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Abstract

The purpose of this paper is three fold. Firstly, we establish a tripled coincidence fixed point theorem for a
sequence of mappings involving Geraghty contraction using compatibility and weakly reciprocally continuous
maps in the structure of partially ordered metric spaces. The technique used in A. Roldan et al. [9] and
in S. Radenovic [10] are not applicable on the presented theorems, we show that our results can not be
obtained from the existing results in this field of study and thus our results are completely new and give rise
a new dimension. Secondly, the notable works due to V. Berinde [3], V. Lakshmikantam and L. Ciric [8] and
Babu and Subhashini [1] are generalized and extended. Finally, some sufficient conditions are given for the
uniqueness of a tripled common fixed point. Consequently, we point out some slip-ups in the main results
of R. Vats et al.[12] and present a furnished version of the same. Some illustrative examples to highlight
the realized improvements are also furnished. Moreover, existence and uniqueness for the solution of an
initial-boundary-value problem is discussed. On the other hand, as an application to establish existence and
uniqueness for the system of integral equations our results are utilized. c⃝2017 All rights reserved.
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1. Introduction

In this section, some elementary definitions and fundamental results are discussed, which are essential
in our subsequent discussion.
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Definition 1.1 ([2]). An element (x, y) ∈ X×X is called a coupled fixed point of the mapping F : X×X →
X if

F (x, y) = x, F (y, x) = y.

Definition 1.2 ([8]). An element (x, y) ∈ X × X is called a coupled coincidence point of the mappings
F : X ×X → X and g : X → X if

F (x, y) = gx, F (y, x) = gy.

Definition 1.3 ([4]). Let (X,⪯) be a partially ordered set and F : X ×X ×X → X be a mapping. The
mapping F is said to have the mixed monotone property if F is monotone non decreasing in x and z and is
monotone non increasing in y, that is, for any x, y, z ∈ X,

x1, x2 ∈ X,x1 ⪯ x2 ⇒ F (x1, y, z) ⪯ F (x2, y, z),

y1, y2 ∈ X, y1 ⪯ y2 ⇒ F (x, y1, z) ⪰ F (x, y2, z)

and
z1, z2 ∈ X, z1 ⪯ z2 ⇒ F (x, y, z1) ⪯ F (x, y, z2).

Definition 1.4 ([5]). Let (X,⪯) be a partially ordered set and F : X × X × X → X and g : X → X
are two mappings. The mapping F is said to have the mixed g-monotone property if F is monotone g-non
decreasing in x and z and is monotone g-non increasing in y, that is, for any x, y, z ∈ X,

x1, x2 ∈ X, gx1 ⪯ gx2 ⇒ F (x1, y, z) ⪯ F (x2, y, z),

y1, y2 ∈ X, gy1 ⪯ gy2 ⇒ F (x, y1, z) ⪰ F (x, y2, z)

and
z1, z2 ∈ X, gz1 ⪯ gz2 ⇒ F (x, y, z1) ⪯ F (x, y, z2).

Definition 1.5 ([4]). An element (x, y, z) ∈ X × X × X is called a tripled fixed point of the mapping
F : X ×X ×X → X if

F (x, y, z) = x, F (y, x, y) = y and F (z, y, x) = z.

Definition 1.6. Let (X, d,⪯) be a partially ordered metric space. We say that X is regular if the following
conditions hold:

(i) if a non-decreasing sequence {xn} is such that xn → x, then xn ⪯ x for all n ≥ 0.

(ii) if a non-increasing sequence {yn} is such that yn → y, then y ⪯ yn for all n ≥ 0.

Definition 1.7 ([12]). Let (X, d) be a metric space. {Fi}i∈N and g are compatible if

lim
n→+∞

d
(
g
(
Fn(xn, yn, zn)

)
, Fn

(
gxn, gyn, gzn

))
= 0,

lim
n→+∞

d
(
g
(
Fn(yn, xn, yn)

)
, Fn

(
gyn, gxn, gyn

))
= 0

and
lim

n→+∞
d
(
g
(
Fn(zn, yn, xn)

)
, Fn

(
gzn, gyn, gxn

))
= 0,

whenever {xn}, {yn} and {zn} are sequences in X, such that

lim
n→+∞

Fn(xn, yn, zn) = lim
n→+∞

gxn+1 = x,

lim
n→+∞

Fn(yn, xn, yn) = lim
n→+∞

gyn+1 = y

and
lim

n→+∞
Fn(zn, yn, xn) = lim

n→+∞
gzn+1 = z,

for some x, y, z ∈ X.
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Definition 1.8 ([12]). {Fi}i∈N and g are called weakly reciprocally continuous if

lim
n→+∞

g
(
Fn(xn, yn, zn)

)
= gx or lim

n→+∞
Fn

(
gxn, gyn, gzn

))
= Fn(x, y, z),

lim
n→+∞

g
(
Fn(yn, xn, yn)

)
= gy or lim

n→+∞
Fn

(
gyn, gxn, gyn

))
= Fn(y, x, y)

and

lim
n→+∞

g
(
Fn(zn, yn, xn)

)
= gz or lim

n→+∞
Fn

(
gzn, gyn, gxn

))
= Fn(z, y, x),

whenever {xn}, {yn} and {zn} are sequences in X, such that

lim
n→+∞

Fn(xn, yn, zn) = lim
n→+∞

gxn+1 = x,

lim
n→+∞

Fn(yn, xn, yn) = lim
n→+∞

gyn+1 = y

and

lim
n→+∞

Fn(zn, yn, xn) = lim
n→+∞

gzn+1 = z,

for some x, y, z ∈ X.

Definition 1.9. Let Φ denote the class of all functions ϕ : [0,+∞) → [0,+∞) satisfying ϕ(t) < t for t > 0
and ϕ(t) = 0 if and only if t = 0.

Definition 1.10 ([6]). Let S denotes the class of the functions β : [0,+∞) → [0, 1) which satisfy the
condition β(tn) → 1 ⇒ tn → 0.

2. Main Result

Our essential result is given as follows.

Theorem 2.1. Let (X,⪯) be a complete partially ordered metric space. Let g be a self-mapping on X and
{Fi}i∈N be a sequence of mappings from X ×X ×Xinto X such that
Fi(x, y, z) ⪯ Fi+1(u, v, w), Fi+1(v, u, v) ⪯ Fi(y, x, y) and Fi(z, y, x) ⪯ Fi+1(w, v, u),
(where i = r− 1; r ∈ N) for x, y, z, u, v, w ∈ X with gx ⪯ gu, gv ⪯ gy and gz ⪯ gw, or gx ⪰ gu, gv ⪰ gy and
gz ⪰ gw. Suppose that the following hold:

(i) g is continuous;

(ii) Fi(X ×X ×X) ⊆ g(X);

(iii) {Fi}i∈N and g are compatible and weakly reciprocally continuous;

(iv) there exists (x0, y0, z0) ∈ X × X × X such that gx0 ⪯ F0(x0, y0, z0), gy0 ⪰ F0(y0, x0, y0) and gz0 ⪯
F0(z0, y0, x0);

(v) there exist ϕ, ψ ∈ Φ, β ∈ S and L ≥ 0 such that

d
(
Fi(x, y, z), Fj(u, v, w)

)
≤ β

(
Mi,j(x, y, z, u, v, w)

)
ϕ
(
Mi,j(x, y, z, u, v, w)

)
+Lψ

(
Ni,j(x, y, z, u, v, w)

)
,

(2.1)
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where

Mi,j(x, y, z, u, v, w) =max
{d(gx, gu) + d(gy, gv) + d(gz, gw)

3
,

d(Fi(x, y, z), Fj(u, v, w)) + d(Fi(y, x, y), Fj(v, u, v)) + d(Fi(z, y, x), Fj(w, v, u))

3
,

d(gu, Fj(u, v, w)) + d(gv, Fj(v, u, v)) + d(gw, Fj(w, v, u))

3

}
,

and

Ni,j(x, y, z, u, v, w) = min
{
d(gx, Fi(x, y, z)), d(gx, Fj(u, v, w)), d(gu, Fi(x, y, z)), d(gu, Fj(u, v, w))

}
,

where i = r − 1, j = s− 1; r, s ∈ N.

(vi) (a) Fi is continuous for each i or (b) X is regular.
Then {Fi}i∈N and g have tripled coincidence point. That is, there exists (x, y, z) ∈ X × X × X such that
gx = Fi(x, y, z), gy = Fi(y, x, y) and gz = Fi(z, y, x) for some i ∈ N.

Proof. Let x0, y0, z0 ∈ X such that gx0 ⪯ F0(x0, y0, z0), gy0 ⪰ F0(y0, x0, y0) and gz0 ⪯ F0(z0, y0, x0). Since
it is given that, F0(X ×X ×X) ⊆ g(X), we can choose x1, y1, z1 ∈ X such that gx1 = F0(x0, y0, z0), gy1 =
F0(y0, x0, y0) and gz1 = F0(z0, y0, x0). Again, we can choose x2, y2, z2 ∈ X such that gx2 = F1(x1, y1, z1), gy2 =
F1(y2, x2, y2) and gz2 = F1(z1, y1, x1). Continuing this process, we can construct three sequences {xn}, {yn}
and {zn} in X such that

gxn+1 = Fn(xn, yn, zn), gyn+1 = Fn(yn, xn, yn) and gzn+1 = Fn(zn, yn, xn) for all n ≥ 0. (2.2)

If for some n0 ∈ N, we have gxn0 = Fn0(xn0 , yn0 , zn0), gyn0 = Fn0(yn0 , xn0 , yn0) and gzn0 = Fn0(zn0 , yn0 , xn0)
then {Fi}i∈N and g have a tripled coincidence point. Therefore, in what follows, we suppose that for each
n ≥ 0, gxn+1 = Fn(xn, yn, zn) ̸= gxn or gyn+1 = Fn(yn, xn, yn) ̸= gyn or gzn+1 = Fn(zn, yn, xn) ̸= gzn
holds.
Now, we shall show that

gxn ⪯ gxn+1, gyn ⪰ gyn+1 and gzn ⪯ gzn+1, (2.3)

for all n ≥ 0. For this purpose, we use the mathematical induction. By (iv) and in view of gx1 =
F0(x0, y0, z0), gy1 = F0(y0, x0, y0) and gz1 = F0(z0, y0, x0), we arrive at gx0 ⪯ gx1, gy0 ⪰ gy1 and gz0 ⪯ gz1,
thus (2.3) is true for n = 0. We presume that (2.3) is true for some n > 0. Now, utilizing inequality (2.2)
and (2.3), which yields that

gxn+1 = Fn(xn, yn, zn) ⪯ Fn+1(xn+1, yn+1, zn+1) = gxn+2,

gyn+2 = Fn+1(yn+1, xn+1, yn+1) ⪯ Fn(yn, xn, yn) = gyn+1

and

gzn+1 = Fn(zn, yn, xn) ⪯ Fn+1(zn+1, yn+1, xn+1) = gzn+2.

Hence, (2.3) holds for n+ 1. Proceeding by mathematical induction, (2.3) follows. Thus, we get

gx0 ⪯ gx1 ⪯ gx2 ⪯ . . . ⪯ gxn+1 ⪯ . . . ,

gy0 ⪰ gy1 ⪰ gy2 ⪰ . . . ⪰ gyn+1 ⪰ . . .

and

gz0 ⪯ gz1 ⪯ gz2 ⪯ . . . ⪯ gzn+1 ⪯ . . . .
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On using inequality (2.1) and (2.2), we acquire that

d(gx1, gx2) = d(F0(x0, y0, z0), F1(x1, y1, z1)) (2.4)

≤ β
(
M0,1(x0, y0, z0, x1, y1, z1)

)
ϕ
(
M0,1(x0, y0, z0, x1, y1, z1)

)
(2.5)

+ Lψ
(
N0,1(x0, y0, z0, x1, y1, z1)

)
, (2.6)

where

M0,1(x0, y0, z0, x1, y1, z1) =max
{d(gx0, gx1) + d(gy0, gy1) + d(gz0, gz1)

3
,

d(gx1, gx2) + d(gy1, gy2) + d(gz1, gz2)

3
,

d(gx1, gx2) + d(gy1, gy2) + d(gz1, gz2)

3

}
and

N0,1(x0, y0, z0, x1, y1, z1) = min
{
d(gx0, gx1), d(gx0, gx2), d(gx1, gx1), d(gx1, gx2)

}
= 0.

For simplicity, let us denote δn = d(gxn, gxn+1)+d(gyn, gyn+1)+d(gzn, gzn+1), with this substitution above
leads to following cases.
Case (i):

M0,1(x0, y0, z0, x1, y1, z1) = max
{δ0
3
,
δ1
3
,
δ1
3

}
=
δ1
3
.

With this valued and by the properties of β, ϕ and ψ functions, (2.4) turns into

d(gx1, gx2) ≤ β(
δ1
3
)ϕ(

δ1
3
) <

δ1
3
. (2.7)

Similarly,

d(gy1, gy2) <
δ1
3

(2.8)

and

d(gz1, gz2) <
δ1
3
. (2.9)

Adding (2.7), (2.8) and (2.9), we acquire that

d(gx1, gx2) + d(gy1, gy2) + d(gz1, gz2) = δ1 < δ1.

Leads to a contradiction. The similar conclusion holds for all n ≥ 0.
Case (ii):

M0,1(x0, y0, z0, x1, y1, z1) = max
{δ0
3
,
δ1
3
,
δ1
3

}
=
δ0
3
.

Which in turn yields

d(gx1, gx2) ≤ β(
δ0
3
)ϕ(

δ0
3
) <

δ0
3
.

Analogously, we derive

d(gx2, gx3) ≤ β(
δ1
3
)ϕ(

δ1
3
) <

δ1
3
.

Repeating the above procedure, we get

d(gxn, gxn+1) ≤ β(
δn−1

3
)ϕ(

δn−1

3
) <

δn−1

3
. (2.10)
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Using similar arguments as above, one can easily show that

d(gyn, gyn+1) ≤ β(
δn−1

3
)ϕ(

δn−1

3
) <

δn−1

3
(2.11)

and

d(gzn, gzn+1) ≤ β(
δn−1

3
)ϕ(

δn−1

3
) <

δn−1

3
. (2.12)

Adding (2.10), (2.11) and (2.12), which implies

d(gxn, gxn+1) + d(gyn, gyn+1) + d(gzn, gzn+1) = δn < δn−1.

It follows that the sequence {δn} is monotone decreasing sequence of non-negative real numbers. Hence,
there exists an δ ≥ 0 such that lim

n→∞
δn+1 = δ.We shall show that δ = 0. Assume to the contrary that δ > 0,

then from (2.10)-(2.12) and by the property of ϕ, we have

d(gxn, gxn+1) + d(gyn, gyn+1) + d(gzn, gzn+1) = δn ≤ 3β(
δn−1

3
)ϕ(

δn−1

3
).

So,

δn ≤ β(
δn−1

3
)δn−1.

Which on making n→ ∞, give rise δ ≤ lim
n→∞

β( δn−1

3 )δ < δ. Which yields lim
n→∞

β( δn−1

3 ) = 1.

Since, β ∈ S, therefore d(gxn, gxn+1) → 0, d(gyn, gyn+1) → 0 and d(gzn, gzn+1) → 0. Which gives a
contradiction, yielding thereby δ = 0, as n→ ∞, that is

lim
n→∞

δn = lim
n→∞

(d(gxn, gxn+1) + d(gyn, gyn+1) + d(gzn, gzn+1)) = 0. (2.13)

Next, we show that {gxn}, {gyn} and {gzn} are Cauchy sequences. On the contrary, suppose that at least
one of {gxn} or {gyn} or {gzn} is not a Cauchy sequence. Then there exists an ϵ > 0 for which we can search
sub-sequences of positive integers {m(k)} and {n(k)} such that for all positive integer k, n(k) > m(k) ≥ k
and let

δk = d(gxm(k), gxn(k)) + d(gym(k), gyn(k)) + d(gzm(k), gzn(k)) ≥ ϵ. (2.14)

Moreover, corresponding to m(k), we may choose n(k) in such a way that it is the smallest integer with
n(k) > m(k) and satisfying (2.14). Then

d(gxm(k), gxn(k)−1) + d(gym(k), gyn(k)−1) + d(gzm(k), gzn(k)−1) < ϵ. (2.15)

Due to triangle inequality and (2.15), it follows that

ϵ ≤ δk ≤ d(gxm(k), gxn(k)−1) + d(gym(k), gyn(k)−1) + d(gzm(k), gzn(k)−1) (2.16)

+ d(gxn(k)−1, gxn(k)) + d(gyn(k)−1, gyn(k)) + d(gzn(k)−1, gzn(k)) (2.17)

< ϵ+ d(gxn(k)−1, gxn(k)) + d(gyn(k)−1, gyn(k)) + d(gzn(k)−1, gzn(k)). (2.18)

Now, we prove that lim
k→∞

δk = ϵ. By taking the limit of supremum in (2.16) as k → ∞ and using (2.13), one

obtains ϵ ≤ lim
k→∞

sup δk ≤ ϵ, which get that

lim sup
k→∞

δk = ϵ. (2.19)

Again, on taking the inferior limit as k → ∞ in (2.16) and from (2.19), we arrive at
ϵ ≤ lim inf

k→∞
δk ≤ lim sup

k→∞
δk = ϵ, which gives

lim inf
k→∞

δk = ϵ. (2.20)
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Hence from (2.19) and (2.20), one deduce that lim inf
k→∞

δk exists and

lim inf
k→∞

δk = lim inf
k→∞

(d(gxm(k), gxn(k)) + d(gym(k), gyn(k)) + d(gzm(k), gzn(k))) = ϵ. (2.21)

Then from (2.20) and (2.21), lim
k→∞

δk exists and

lim
k→∞

δk = ϵ. (2.22)

Also, by the triangle inequality, we acquire

δk = d(gxm(k), gxn(k)) + d(gym(k), gyn(k)) + d(gzm(k), gzn(k)) (2.23)

≤ δm(k) + δn(k) + d(gxm(k)+1, gxn(k)+1) + d(gym(k)+1, gyn(k)+1) + d(gzm(k)+1, gzn(k)+1). (2.24)

As, n(k) > m(k) and gxm(k) ⪯ gxn(k), gym(k) ⪰ gyn(k) and gzm(k) ⪯ gzn(k). Thus, from inequality (2.1) and
(2.2), we have

d(gxm(k)+1, gxn(k)+1) + d(gym(k)+1, gyn(k)+1) + d(gzm(k)+1, gzn(k)+1)

= d(Fm(k)(xm(k), ym(k), zm(k)), Fn(k)(xn(k), yn(k), zn(k)))

+ d(Fm(k)(ym(k), xm(k), ym(k)), Fn(k)(yn(k), xn(k), yn(k)))

+ d(Fm(k)(zm(k), ym(k), xm(k)), Fn(k)(zn(k), yn(k), xn(k)))

≤ 3β
(
Mm(k),n(k)(xm(k), ym(k), zm(k), xn(k), yn(k), zn(k))

)
ϕ
(
Mm(k),n(k)(xm(k), ym(k), zm(k), xn(k), yn(k), zn(k))

)
+ 3Lψ

(
Nm(k),n(k)(xm(k), ym(k), zm(k), xn(k), yn(k), zn(k))

)
. (2.25)

Using the definition ofMi,j(x, y, z, u, v, w), Ni,j(x, y, z, u, v, w) and keeping the inequalities (2.13) and (2.22)
in mind, we get

lim
k→∞

Mm(k),n(k)(xm(k), ym(k), zm(k), xn(k), yn(k), zn(k)) = ϵ/3;

lim
k→∞

Nm(k),n(k)(xm(k), ym(k), zm(k), xn(k), yn(k), zn(k)) = 0.
(2.26)

Indeed

Mm(k),n(k)(xm(k), ym(k), zm(k), xn(k), yn(k), zn(k))

= max
{d(gxm(k), gxn(k)) + d(gym(k), gyn(k)) + d(gzm(k), gzn(k))

3
,

d(gxm(k)+1, gxn(k)+1) + d(gym(k)+1, gyn(k)+1) + d(gzm(k)+1, gzn(k)+1)

3
,

d(gxn(k), gxn(k)+1) + d(gyn(k), gyn(k)+1) + d(gzn(k), gzn(k)+1)

3

}
and

Nm(k),n(k)(xm(k), ym(k), zm(k), xn(k), yn(k), zn(k))

= min
{
d(gxm(k), gxm(k)+1), d(gxm(k), gxn(k)+1), d(gxn(k), gxm(k)+1), d(gxn(k), gxn(k)+1)

}
.

Therefore, it follows from (2.23) and (2.25) that

δk ≤ δm(k) + δn(k)

+ 3β
(
Mm(k),n(k)(xm(k), ym(k), zm(k), xn(k), yn(k), zn(k))

)
ϕ
(
Mm(k),n(k)(xm(k), ym(k), zm(k), xn(k), yn(k), zn(k))

)
+ 3Lψ

(
Nm(k),n(k)(xm(k), ym(k), zm(k), xn(k), yn(k), zn(k))

)
. (2.27)
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Letting the limit as k → ∞ in (2.27) and using inequality (2.26), we arrive at lim
k→∞

δk = ϵ ≤ lim
k→∞

β( δk3 )ϵ ≤ ϵ,

which deduce that lim
k→∞

β( δk3 ) = 1. Hence, we assert that δk → 0 as k → ∞, which is a contradiction to

(2.22). Thus, {gxn}, {gyn} and {gzn} are Cauchy sequences in X. Since, X is complete, then there exists
(x, y, z) ∈ X ×X ×X, such that

lim
n→+∞

gxn+1 = lim
n→+∞

Fn(xn, yn, zn) = x,

lim
n→+∞

gyn+1 = lim
n→+∞

Fn(yn, xn, yn) = y

and

lim
n→+∞

gzn+1 = lim
n→+∞

Fn(zn, yn, xn) = z.

Since, {Fi}i∈N and g are compatible, we acquire

lim
n→+∞

d
(
g
(
Fn(xn, yn, zn)

)
, Fn

(
gxn, gyn, gzn

))
= 0,

lim
n→+∞

d
(
g
(
Fn(yn, xn, yn)

)
, Fn

(
gyn, gxn, gyn

))
= 0

and

lim
n→+∞

d
(
g
(
Fn(zn, yn, xn)

)
, Fn

(
gzn, gyn, gxn

))
= 0. (2.28)

Since, {Fi}i∈N and g are weakly reciprocally continuous, we acquire

lim
n→+∞

g
(
Fn(xn, yn, zn)

)
= gx,

lim
n→+∞

g
(
Fn(yn, xn, yn)

)
= gy

and

lim
n→+∞

g
(
Fn(zn, yn, xn)

)
= gz.

It follows

lim
n→+∞

Fn

(
gxn, gyn, gzn

)
= gx, (2.29)

lim
n→+∞

Fn

(
gyn, gxn, gyn

)
= gy (2.30)

and

lim
n→+∞

Fn

(
gzn, gyn, gxn

)
= gz. (2.31)

Consider the two possibilities given in condition (vi).
(a) Assume that Fi is continuous. Due to inequality (2.1), we arrive at

d
(
Fi(x, y, z), Fn

(
gxn, gyn, gzn

))
≤ β

(
Mi,n(x, y, z, gxn, gyn, gzn)

)
ϕ
(
Mi,n(x, y, z, gxn, gyn, gzn)

)
+ Lψ

(
Ni,n(x, y, z, gxn, gyn, gzn)

)
,
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where

Mi,n(x, y, z, gxn, gyn, gzn) =max
{d(gx, g(gxn)) + d(gy, g(gyn)) + d(gz, g(gzn))

3
,

d(Fi(x, y, z), Fn(gxn, gyn, gzn)) + d(Fi(y, x, y), Fn(gyn, gxn, gyn)) + d(Fi(z, y, x), Fn(gzn, gyn, gxn))

3
,

d(g(gxn), g(gxn+1)) + d(g(gyn), g(gyn+1)) + d(g(gzn), g(gzn+1))

3

}
and

Ni,n(x, y, z, gxn, gyn, gzn) = min
{
d(gx, gxi+1), d(gx, gxn+1), d(g(gxn), gxi+1), d(g(gxn), g(gxn+1))

}
.

Passing to the limit as n→ ∞ and from (2.28), (2.29) and utilizing the continuity of Fi and g, one can
conclude that

d
(
Fi(x, y, z), gx

)
≤ lim

n→+∞
β
(
d
(
Fi(x, y, z), Fn

(
gxn, gyn, gzn

)))
d
(
Fi(x, y, z), gx

)
Which yields, d(Fi(x, y, z), gx) = 0, i.e., Fi(x, y, z) = gx, as β ∈ S. Using the same as mentioned above,

one can obtained Fi(y, x, y) = gy and Fi(z, y, x) = gz.

(b) Suppose that X is regular. As {gxn} and {gzn} are non-decreasing and {gyn} is non-increasing,
utilizing the regularity of X, we get gxn ⪯ x, y ⪯ gyn and gzn ⪯ z for all n ≥ 0.

Therefore, using inequality (2.1), we have

d
(
Fi(x, y, z), Fn

(
gxn, gyn, gzn

))
≤ β

(
Mi,n(x, y, z, gxn, gyn, gzn)

)
ϕ
(
Mi,n(x, y, z, gxn, gyn, gzn)

)
+ Lψ

(
Ni,n(x, y, z, gxn, gyn, gzn)

)
,

Letting the limit as n → ∞ in previous inequality and applying the same treatment as above, one can

easily arrive at d
(
Fi(x, y, z), gx

)
= 0, which gives Fi(x, y, z) = gx. Analogously, it can be derived that

Fi(y, x, y) = gy and Fi(z, y, x) = gz. This concludes the Theorem.

Remark 2.2. If we relax the conditions (i), (iii) and completeness of X in Theorem 2.1 by assuming g(X)
to be a complete subspace of X and X is regular then the conclusion of Theorem 2.1 remains true.
Proceeding exactly as in Theorem 2.1, {gxn}, {gyn} and {gzn} are cauchy sequences in g(X). Since, g(X)
is complete, then there exists (x, y, z) ∈ X ×X ×X, such that

lim
n→+∞

gxn = gx,

lim
n→+∞

gyn = gy

and
lim

n→+∞
gzn = gz.

As {gxn} and {gzn} are non-decreasing and {gyn} is non-increasing, utilizing the regularity of X, we
get gxn ⪯ gx, gy ⪯ gyn and gzn ⪯ gz for all n ≥ 0. Using (2.1) we obtain

d(Fi(x, y, z), gxn+1) = d(Fi(x, y, z), Fn(xn, yn, zn))

≤ β
(
Mi,n(x, y, z, xn, yn, zn)

)
ϕ
(
Mi,n(x, y, z, xn, yn, zn)

)
+ Lψ

(
Ni,n(x, y, z, xn, yn, zn)

)
,
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where

Mi,n(x, y, z, xn, yn, zn) =max
{d(gx, gxn) + d(gy, gyn) + d(gz, gzn)

3
,

d(Fi(x, y, z), Fn(xn, yn, zn)) + d(Fi(y, x, y), Fn(yn, xn, yn)) + d(Fi(z, y, x), Fn(zn, yn, xn))

3
,

d(gxn, gxn+1) + d(gyn, gyn+1) + d(gzn, gzn+1)

3

}
and

Ni,n(x, y, z, xn, yn, zn) = min
{
d(gx, gxi+1), d(gx, gxn+1), d(gxn, gxi+1), d(gxn, gxn+1)

}
.

Passing to the limit as n → ∞ in previous inequality and applying the same treatment as mentioned

above, we can easily observe that d
(
Fi(x, y, z), gx

)
= 0, which gives Fi(x, y, z) = gx. In a similar way,

Fi(y, x, y) = gy and Fi(z, y, x) = gz.

Remark 2.3. On replacing the weakly reciprocal continuity of {Fi}i∈N and g by assuming g to be non-
decreasing in Theorem 2.1, one can derive another version of our main results.

Remark 2.4. In Theorem 2.1, restrict F : X3 → X, L = 0 and β(t) = k, where k ∈ (0, 1), we obtain

d
(
F (x, y, z), F (u, v, w)

)
+ d

(
F (y, x, y), F (v, u, v)

)
+ d

(
F (z, y, x), F (w, v, u)

)
≤ 3kϕ

(
max

{d(gx, gu) + d(gy, gv) + d(gz, gw)

3
,

d(F (x, y, z), F (u, v, w)) + d(F (y, x, y), F (v, u, v)) + d(F (z, y, x), F (w, v, u))

3
,

d(gu, F (u, v, w)) + d(gv, F (v, u, v)) + d(gw, F (w, v, u))

3

})
,

≤ 3ϕ
(
max

{d(gx, gu) + d(gy, gv) + d(gz, gw)

3
,

d(F (x, y, z), F (u, v, w)) + d(F (y, x, y), F (v, u, v)) + d(F (z, y, x), F (w, v, u))

3
,

d(gu, F (u, v, w)) + d(gv, F (v, u, v)) + d(gw, F (w, v, u))

3

})
.

Thus, we get the another version of V. Berinde [3] for tripled coincidence points.

Remark 2.5. By restricting F : X3 → X, L = 0 and β(t) = k, where k ∈ (0, 1), one can easily get

d
(
F (x, y, z), F (u, v, w)

)
≤ ϕ

(
max

{d(gx, gu) + d(gy, gv) + d(gz, gw)

3
,

d(F (x, y, z), F (u, v, w)) + d(F (y, x, y), F (v, u, v)) + d(F (z, y, x), F (w, v, u))

3
,

d(gu, F (u, v, w)) + d(gv, F (v, u, v)) + d(gw, F (w, v, u))

3

})
.

Thus, our results extend the coupled coincidence point theorems contained in V. Lakshmikantam and L.
Ciric [8] for tripled coincidence points.

Remark 2.6. Restricting F : X3 → X, L = 0 Theorem 2.1 can be viewed as a generalization of Theorem
2.1 of Babu and Subhashini [1] for tripled fixed points, so it extends and generalizes the related result of
Babu et al. [1], but we omit the details due to repetition.

Remark 2.7. The following observation are worth noting in the perspective of Theorem 2.1 in [12].
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(i) The non-decreasing requirement of g is superfluous. Notice that, in the context of Theorem 2.1[12],
authors used the sequence of mappings {Ti}i∈N and in the statement and in the proof of the Theorem
2.1[12], they used T0(x0, y0, z0), which is unsound as for this to hold one needs to supplant i = r− 1; r ∈ N;
(ii) In Example 2.3 author observed that (1,1,1) is also a tripled coincidence point of g and Ti, where gx = x
and Ti(x, y, z) =

x+y+z
3i ; i ∈ N, which is invalid for i > 1;

(iii) In Theorem 2.1[12], authors used regularity of g(X). On using this authors reported that gxn ⪯ x,
gyn ⪰ y and gzn ⪯ z for all n ≥ 0.Which is worthless, one needs to replace regularity of g(X) by regularity
of X, so that the given proof can work. Also, in Theorem 2.1[12], authors used compatibility and weakly
reciprocal continuity together with completeness of g(X). Notice that there is no necessity of compatibility
and weakly reciprocal continuity of g and {Ti}i∈N in Theorem 2.1[12], if g(X) is complete subset of X and
these properties are used only when X is complete. The proof can be completed on the lines of the proof of
Theorem 2.1 and Remark 3.1.

Now, we present the example which demonstrate the validity of the hypotheses and degree of generality
of our main result.

Example 2.8. Let X = [−1, 1] with the usual metric and order. Then (X, d,⪯) be a partially ordered
metric space. Consider the mappings g : X → X and Fi : X ×X ×X → X defined by
gx = x and Fi =

x−y+z
3i ; i ∈ N such that x+ z < y.

Note that Fi(x, y, z) ⊆ gx, g(X) is complete subset of X, g is monotonic non-decreasing, continuous, as well
as
Fi(x, y, z) ⪯ Fi+1(u, v, w), Fi+1(v, u, v) ⪯ Fi(y, x, y) and Fi(z, y, x) ⪯ Fi+1(w, v, u)
for x < u, y > v and z < w. Also, one can easily verify that {Fi}i∈N and g are compatible and weakly
reciprocally continuous. Take ϕ, ψ : [0,+∞) → [0,+∞) be given by ϕ(t) = 3t

4 and ψ(t) = t
2 . And

β : [0,+∞) → [0, 1) be given by

β(t) =

{
2

2+t if t > 0;

0 if t = 0.
Then by a routine calculation, it can be easily verified that Fi and g satisfy condition (2.33) for L ≥ 6,

when β(t) > 0 with x ̸= y ̸= z and u ̸= v ̸= w. Also, L ≥ 10, when β(t) = 0, with x ̸= y ̸= z and
u ̸= v ̸= w. Thus, all the hypotheses of Theorem 2.1 are satisfied and (0,0,0) is the tripled coincidence
points of Fi and g.

Theorem 2.9. In addition to the hypotheses of Theorem 2.1 assume that the set of coincidence points is
comparable with respect to g, then {Fi}i∈N and g have a unique tripled common fixed point, that is, there
exists (x, y, z) ∈ X ×X ×X such that x = gx = Fi(x, y, z), y = gy = Fi(y, x, y) and z = gz = Fi(z, y, x)
for some i ∈ N.

Proof. Theorem 2.1 implies that the set of tripled coincidence points is non-empty. Now, we prove that if
(x, y, z) and (r, s, t) are tripled coincidence points, that is, if Fi(x, y, z) = gx, Fi(y, x, y) = gy, Fi(z, y, x) =
gz, Fi(r, s, t) = gr, Fi(s, r, s) = gs and Fi(t, s, r) = gt, then we will show that

gx = gr, gy = gs and gz = gt. (2.32)

On the contrary, assume that at least one of them is not equal, that is, d(gx, gr) ̸= 0 or d(gy, gs) ̸= 0 or
d(gz, gt) ̸= 0. Since, the set of coincidence points is comparable, applying inequality (2.1) to these points,
we acquire

d(gx, gr) + d(gy, gs) + d(gz, gt)

= d(Fi(x, y, z), Fi(r, s, t)) + d(Fi(y, x, y), Fi(s, r, s)) + d(Fi(z, y, x), Fi(t, s, r))

≤ 3β
(
Mi,j(x, y, z, r, s, t)

)
ϕ
(
Mi,j(x, y, z, r, s, t)

)
+ 3Lψ

(
Ni,j(x, y, z, r, s, t)

)
,
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where

Mi,j(x, y, z, r, s, t) = max
{d(gx, gr) + d(gy, gs) + d(gz, gt)

3
,

d(gx, gr) + d(gy, gs) + d(gz, gt)

3
,

d(gx, gr) + d(gy, gs) + d(gz, gt)

3

}
,

and

Ni,j(x, y, z, r, s, t) = min
{
d(gx, gx), d(gx, gu), d(gu, gx), d(gu, gu)

}
.

Which deduce that

d(gx, gr) + d(gy, gs) + d(gz, gt)

≤ 3β
(d(gx, gr) + d(gy, gs) + d(gz, gt)

3

)
ϕ
(d(gx, gr) + d(gy, gs) + d(gz, gt)

3

)
< β

(d(gx, gr) + d(gy, gs) + d(gz, gt)

3

)
(d(gx, gr) + d(gy, gs) + d(gz, gt))

< d(gx, gr) + d(gy, gs) + d(gz, gt),

which is a contradiction. So that (2.32) holds, and we have gx = gr, gy = gs and gz = gt. Thus, {Fi}i∈N
and g have a unique tripled point of coincidence. As two compatible mappings are also weakly compatible,
so they commute at their coincidence points. Hence, we conclude that, {Fi}i∈N and g have a unique tripled
common fixed point, whenever {Fi}i∈N and g are weakly compatible.

The following example illustrate Theorem 2.9.

Example 2.10. In the setting of Example 2.8 replace the mappings ϕ, ψ : [0,+∞) → [0,+∞), β : [0,+∞) →
[0, 1) and L by the followings besides retaining the rest:

ϕ(t) = t
2 ; ψ(t) = 2t

3 ; β(t) =

{
2e−2t

2+t if t > 0;

0 if t = 0.
and L ≥ 6.

By repeating the discussion above, one can easily observe that inequality (2.33) with x ̸= y ̸= z and
u ̸= v ̸= w, is satisfied. Hence, all the conditions of Theorem 2.9 are fulfilled, also (0,0,0) remains tripled
common fixed point under Fi and g and is indeed unique.

In Theorem 2.1, if we restrict F : X ×X ×X → X, g = I, ϕ(t) = t and L = 0, we deduce the following
corollary.

Corollary 2.11. Let (X,⪯) be a complete partially ordered metric space. Let F be a mapping from X ×
X ×Xinto X such that
F (x, y, z) ⪯ F (u, v, w), F (v, u, v) ⪯ F (y, x, y) and F (z, y, x) ⪯ F (w, v, u), for x, y, z, u, v, w ∈ X with
x ⪯ u, v ⪯ y and z ⪯ w, or x ⪰ u, v ⪰ y and z ⪰ w. Suppose that the following hold:

(i) there exists (x0, y0, z0) ∈ X × X × X such that x0 ⪯ F0(x0, y0, z0), y0 ⪰ F0(y0, x0, y0) and z0 ⪯
F0(z0, y0, x0);

(ii) there exist β ∈ S such that

d
(
F (x, y, z), F (u, v, w)

)
≤ β

(
M(x, y, z, u, v, w)

)
.M(x, y, z, u, v, w), (2.33)
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where

M(x, y, z, u, v, w) =max
{d(x, u) + d(y, v) + d(z, w)

3
,

d(F (x, y, z), F (u, v, w)) + d(F (y, x, y), F (v, u, v)) + d(F (z, y, x), F (w, v, u))

3
,

d(u, F (u, v, w)) + d(v, F (v, u, v)) + d(w,F (w, v, u))

3

}
,

(iii) (a) F is continuous or (b) X is regular.
Then F has tripled fixed point. That is, there exists (x, y, z) ∈ X ×X ×X such that
x = F (x, y, z), y = F (y, x, y) and z = F (z, y, x) .

Corollary 2.12. In addition to the hypotheses of Corollary 2.11, suppose that the elements in the set of
tripled fixed points are comparable. Then F has a unique tripled fixed point.

3. Applications

3.1. Application to ordinary differential equation

In this section we present an application to ordinary differential equation and this is inspired by [[7],
[11]]. Consider the following system of initial-value problems:{

ut(x, t) = uxx + f(x, t, u, ux) + g(x, t, v, vx) + h(x, t, w,wx), −∞ < x <∞, 0 < t ≤ T,

u(x, 0) = φ(x) −∞ < x <∞,
(3.1)

{
vt(x, t) = vxx + f(x, t, v, vx) + g(x, t, u, ux) + h(x, t, v, vx), −∞ < x <∞, 0 < t ≤ T,

v(x, 0) = φ(x) −∞ < x <∞,
(3.2)

{
wt(x, t) = wxx + f(x, t, w,wx) + g(x, t, v, vx) + h(x, t, u, ux), −∞ < x <∞, 0 < t ≤ T,

w(x, 0) = φ(x) −∞ < x <∞,
(3.3)

where φ is a continuously differentiable function and that φ and φ
′
are bounded and f , g and h are continuous

functions. Consider the space

Ω = {r(x, t) : r, rx ∈ C(R× I), and ||r|| <∞},

where I = [0, T ] and

||r|| = sup
x∈R,t∈I

|r(x, t)|+ sup
x∈R,t∈I

|rx(x, t)|.

Obviously, this space with the metric given by

d(u, v) = sup
x∈R,t∈I

|u(x, t)− v(x, t)|+ sup
x∈R,t∈I

|ux(x, t)− vx(x, t)|,

is a complete metric space. The metric space Ω can also equipped with a partial order given by

u, v ∈ Ω, u ≤ v ⇐⇒ u(x, t) ≤ v(x, t), ux(x, t) ≤ vx(x, t), x ∈ R, t ∈ I.
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Definition 3.1. An element (u, v, w) ∈ Ω× Ω× Ω is called a tripled lower-upper-lower solution of (3.3) if{
ut(x, t) ≤ uxx + f(x, t, u, ux) + g(x, t, v, vx) + h(x, t, w,wx), −∞ < x <∞, 0 < t ≤ T,

u(x, 0) ≤ φ(x) −∞ < x <∞,

{
vt(x, t) ≥ vxx + f(x, t, v, vx) + g(x, t, u, ux) + h(x, t, v, vx), −∞ < x <∞, 0 < t ≤ T,

v(x, 0) ≥ φ(x) −∞ < x <∞,

and {
wt(x, t) ≤ wxx + f(x, t, w,wx) + g(x, t, v, vx) + h(x, t, u, ux), −∞ < x <∞, 0 < t ≤ T,

w(x, 0) ≤ φ(x) −∞ < x <∞.

Definition 3.2. Let Ψ denote the class of those functions ψ : [0,∞) → [0.∞) which satisfies the following
conditions:

(i) ψ is continuous, sub-additive and non-decreasing;

(ii) for each t > 0, ψ(t) < t;

(iii) β(t) = ψ(t)
t ∈ S;

(iv) ψ is positive in (0,∞) with ψ(0) = 0.

For example, ψ(x) = x
x+1 and ψ(x) = ln(x+ 1) are in Ψ.

Theorem 3.3. Consider the problem (3.3) with f, g, h : R × I × R × R → R continuous and suppose that
the following conditions are satisfied:

(i) for any c > 0 with |α| < c and |γ| < c the function f(x, t, α, γ), g(x, t, α, γ) and h(x, t, α, γ) are uniformly
Holder continuous in x and t for each compact subset of R× I;

(ii) for all (α1, γ1), (α2, γ2) ∈ R×R with α1 ≤ α2 and γ1 ≤ γ2, there exist ψ ∈ Ψ and three positive constants
cf , cg and ch such that

0 ≤ f(x, t, α2, γ2)− f(x, t, α1, γ1) ≤ cf ψ
(α2 − α1 + γ2 − γ1

3

)
,

0 ≤ g(x, t, α1, γ1)− g(x, t, α2, γ2) ≤ cg ψ
(α2 − α1 + γ2 − γ1

3

)
,

and

0 ≤ h(x, t, α2, γ2)− h(x, t, α1, γ1) ≤ ch ψ
(α2 − α1 + γ2 − γ1

3

)
;

(iii) f, g and h are bounded for bounded α and γ;

(iv) cf , cg, ch ≤ 1
3(T + 2π

−1
2 T

1
2 )−1.

Then the existence of tripled lower-upper-lower solution for the initial value problem (3.3) provides the
existence of the unique solution of the problem (3.3).

Proof. The problem (3.3) is equivalent to the following integral equations

u(x, t) =

∫ ∞

−∞
k(x− α, t)φ(α)dα+

∫ t

0

∫ ∞

−∞
k(x− α, t− λ)

[
f(α, λ, u(α, λ), ux(α, λ))

+ g(α, λ, v(α, λ), vx(α, λ)) + h(α, λ,w(α, λ), wx(α, λ))
]
dα dλ
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v(x, t) =

∫ ∞

−∞
k(x− α, t)φ(α)dα+

∫ t

0

∫ ∞

−∞
k(x− α, t− λ)

[
f(α, λ, v(α, λ), vx(α, λ))

+ g(α, λ, u(α, λ), ux(α, λ)) + h(α, λ, v(α, λ), vx(α, λ))
]
dα dλ

w(x, t) =

∫ ∞

−∞
k(x− α, t)φ(α)dα+

∫ t

0

∫ ∞

−∞
k(x− α, t− λ)

[
f(α, λ,w(α, λ), wx(α, λ))

+ g(α, λ, v(α, λ), vx(α, λ)) + h(α, λ, u(α, λ), ux(α, λ))
]
dα dλ

(3.4)

for all x ∈ R, 0 < t ≤ T. Where

k(x, t) =
1√
4πt

exp
{−x2

4t

}
for all x ∈ R and t > 0. The initial value problem (3.3) possesses a unique solution if and only if the equation
(3.4) possesses a unique solution (u, v, w) such that u, v, w and ux, vx, wx are continuous and bounded for
all x ∈ R, 0 < t ≤ T . In our subsequent discussion we need following integral due to [7].

(i)
∫ t
0

∫∞
−∞ k(x− α, t− λ)dαdλ ≤ T ;

(ii)
∫ t
0

∫∞
−∞ | δkδx(x− α, t− λ)|dαdλ ≤ 2π

−1
2 T

1
2 .

Let the mapping F : Ω× Ω× Ω → Ω is defined by

F (u, v, w)(x, t) =

∫ ∞

−∞
k(x− α, t)φ(α)dα+

∫ t

0

∫ ∞

−∞
k(x− α, t− λ)

[
f(α, λ, u(α, λ), ux(α, λ))

+ g(α, λ, v(α, λ), vx(α, λ)) + h(α, λ,w(α, λ), wx(α, λ))
]
dα dλ

(3.5)

for all x ∈ R and t ∈ I. It is easy to note that, if (u, v, w) ∈ Ω×Ω×Ω is a fixed point of F then (u, v, w) is
a solution of the problem (3.3).
We show that all the conditions of the Corollary 2.11 and 2.12 are satisfied. From the condition (ii) of
Theorem 3.3, one can easily prove that F has the mixed monotone property.
From (3.5), for u1, v1, w1, u2, v2, w2 ∈ Ω with u1 ≥ u2, v1 ≤ v2 and w1 ≥ w2, we have

F (u1, v1, w1)(x, t)− F (u2, v2, w2)(x, t)

=

∫ t

0

∫ ∞

−∞
k(x− α, t− λ)

[
f(α, λ, u1(α, λ), (u1)x(α, λ))− f(α, λ, u2(α, λ), (u2)x(α, λ))

+ g(α, λ, v1(α, λ), (v1)x(α, λ))− g(α, λ, v2(α, λ), (v2)x(α, λ)) (3.6)

+ h(α, λ,w1(α, λ), (w1)x(α, λ))− h(α, λ,w2(α, λ), (w2)x(α, λ))
]
dα dλ

≤
∫ t

0

∫ ∞

−∞
k(x− α, t− λ)

[
cf ψ

(u1(α, λ)− u2(α, λ) + (u1)x(α, λ)− (u2)x(α, λ)

3

)
+ cg ψ

(v2(α, λ)− v1(α, λ) + (v2)x(α, λ)− (v1)x(α, λ)

3

)
+ ch ψ

(w1(α, λ)− w2(α, λ) + (w1)x(α, λ)− (w2)x(α, λ)

3

)]
dα dλ.
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Since the function ψ is non-decreasing, therefore we get

ψ
(u1(α, λ)− u2(α, λ) + (u1)x(α, λ)− (u2)x(α, λ)

3

)
≤ ψ

(supα∈R,λ∈I |u1(α, λ)− u2(α, λ)|+ supα∈R,λ∈I |(u1)x(α, λ)− (u2)x(α, λ)|
3

)
≤ ψ

(d(u1, u2)
3

)
.

Similarly

ψ
(v2(α, λ)− v1(α, λ) + (v2)x(α, λ)− (v1)x(α, λ)

3

)
≤ ψ

(supα∈R,λ∈I |v1(α, λ)− v2(α, λ)|+ supα∈R,λ∈I |(v1)x(α, λ)− (v2)x(α, λ)|
3

)
≤ ψ

(d(v1, v2)
3

)
and

ψ
(w1(α, λ)− w2(α, λ) + (w1)x(α, λ)− (w2)x(α, λ)

3

)
≤ ψ

(supα∈R,λ∈I |w1(α, λ)− w2(α, λ)|+ supα∈R,λ∈I |(w1)x(α, λ)− (w2)x(α, λ)|
3

)
≤ ψ

(d(w1, w2)

3

)
.

Thus from inequality (3.6), we arrive at

sup
x∈R,t∈I

|F (u1, v1, w1)(x, t)− F (u2, v2, w2)(x, t)|

≤
∫ t

0

∫ ∞

−∞
k(x− α, t− λ)

[
cf ψ

(d(u1, u2)
3

)
+ cg ψ

(d(v1, v2)
3

)
+ ch ψ

(d(w1, w2)

3

)]
dα dλ

≤ T
[
cf ψ

(d(u1, u2)
3

)
+ cg ψ

(d(v1, v2)
3

)
+ ch ψ

(d(w1, w2)

3

)]
.

(3.7)

Moreover, from the above inequality, we acquire

sup
x∈R,t∈I

|δF (u1, v1, w1)

δx
(x, t)− δF (u2, v2, w2)

δx
(x, t)|

≤
∫ t

0

∫ ∞

−∞
|δk
δx

(x− α, t− λ)|
[
cf ψ

(d(u1, u2)
3

)
+ cg ψ

(d(v1, v2)
3

)
+ ch ψ

(d(w1, w2)

3

)]
dα dλ

≤ 2π
−1
2 T

1
2

[
cf ψ

(d(u1, u2)
3

)
+ cg ψ

(d(v1, v2)
3

)
+ ch ψ

(d(w1, w2)

3

)]
.

(3.8)

By adding (3.7) and (3.8) and utilizing the condition (iv) of Theorem 3.3, we have

d(F (u1, v1, w1), F (u2, v2, w2)) ≤ (T + 2π
−1
2 T

1
2 )
[
cf ψ

(d(u1, u2)
3

)
+ cg ψ

(d(v1, v2)
3

)
+ ch ψ

(d(w1, w2)

3

)]
≤ 1

3

[
ψ
(d(u1, u2)

3

)
+ ψ

(d(v1, v2)
3

)
+ ψ

(d(w1, w2)

3

)]
.

(3.9)

As ψ is non-decreasing, which yields

ψ
(d(u1, u2)

3

)
+ ψ

(d(v1, v2)
3

)
+ ψ

(d(w1, w2)

3

)
≤ 3ψ

(d(u1, u2) + d(v1, v2) + d(w1, w2)

3

)
.
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Hence, from (3.9), we obtain

d(F (u1, v1, w1), F (u2, v2, w2)) ≤ ψ
(d(u1, u2) + d(v1, v2) + d(w1, w2)

3

)
≤ ψ

(
M(u1, v1, w1, u2, v2, w2)

)
=
ψ
(
M(u1, v1, w1, u2, v2, w2)

)
M(u1, v1, w1, u2, v2, w2)

.M(u1, v1, w1, u2, v2, w2)

= β
(
M(u1, v1, w1, u2, v2, w2)

)
.M(u1, v1, w1, u2, v2, w2)

Finally, Let (u, v, w) ∈ Ω× Ω× Ω be a tripled lower-upper-lower solution of (3.3) then we have

u(x, t) ≤ F (u(x, t), v(x, t), w(x, t)),

v(x, t) ≥ F (v(x, t), u(x, t), v(x, t)),

w(x, t) ≤ F (w(x, t), v(x, t), u(x, t)),

for all x ∈ R and t ∈ (0, T ]. Therefore from Corollary 2.11 and 2.12, F has unique tripled fixed point.

3.2. Application to system of integral equations

Consider the following system of integral equations:

u(t) = p(t) +

∫ T

0
λ(t, s)[f(s, u(s)) + g(s, v(s)) + h(s, w(s))]ds,

v(t) = p(t) +

∫ T

0
λ(t, s)[f(s, v(s)) + g(s, u(s)) + h(s, v(s))]ds,

w(t) = p(t) +

∫ T

0
λ(t, s)[f(s, w(s)) + g(s, v(s)) + h(s, u(s))]ds.

(3.10)

We consider the space X = C([0, T ],R) of continuous functions defined on [0, T ]. Obviously, the space with
the metric given by

d(u, v) = sup
t∈[0,T ]

|u(t)− v(t)|, u, v ∈ C([0, T ],R),

is a complete metric space. Consider on X = C([0, T ],R) the natural partial order relation, that is,

u, v ∈ C([0, T ],R), u ≤ v ⇐⇒ u(t) ≤ v(t), t ∈ [0, T ].

Theorem 3.4. Consider the problem (3.10) and assume that the following conditions are satisfied:

(i) f, g, h : [0, T ]× R → R are continuous;

(ii) p : [0, T ] → R is continuous;

(iii) λ : [0, T ]× R → [0,∞) is continuous;

(iv) There exists c > 0 and ψ ∈ Ψ such that for all u, v ∈ R, v ≥ u,

0 ≤ f(s, v)− f(s, u) ≤ c

3
ψ(
v − u

3
),

0 ≤ g(s, u)− g(s, v) ≤ c

3
ψ(
v − u

3
),

0 ≤ h(s, v)− h(s, u) ≤ c

3
ψ(
v − u

3
);
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(v) Assume that

c sup
t∈[0,T ]

∫ T

0
λ(t, s)ds ≤ 1;

(vi) A pair (α, η, γ) ∈ X3 with (X = C([0, T ],R)) is called a lower-upper-lower solution of (3.10), if

α(t) ≤ p(t) +

∫ T

0
λ(t, s)[f(s, u(s)) + g(s, v(s)) + h(s, w(s))]ds,

η(t) ≥ p(t) +

∫ T

0
λ(t, s)[f(s, v(s)) + g(s, u(s)) + h(s, v(s))]ds,

γ(t) ≤ p(t) +

∫ T

0
λ(t, s)[f(s, w(s)) + g(s, v(s)) + h(s, u(s))]ds.

Then the system of integral equation (3.10) has a unique solution in X3 with (X = C([0, T ],R)).

Proof. Consider the mapping F : X ×X ×X → X defined by

F (u, v, w)(t) = p(t) +

∫ T

0
λ(t, s)[f(s, u(s)) + g(s, v(s)) + h(s, w(s))]ds,

for all u, v, w ∈ X and t ∈ [0, T ]. We prove that all the conditions of Corollary 2.11 and 2.12 are satisfied.
By the condition (iv) of the Theorem 3.4, it is not difficult to show that F has mixed monotone property.
Now, for u1, v1, w1, u2, v2, w2 ∈ X with u1 ≥ u2, v1 ≤ v2 and w1 ≥ w2, we obtain

F (u1, v1, w1)(t)− F (u2, v2, w2)(t)

=

∫ T

0
λ(t, s)

[
f(s, u1(s))− f(s, u2(s))

]
ds+

∫ T

0
λ(t, s)

[
g(s, v1(s))− g(s, v2(s))

]
ds

+

∫ T

0
λ(t, s)

[
h(s, w1(s))− h(s, w2(s))

]
ds

≤ c

3

[
ψ
(u1(s)− u2(s)

3

)
+ ψ

(v2(s)− v1(s)

3

)
+ ψ

(w1(s)− w2(s)

3

)] ∫ T

0
λ(t, s)ds.

As ψ is non-decreasing function, we have

ψ
(u1(s)− u2(s)

3

)
≤ ψ

(sups∈[0,T ] |u1(s)− u2(s)|
3

)
= ψ

(d(u1, u2)
3

)
.

Similarly,

ψ
(v2(s)− v1(s)

3

)
≤ ψ

(d(v1, v2)
3

)
and

ψ
(w1(s)− w2(s)

3

)
≤ ψ

(d(w1, w2)

3

)
.

Hence, from the above inequality, we arrive at

sup
t∈[0,T ]

|F (u1, v1, w1)(t)− F (u2, v2, w2)(t)|

≤ 1

3

[
ψ
(d(u1, u2)

3

)
+ ψ

(d(v1, v2)
3

)
+ ψ

(d(w1, w2)

3

)]
sup
t∈[0,T ]

c

∫ T

0
λ(t, s)ds.
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Which yields

d(F (u1, v1, w1)(t)− F (u2, v2, w2)(t)) ≤
1

3

[
ψ
(d(u1, u2)

3

)
+ ψ

(d(v1, v2)
3

)
+ ψ

(d(w1, w2)

3

)]
. (3.11)

Since, ψ is a non-decreasing function, we get

ψ
(d(u1, u2)

3

)
+ ψ

(d(v1, v2)
3

)
+ ψ

(d(w1, w2)

3

)
≤ 3ψ

(d(u1, u2) + d(v1, v2) + d(w1, w2)

3

)
.

So by (3.11), we have

d(F (u1, v1, w1)(t)− F (u2, v2, w2)(t)) ≤ ψ
(d(u1, u2) + d(v1, v2) + d(w1, w2)

3

)
≤ ψ

(
M(u1, v1, w1, u2, v2, w2)

)
=
ψ
(
M(u1, v1, w1, u2, v2, w2)

)
M(u1, v1, w1, u2, v2, w2)

.M(u1, v1, w1, u2, v2, w2)

= β
(
M(u1, v1, w1, u2, v2, w2)

)
.M(u1, v1, w1, u2, v2, w2).

This show that the contractive condition in Corollary 2.11 is satisfied.
Let (α, η, γ) ∈ X3 be a tripled lower-upper-lower solution of problem (3.10) appearing in condition (vi) of
Theorem 3.4 then we have

α ≤ F (α, η, γ), η ≥ F (η, α, η) and γ ≤ F(γ, η, α).

Therefore from Corollary 2.11 and 2.12, F has a unique tripled point in X, that is, the system of integral
equations has a unique solution.
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