\left(x^{\prime}, x\right)$ there exist $v \in T\left(x^{*}, x^{*}\right), v^{\prime} \in T\left(x^{\prime *}, x^{*}\right)$ such that

$$
F\left(\max \left\{G(u, v, v), G\left(u^{\prime}, v^{\prime}, v^{\prime}\right)\right\}\right) \leq \mathcal{A} F\left(\max \left\{G\left(x, x^{*}, x^{*}\right), G\left(x^{\prime}, x^{\prime *}, x^{* *}\right)\right\}\right)
$$

Since $x_{n+1} \in T\left(x_{n}, x_{n}^{\prime}\right), x_{n+1}^{\prime} \in T\left(x_{n}^{\prime}, x_{n}\right)$ for all $n \geq 1$, there exist $v_{n} \in T\left(x^{*}, x^{\prime *}\right), v_{n}^{\prime} \in T\left(x^{\prime *}, x^{*}\right)$ such that

$$
F\left(\max \left\{G\left(v, x_{n}, x_{n+1}\right), G\left(v^{\prime}, x_{n}^{\prime}, x_{n+1}^{\prime}\right)\right\}\right) \leq \mathcal{A} F\left(\max \left\{G\left(x, x^{*}, x^{*}\right), G\left(x^{\prime}, x^{\prime *}, x^{* *}\right)\right\}\right)
$$

Hence

$$
\begin{aligned}
F\left(\max \left\{G\left(v_{n}, x^{*}, x^{*}\right), G\left(v_{n}^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\}\right) \leq & F\left(\max \left\{G\left(v_{n}, x_{n+1}, x_{n+1}\right), G\left(v_{n}^{\prime}, x_{n+1}^{\prime}, x_{n+1}^{\prime}\right)\right\}\right) \\
& +F\left(\max \left\{G\left(x_{n+1}, x^{*}, x^{*}\right), G\left(x_{n+1}^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\}\right) \\
\leq & \mathcal{A} F\left(\max \left\{G\left(x_{n}, x^{*}, x^{*}\right), G\left(x_{n}^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\}\right) \\
& +F\left(\max \left\{G\left(x_{n+1}, x^{*}, x^{*}\right), G\left(x_{n+1}^{\prime}, x^{\prime *}, x^{\prime *}\right)\right\}\right)
\end{aligned}
$$

for all $n \geq 1$. Therefore $v_{n} \rightarrow x^{*}$ and $v_{n}^{\prime} \rightarrow x^{*}$.
Since $v \in T\left(x^{*}, x^{*}\right), v^{\prime} \in T\left(x^{* *}, x^{*}\right)$ for all $n \geq 1$ and $T\left(x^{*}, x^{*}\right)$ is a closed subset of $X \times X, x^{*} \in T\left(x^{*}, x^{* *}\right)$ and $x^{* *} \in T\left(x^{*}, x^{*}\right)$.

3. Acknowledgement

The fourth (corrsponding) author Dr Saurabh Manro is thankful to the National Board of Higher Mathematics for Post-Doctorate Fellowship.

References

[1] M. Abbas, T. Nazir, S. Radenovic, Some periodic point results in generalized metric spaces, Applied Mathematics and Computation, 217 (2010), 4094-4099. 1
[2] N.A. Assad, W.A. Kirk, Fixed point theorems for setvalued mappings of contractive type, Pacific Journal of Mathematics, 43 (1972), 553-562. 1
[3] S.H. Hong, Fixed points of multivalued operators in ordered metric spaces with applications, Nonlinear Analysis, 72 (2010),3929-3942. 1
[4] S.H. Hong, Fixed points for mixed monotone multivalued operators in Banach Spaces with applications, Journal of Mathematical Analysis and Applications, 337(2008), 333-342. 1
[5] S.H. Hong, D. Guan, L. Wang, Hybrid fixed points of multivalued operators in metric spaces with applications, Nonlinear Analysis, 70 (2009), 4106-4117. 1
[6] M. Kikkawa, T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Analysis, 69 (2008), 2942-2949. (document)
[7] D. Klim, D. Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces, Journal of Mathematical Analysis and Applications, 334 (2007), 132-139. 1
[8] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis, 7(2)(2006), 289-297. 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8
[9] Z. Mustafa, H. Obiedat, F. Awawdeh, Some of fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory and Applications, 2008(2008), Article ID 189870,page 12. 1
[10] Z. Mustafa, W. Shatanawi, M. Bataineh, Fixed point theorems on uncomplete G-metric spaces, Journal of Mathematics and Statistics, 4(4)(2008), 196-201. 1
[11] Z. Mustafa, W. Shatanawi, M. Bataineh, Existence of fixed point result in G-metric spaces, International Journal of Mathematics and Mathematical Sciences, 2009(2009), Pages 10, Article ID 283028. 1
[12] Z. Mustafa, B. Sims, Fixed point theorems for contractive mappings in complete G-metric space, Fixed Point Theory and Applications, 2009(2009), Pages 10, Article ID 917175. 1
[13] S.B. Nadler, Multi-valued contraction mappings, Pacific Journal of Mathematics, 30 (1969), 475-478. 1
[14] I.A. Rus, Principles and Applications of Fixed Point Theory, Editure Dacia, Cluj-Napoca, 1979 (in Romania). 1.9
[15] I.A. Rus, The theory of a metrical fixed point theory : theoretical and applicative relevance, Fixed Point Theory, 9(2) (2008), 541-559. 1
[16] I.A. Rus, A. Petrusel, A. Santamarian, Data dependence of the fixed point set of multivalued weakly Picard operator, Nonlinear Analysis, 52 (2003), 1947-1959. 1
[17] I.A. Rus, A. Petrusel, M.A. Serban, Weakly Picard operator: equivalent definitions, applications and open problems, Fixed Point Theory, 7(1)(2006), 3-22. 1
[18] W. Sintunavarat, P. Kumam, Weak condition for generalized multi-valued (f, α, β)-weak contraction mappings, Applied Mathematics Letters, 24(4)(2011), 460-465.

[^0]: *Corresponding author
 Email addresses: dranimeshgupta10@gmail.com (A. Gupta), drtejwant1@rediffmail.com (T. Singh), bhullarrajvir@yahoo.com (R. Kaur), sauravmanro@hotmail.com (S. Manro)

