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Abstract

In the paper [A.M. Rismani, H. Monfared, Numerical solution of singular ivps of laneemden type using a
modified Legendre spectral method. Applied Mathematical Modelling, 36 (2012), 4830-4836.] the authors
state that exact solutions for the Lane-Emden nonlinear differential equation exists only for m = 0, 1 (linear
cases) and 5 (nonlinear case). While here, we present real exact solutions for m ∈ (3,∞) and complex
m ∈ (−∞, 3)\{1}. Some illustrated examples presented as well.
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1. Introduction and Preliminaries

Many problems of mathematical physics are as equations of the Lane-Emden type defined in the form

y′′ +
2

t
y′ + g(t)f(y) = h(t), 0 < t <∞. (1.1)

subject to y(0) = a and y′(0) = 0, where a is a constant and f(y), g(t) and h(t) are given functions. For
more detail of other extensions of analytic algorithm of Lane-Emden and Solutions of singular IVPs of
Lane-Emden type by homotopy perturbation method refer to [2, 3, 4].

In this paper, we present real exact solutions for m ∈ (3,∞) and complex m ∈ (−∞, 3)\{1}, while
authors in [1] had stated that exact solutions for the Lane-Emden nonlinear differential equation exist only
for m = 0, 1 (linear cases) and 5 (nonlinear case).

In the sequel, we use the notation NDE for nonlinear differential equation.
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2. Main results

In this section, we obtain exact solutions for the NDE (1.1) for m ∈ R\{1, 3}, when g(t) = 1, h(t) = 0
and f(y) = ym; which is called Lane-Emden equation.

Theorem 2.1. The y = at
2

1−m is exact solution of the Lane-Emden equation

y′′ +
2

t
y′ + ym = 0, (2.1)

where real exact solutions for m ∈ (3,∞), complex for m ∈ (−∞, 3)\{1}; and am−1 = 2m−6
(1−m)2

.

Proof. It’s easy to calculate if we pick y := atk for a 6= 0, k 6= 0; nontrivial and k 6= −1 ; so y′ = katk−1 and
y′′ = k(k − 1)atk−2. Now replace them in the equation

y′′ +
2

t
y′ + ym = 0

k(k − 1)atk−2 + 2katk−2 + amtmk = 0

k(k − 1) + 2k + am−1tmk−k+2 = 0

k(k + 1) + am−1tmk−k+2 = 0.

Now if the above identities should be held, then we have to{
k(k + 1) + am−1 = 0,
mk − k + 2 = 0,

=

{
am−1 = 2m−6

(1−m)2
, if we put k in the following;

k = 2
1−m .

Example 2.2. Consider the nonlinear differential equations:

1. y′′ + 2
t y
′ + y

10
3 = 0;

2. y′′ + 2
t y
′ + y2 = 0;

3. y′′ + 2
t y
′ + y−

√
5 = 0, 0 < t <∞;

particular answers are respectively

1. y = at
−6
7 , where a

7
3 = 6

49 ;

2. y = −2t−2;

3. y = at
√
5−1
2 , where a−

√
5−1 = −1. In other word t

1
ϕ is a answer, where ϕ is golden ratio; i.e.,

ϕ2 − ϕ− 1 = 0 and aϕ = −i.

More general above Lane-Emden’s equation is:

Theorem 2.3. The y = a(b + t)
2

1−m is exact solution of the

y′′ +
2

t + b
y′ + ym = 0, (2.2)

where real exact solutions for m ∈ (3,∞), complex for m ∈ (−∞, 3)\{1}; and am−1 = 2m−6
(1−m)2

, and b a
constant.

The equation (2.1) is linear for m = 0 and 1, and nonlinear otherwise. Exact solutions exist only for
m = 0, 1 and 5 that given in Bender [5] are respectively

y = 1− t2

6
, y =

sin t

t
and y =

(
1 +

t2

3

)−1
2

.
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Theorem 2.4. If y be a particular solution of (1.1). Then u = y + 1
t is a solution for

u′′ +
2

t
u′ + g(t)f

(
u− 1

t

)
= h(t), 0 < t <∞. (2.3)

Example 2.5. Consider the nonlinear differential equation

y′′ +
2

t
y′ + y4 = 0. (2.4)

A particular answer shall be y = 3

√
2
9t2

. The y = 3

√
2
9t2

+ k
t , is a solution for the following NDE:

y′′ +
2

t
y′ +

(
y − k

t

)4

= 0,

for some constant k, when we apply several times Theorem 2.4.

Example 2.6. In the [1], there exists another particular solution as follows y =
(

1 + t2

3

)−1
2
, for the following

NDE

y′′ +
2

t
y′ + y5 = 0, 0 < t <∞. (2.5)

subject to y(0) = 1; y′(0) = 0.

Here we state certain another answers to the NDE with m = 5.

Example 2.7. By the Theorem 2.1, we obtain the solutions for (2.5)

y = at
−1
2 , a4 =

1

4
.

In other word y = 1√
2t
, subject to y(0+) = +∞, y′(0+) = −∞.

Another answers are: y = a(1± t2)
−1
2 = a√

1±t2 , with a4 = 3, where y(0) = 4
√

3 and y′(0) = 0.

Example 2.8. When g(t) = 1 and h(t) = − (1+t2)
2 . We have a particular solution y =

(
1 + t2

2

)−1
2

for the

following NDE:

y′′ +
2

t
y′ + y3 = −1 + t2

2
, 0 < t <∞, (2.6)

subject to y(0) = 1; y′(0) = 0.

3. Numerical solutions by spectral method with Legendre points

The following answer for the equation (1.1) is as follows:

y(t) = a +

∫ t

0

(
s2

t
− s

)
(sg(s)f(y(s))− h(s))ds. (3.1)

Euler’s equation, ty′′ + 2y′ = 0 implies yh = c1 + c2/t; and by initial conditions yh = a. Wronskian will be
w
(
1, 1t
)

= − 1
t2

. Therefore

y = a +

∫ t

0

[(
−s2g(s)f(y(s)) + sh(s)

)
+

(
s3

t
g(s)f(y(s)) +

s2

t
h(s)

)]
ds.

y(t) = a +

∫ t

0

(
s2

t
− s

)
(sg(s)f(y(s))− h(s))ds.

So the Numerical solutions by spectral method with Legendre points are the same way which stated in [1].
Also the relations (2.5), (2.7) and (2.8) on the paper should be corrected and recalculated in Matlab software
package to the right form as equation (3.1). The rest of calculating is according to algorithm and method
in [1].
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