

Communications in Nonlinear Analysis

Journal Homepage: www.vonneumann-publishing.com/cna

Note on some lyengar integral inequalities

Khaled Boukerrioua^{a,*}, Badreddine Meftah^b, Tarik Chiheb^b

^aLanos Laboratatory, University of Badji-Mokhtar, Annaba, Algeria.

Abstract

In this short note, some Iyengar integral inequalities are established via new extension of Montgomery identity. ©2017 All rights reserved.

Keywords: Iyengar inequality, lipchitzienne function, Montgomery identity.

2010 MSC: 26D15, 26D20, 39A12.

1. introduction

In 1938, Iyengar [1] proved the following interesting integral inequality.

Theorem 1.1. Let f be differentiable function on [a,b] and $|f'(x)| \leq M$. Then

$$\left| \frac{1}{b-a} \int_{a}^{b} f(t)dt - \frac{f(a) + f(b)}{2} \right| \le \frac{M(b-a)}{4} - \frac{(f(b) - f(a))^{2}}{4M(b-a)}.$$
 (1.1)

Inequality (1.1) has attracted many researchers, various generalizations, extensions and variants have appeared in the literature. Recently, [1, 2] proved the following inequalities involving bounded of the second-order derivatives.

Theorem 1.2. Let $f \in C^2[a,b]$ and $|f''(x)| \leq M$. Then

$$|I| \le \frac{M}{24} (b-a)^3 - \frac{\left| f'(a) - 2f'(\frac{a+b}{2}) + f'(b) \right|^3}{24M^2},$$

Email addresses: khaledv2004@yahoo.fr (Khaled Boukerrioua), badrimeftah@yahoo.fr (Badreddine Meftah), tchiheb@yahoo.fr (Tarik Chiheb)

^bLaboratoire des Tlcommunications, Facult des Sciences et de la Technologie, Universit 8 Mai 1945 de Guelma,. P.O. Box 401, 24000 Guelma, Algeria.

^{*}Corresponding author

where

$$I = \int_{a}^{b} f(t)dt - \frac{1}{2}(b-a)(f(a) + f(b)) + \frac{1}{8}(b-a)^{2}(f'(b) - f'(a)).$$

The following lemmas are very useful in our main results.

Lemma 1.3 (Mean Value Theorem). Suppose that f is continuous function on a closed interval I := [a, b], and that f has a derivative in the open interval (a, b), then there exists at least one point c in (a, b) such that

$$f(b) - f(a) = f'(c)(b - a).$$
 (1.2)

Lemma 1.4 ([3]). Let $f:[a,b] \to \mathbb{R}$ be differentiable function on [a,b], and $f':[a,b] \to \mathbb{R}$ integrable on [a,b], then the Montgomery identity holds

$$f(x) = \frac{1}{b-a} \int_{a}^{b} f(t)dt + \int_{a}^{b} p(x,t)f'(t)dt,$$
(1.3)

where p(x,t) is the Peano kernel, defined as follows

$$p(x,t) = \begin{cases} \frac{t-a}{b-a} & a \le t \le x, \\ \frac{t-b}{b-a} & x < t \le b. \end{cases}$$
 (1.4)

The main purpose of this work is to obtain a new Iyengar type inequalities by using new extension of the Montgomery identity.

2. Main result

Lemma 2.1. Let $f \in C^2[a,b]$, then we have

$$f(x) - \frac{1}{b-a} \int_{a}^{b} f(t)dt + \frac{(b-x)^2 f'(b) - (x-a)^2 f'(a)}{2(b-a)} = \frac{(x-a)^3 f''(c_1) + (b-x)^3 f''(c_2)}{3(b-a)},$$
 (2.1)

where $a < c_1 < t$ and $t < c_2 < b$.

Proof. From Lemma 1.4, we have

$$f(x) = \frac{1}{b-a} \int_{a}^{b} f(t)dt + \int_{a}^{b} p(x,t)f'(t)dt$$

$$= \frac{1}{b-a} \int_{a}^{b} f(t)dt + \frac{1}{b-a} \left[\int_{a}^{x} (t-a)f'(t)dt + \int_{x}^{b} (t-b)f'(t)dt \right]. \tag{2.2}$$

Applying Lemma 1.3 to f' on [a, x], it yields

$$f'(t) = (t-a)f''(c_1) + f'(a), \quad \text{where } a < c_1 < t,$$
 (2.3)

now, using Lemma 1.3 on [x, b], we get

$$f'(t) = (t - b)f''(c_2) + f'(b),$$
 where $t < c_2 < b.$ (2.4)

Substituting (2.4) and (2.3) in (2.2), we obtain

$$f(x) = \frac{1}{b-a} \int_{a}^{b} f(t)dt + \frac{1}{b-a} \left[\int_{a}^{x} \left[(t-a)^{2} f''(c_{1}) + (t-a)f'(a) \right] dt + \int_{x}^{b} \left[(t-b)^{2} f''(c_{2}) + (t-b)f'(b) \right] dt \right],$$

$$(2.5)$$

where $a < c_1 < t < x$ and $x < t < c_2 < b$. Thus, (2.5) gives

$$f(x) = \frac{1}{b-a} \int_{a}^{b} f(t)dt + \frac{1}{b-a} \left[\frac{(x-a)^3}{3} f''(c_1) + \frac{(x-a)^2}{2} f'(a) - \frac{(x-b)^3}{3} f''(c_2) - \frac{(x-b)^2}{2} f'(b) \right].$$
(2.6)

The desired identity follows from (2.6).

Theorem 2.2. Let $f \in C^2[a,b]$ such that f''(x) is bounded for all $x \in [a,b]$, then we have

$$\left| \frac{1}{b-a} \int_{a}^{b} f(t)dt - \frac{1}{2} \left(f(b) + f(a) \right) - (b-a) \frac{f'(b) - f'(a)}{4} \right| \le \frac{(b-a)^2}{3} \left\| f'' \right\|_{\infty}. \tag{2.7}$$

Proof. From Lemma 2.1 and property of modulus, we have

$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t)dt + \frac{(b-x)^{2} f'(b) - (x-a)^{2} f'(a)}{2(b-a)} \right| = \left| \frac{(x-a)^{3} f''(c_{1}) + (b-x)^{3} f''(c_{2})}{3(b-a)} \right| \\
\leq \left| \frac{(x-a)^{3} + (b-x)^{3}}{3(b-a)} \right| \|f''\|_{\infty} \\
\leq \frac{(x-a)^{3} + (b-x)^{3}}{3(b-a)} \|f''\|_{\infty}, \tag{2.8}$$

the substitution of x by a in (2.8), gives

$$\left| f(a) - \frac{1}{b-a} \int_{a}^{b} f(t)dt + \frac{(b-a)f'(b)}{2} \right| \le \frac{(b-a)^{2}}{3} \left\| f'' \right\|_{\infty}, \tag{2.9}$$

now, substituting x by b in (2.8), we obtain

$$\left| f(b) - \frac{1}{b-a} \int_{a}^{b} f(t)dt - \frac{(b-a)f'(a)}{2} \right| \le \frac{(b-a)^2}{3} \|f''\|_{\infty}. \tag{2.10}$$

The addition of (2.9) and (2.10), gives

$$\left| \frac{2}{b-a} \int_{a}^{b} f(t)dt - (f(b) + f(a)) - \frac{(b-a)}{2} \left(f'(b) - f'(a) \right) \right| \le \frac{2(b-a)^2}{3} \left\| f'' \right\|_{\infty}, \tag{2.11}$$

dividing both sides of (2.11) by 2, we obtain the desired result in (2.7), which completes the proof.

Corollary 2.3. Let $f \in C^2[a,b]$ such that the second derivative is bounded on [a,b], then the following inequality holds

$$\left| \frac{1}{b-a} \int_{a}^{b} f(t)dt - \frac{1}{2} \left(f(b) + f(a) \right) \right| \le \frac{7(b-a)^{2}}{12} \left\| f'' \right\|_{\infty}. \tag{2.12}$$

Proof. From Theorem 2.2, we have

$$-\frac{(b-a)^2}{3} \|f''\|_{\infty} \leq \frac{1}{b-a} \int_a^b f(t)dt - \frac{1}{2} (f(b) + f(a)) - (b-a) \frac{f'(b) - f'(a)}{4}$$

$$\leq \frac{(b-a)^2}{3} \|f''\|_{\infty} , \qquad (2.13)$$

the above double inequality gives

$$(b-a)\frac{f'(b)-f'(a)}{4} - \frac{(b-a)^2}{3} \|f''\|_{\infty} \le \frac{1}{b-a} \int_{a}^{b} f(t)dt - \frac{1}{2} (f(b)+f(a))$$

$$\le \frac{(b-a)^2}{3} \|f''\|_{\infty} + (b-a)\frac{f'(b)-f'(a)}{4}. \tag{2.14}$$

From Lemma 1.3, we have

$$f'(b) - f'(a) = f''(\eta)(b-a)$$

where $\eta \in (a, b)$. Using the properties of modulus, the above equality becomes

$$|f'(b) - f'(a)| = |b - a| |f''(\eta)| \le (b - a) ||f''||_{\infty}.$$
 (2.15)

From (2.15), we get

$$-\frac{7(b-a)^{2}}{12} \|f''\|_{\infty} = -\left[\frac{(b-a)^{2}}{4} + \frac{(b-a)^{2}}{3}\right] \|f''\|_{\infty}$$

$$\leq (b-a)\frac{f'(b) - f'(a)}{4} - \frac{(b-a)^{2}}{3} \|f''\|_{\infty}$$
(2.16)

and

$$\frac{(b-a)^2}{3} \|f''\|_{\infty} + (b-a) \frac{f'(b) - f'(a)}{4} \le \left[\frac{(b-a)^2}{3} + \frac{(b-a)^2}{4} \right] \|f''\|_{\infty}
= \frac{7(b-a)^2}{12} \|f''\|_{\infty}.$$
(2.17)

Combining (2.14), (2.16) and (2.17), we obtain the desired inequality in (2.12). The proof is achieved. \Box

References

- [1] K. S. K. Iyengar, Note on an inequality, Math. Student, 6 (1938), 75-76. 1, 1
- [2] G. V. Milovanović, J. Pečarić, Some considerations on Iyengar's inequality and some related applications, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz., **544-576** (1976), 166–170. 1
- [3] D. S. Mitrinović, J. E. Pečarić, A. M. Fink, Inequalities Involving Functions and their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, 1991. 1.4