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Abstract

In this article, we study a coupled systems of generalized Chandrasekhar quadratic integral equations,
which is widely applicable in various disciplines of science and technology. By using contraction mapping
principle and successive approximation, we develop sufficient conditions for existence and uniqueness of
solution. Also, an example is provided to illustrate our main results. c⃝2017 All rights reserved.
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1. Introduction

In this article, we develop sufficient conditions for existence and uniqueness of solution to the following
coupled system of quadratic integral equations of Chandrasekhar’s type given by

w(τ) = h1(τ) + g1(τ, w(τ), x(τ))

∫ 1

0

τ

τ + s
Φ1(s, w(s), x(s))ds, τ ∈ I = [0, 1],

x(τ) = h2(τ) + g2(τ, w(τ), x(τ))

∫ 1

0

τ

τ + s
Φ2(s, w(s), x(s))ds, τ ∈ I = [0, 1],

(1.1)

where hk : [0, 1] → [0,∞) and gk,Φk : [0, 1] × D × D → [0,∞), for k = 1, 2 are continuous functions.
The aforementioned coupled system of integral equations is the generalization of the following generalized
Chandrasekhar’s quadratic integral equations provided by

w(τ) = 1 + w(τ)

∫ 1

0

τλϕ(s)

τ + s
(log(1 + |w(s)|))ds, τ ∈ I = [0, 1], (1.2)
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where ϕ is continuous function from [0, 1] → [0,∞) in [19]. The aforesaid integral equation was studied
in many articles, see [10, 9]. Integral equations is attractive area of research in past as well as in recent
times. This is due to the fact that the integral equations has many applications in applied sciences and
technology, (for detail see [3, 12, 4, 5, 6, 7]). This system used in many problems of applied science,
(see[1, 8, 11, 15, 16, 13, 14, 17]). Su [20], proved a two-point boundary value problem for a coupled
system of fractional differential equations. Gafiychuk et al. [17], discussed the solution of coupled nonlinear
fractional-diffusion equations. Moreover in recent times most of the biological and physical models are in
the form of integral equations or their systems. Therefore the concerned area attracted much attention
from researchers. The Chandrasekhar quadratic integral equations are used in studying of connection
with scatting through a homogenous semi-infinite atmosphere [10]. In astrophysical physical applications
of Chandrasekhar quadratic integral equation the only restriction is that

∫ 1
0 ϕ(s)ds ≤ 1

2 is a necessary
conditions in [9]. Applications of quadratic integral equations are in the kinetic theory of gasses, in theory
of neutron transport, in theory of radiative transfer and the traffic theory. The Chandrasekhar quadratic
integral equations have many applications [2]. Several authors proved the existence of solutions for nonlinear
quadratic integral equations (see [3, 12, 4, 5, 6, 7]). From all of the above literature, the main results are
obtained with the help of the methods which are related to the measure of non compactness. In [18], used
fixed point theorem to prove the existence of solution of some quadratic integral equations.Due to these
importance and uses, we study [2], system of integral equation. The concern study is carried out with the
help of fixed point theorem of Banach contraction type. Moreover for approximating the solution, we apply
monotone iterative techniques of Picard’s type successive approximation procedure to develop sufficient
condition for approximating the solutions. Further, we also give an example to verify our main results.

2. Preliminaries

In this section, we give some assumptions which are needed throughout this paper.

(A1) hk : [0, 1] → [0,∞), k = 1, 2 are continuous on [0, 1].

(A2) gk,Φk : [0, 1]×D ×D → [0,∞), k = 1, 2 are continuous, where D ⊆ [0,∞).

(A3) There exists positive constants Mk and Nk, k = 1, 2 such that
|gk(τ, w, x)| ≤ Mk and |Φk(τ, w, x)| ≤ Nk for (τ, w, x) ∈ I ×D ×D.

(A4) Φk, gk, for k = 1, 2 satisfy the Lipschitz condition with Lipschitz constants Lk, Kk, such that

|gk(τ, wk, xk)− gk(τ, w̄k, x̄k)| ≤ Lk [|wk − w̄k|+ |xk − x̄k|]

and
|Φk(τ, wk, xk)− Φk(τ, w̄k, x̄k)| ≤ Kk [|wk − w̄k|+ |xk − x̄k|] .

Let X = C[0, 1] be the class of all real continuous function defined and continuous on [0, 1] with the norm
||w|| = max |w(τ)| : τ ∈ [0, 1]. Then the norm in product space be defined by ||(w, x)|| = ||w||+ ||x||.

3. Main Result

Defined the operator by
T (w, x)(τ) = (T1(w, x), T2(w, x))(τ),

where

T1(w, x)(τ) = h1(τ) + g1(τ, w(τ), x(τ))

∫ 1

0

τ

τ + s
Φ1(s, w(s), x(s))ds, τ ∈ I = [0, 1],

T2(w, x)(τ) = h2(τ) + g2(τ, w(τ), x(τ))

∫ 1

0

τ

τ + s
Φ2(s, w(τ), x(s))ds, t ∈ I = [0, 1].
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Theorem 3.1. Let assumptions (A1)− (A3) hold. Further, if

M1K1 + L1N1 +M2K2 + L2N2 < 1, for k = 1, 2.

Then the coupled system (7) has a unique solution.

Proof. Define S = {||(w, x)|| ≤ r : (w, x)(τ) ∈ X ×X}. Then

|T1(w2, x2)− T1(w1, x1)| ≤
∣∣∣∣g1(τ, w2, x2)

∫ τ

0

τ

τ + s
Φ1(s, w2, x2)ds− g1(τ, w1, x1)

∫ τ

0

τ

τ + s
Φ1(s, w1, x1)ds

∣∣∣∣
≤ |g1(τ, w1, x1)|

∫ τ

0

∣∣∣∣ τ

τ + s

∣∣∣∣|Φ1(s, w1(s), x1(s))− Φ1(s, w2(s), x2(s))|ds

+ |g1(τ, w2, x2)− g1(τ, w1, x1)|
∫ τ

0

∣∣∣∣ τ

τ + s

∣∣∣∣|Φ1(s, w2(s), x2(s))|ds

≤ M1K1 [||w1 − w2||+ ||x1 − x2||] + L1N1 [||w1 − w2||+ ||x1 − x2||] .
(3.1)

So,

||T1(w1, x1)− T1(w2, x2)|| ≤ M1K1 [||w1 − w2||+ ||x1 − x2||] + L1K1 [||w1 − w2||+ ||x1 − x2||] ,

which implies that

∥T1(w1, x1)− T1(w2, x2)∥ ≤ (M1K1 + L1K1) [∥w1 − x1∥+ ∥w2 − x2∥] .

Similarly, one can also has

||T2(w1, x1)− T2(w2, x2)|| ≤ (M2K2 + L2K2) [||w1 − x1||+ ||w2 − x2||] . (3.2)

Now, from (3.1) and (3.2), we have

∥T (w1, x1)− T (w2, x2)|| ≤ ((M1K1 + L1K1) + (M2K2 + L2K2)) [||w1 − x1||+ ||w2 − x2||] . (3.3)

Which implies that T is contraction. Hence the coupled system (7) has a unique solution by contraction
principle. This end the proof.

4. Method of successive approximation

Theorem 4.1. Let the assumption (A1)−(A3) be satisfied and there exists monotone sequences wn(τ), xn(τ)
such that wn(τ) → w(τ) and xn(τ) → x(τ), τ ∈ [0, 1] as n → ∞ and this convergence is uniformly and
monotonically on [0, 1].

Proof. Since T1 and T2 : X×X → X×X. Then let us consider two sequences corresponding to the coupled
system of quadratic integral equation (4) as

wn(τ) = h1(τ) + g1(τ, wn−1(τ), xn−1(τ))

×
∫ 1

0

τ

τ + s
Φ1(s, wn−1(s), xn−1(s))ds, τ ∈ I = [0, 1],

xn(τ) = h2(τ) + g2(τ, wn−1(τ), xn−1(τ))

×
∫ 1

0

τ

τ + s
Φ2(s, wn−1(s), xn−1(s))ds, τ ∈ I = [0, 1].

(4.1)
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Also, when n = 0, w0 = h1(τ), x0 = h2(τ). As wn(τ) and xn(τ) are continuous functions, then in view of
Picard successive method, wn(τ) and xn(τ) can be written as a sum of successive differences as given by

wn = w0 +

n∑
i=1

(wi − wi−1), xn = x0 +

n∑
i=1

(xi − xi−1).

Thus convergence of wn and xn implies convergence of two series

n∑
i=1

(wi − wi−1) and

n∑
i=1

(xi − xi−1)

and the correspondence solution will be

w(τ) = lim
n→∞

wn(τ) and x(τ) = lim
n→∞

xn(τ). (4.2)

For uniform convergence consider the following infinite series using n = 2 in (4.2), we get

∞∑
i=1

|wn(τ)− wn−1(τ)|,
∞∑
i=1

|xn(τ)− xn−1(τ)|.

From (4.1), we have for n = 1

w1(τ)− w0(τ) = g1(τ, w0(τ), x0(τ))

∫ 1

0

τ

τ + s
Φ1(s, w0(s), x0(s))ds, τ ∈ I = [0, 1],

x1(τ)− x0(τ) = g2(τ, w0(τ), x0(τ))

∫ 1

0

τ

τ + s
Φ2(s, w0(s), x0(s))ds, τ ∈ I = [0, 1].

From which we have
||w1 − w0|| ≤ M1N2, and ||x1 − x0|| ≤ M1N2.

Now by induction, we obtain approximation for n ≥ 2, as

|wn(τ)− wn−1(τ)| ≤
∣∣∣∣g1(τ, wn−1(τ), xn−1(τ))

∫ 1

0

τ

τ + s
Φ1(s, wn−1(s), xn−1(s))ds

− g1(τ, wn−2(τ), xn−2(τ))

∫ 1

0

τ

τ + s
Φ1(s, wn−2(s), xn−2(s))ds

+ g1(τ, wn−2(τ), xn−2(τ))

∫ 1

0

τ

τ + s
Φ1(s, wn−2(s), xn−2(s))ds

− g1(τ, wn−2(τ), xn−2(τ))

∫ 1

0

τ

τ + s
Φ1(s, wn−2(s), xn−2(s))ds

∣∣∣∣
≤ |g1(τ, wn−2(τ), xn−2(τ))|

∫ 1

0

∣∣∣∣ τ

τ + s

∣∣∣∣ (4.3)

×
∣∣∣[Φ1(s, wn−1(s), xn−1(s))− Φ1(s, wn−2(s), xn−2(s))]

∣∣∣ds
+

∣∣∣g1(τ, wn−1(τ), xn−1(τ))− g1(τ, wn−2(τ), xn−2(τ))
∣∣∣

×
∫ 1

0

∣∣∣∣ τ

τ + s

∣∣∣∣|Φ1(s, wn−1(s), xn−1(s))|ds.

Which in view of A2 and A3, we get

|wn(τ)− wn−1(τ)| ≤ M1

∫ 1

0

∣∣∣∣ τ

τ + s

∣∣∣∣K1 [|wn−1(s), wn−2(s)|+ ||xn−1(τ)− xn−2(τ)||] ds

+ L1 [|wn−1(s), un−2(s)|+ |xn−1(τ)− xn−2(τ)|]N1

∫ 1

0

∣∣∣∣ τ

τ + s

∣∣∣∣ds (4.4)
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and

|xn(τ)− xn−1(τ)| ≤ M2

∫ 1

0

∣∣∣∣ τ

τ + s

∣∣∣∣K2 [|wn−1(s), wn−2(s)|+ ||xn−1(τ)− xn−2(τ)||] ds

+ L2 [|wn−1(s), wn−2(s)|+ |xn−1(τ)− xn−2(τ)|]N2

∫ 1

0

∣∣∣∣ τ

τ + s

∣∣∣∣ds. (4.5)

Now for n = 2 in (4.4) and (4.5), we have

|w2(τ)− w1(τ)| ≤ M1

∫ 1

0

∣∣∣∣ τ

τ + s

∣∣∣∣K1 [|w1(s)− w0(s)|+ |x1(s)− x0(s)|] ds

+ L1 [|w1(s), w0(s)|+ |x1(s)− x0(s)|]N1

∫ 1

0

∣∣∣∣ τ

τ + s

∣∣∣∣ds. (4.6)

Using estimation, we have

|w2(τ)− w1(τ)| ≤ M1K1[M1N1 +M2N2] + L1[M1N1 +M2N2],

which implies that
|w2(τ)− w1(τ)| ≤ (M1K1 + L1N1)(M1N1 +M2N2).

In same fashion, one can also

|x2(τ)− x1(τ)| ≤ (M2K2 + L2N2)(M1N1 +M2N2).

Now, n = 3, in (4.4) and (4.5), we have

|w3(τ)− w2(τ)| ≤ M1

∫ 1

0

∣∣∣∣ τ

τ + s

∣∣∣∣K1 [|w2(s)− w1(s)|+ |x2(s)− x1(s)|] ds

+ L1 [|w2(s)− w1(s)|+ |x2(s)− x1(s)|]N1

∫ 1

0

∣∣∣∣ τ

τ + s

∣∣∣∣ds
≤ M1K1 [(M1K1 + L1N1)(M1N1 +M2N2) + (M2K2 + L2N2)(M1N1 +M2N2)]

+ L1N1 [(M1K1 + L1N1)(M1N1 +M2N2) + (M2K2 + L2N2)(M1N1 +M2N2)] ,

so,

|w3(τ)− w2(τ)| ≤ (M1K1 + L1N1)[(M1K1 + L1N1)(M1N1 +M2N2) + (M2K2 + L2N2)(M1N1 +M2N2)].

Thus

|w3(τ)− w2(τ)| ≤ (M1K1 + L1N1)(M1N1 +M2N2) [(M1K1 + L1N1) + (M2K2 + L2N2)] .

Similarly

|x3(τ)− x2(τ)| ≤ (M1K1 + L1N1)(M1N1 +M2N2) [(M1K1 + L1N1) + (M2K2 + L2N2)] .

Now, n = 4, in (4.4) and (4.5), we have

|w4(τ)− w3(τ)| ≤ M1K1

∫ 1

0

τ

τ + s
[|w3(s)− w2(s)|+ |x3(s)− x2(s)|] ds

+ L1N1 [|w3(τ)− w2(τ)|+ |w3(τ)− x2(τ)|]
∫ 1

0

τ

τ + s
ds

≤ M1K1[(M1K1 + L1N1)(M1N1 +M2N2)(M1K1 + L1N1)(M2N2 + L2N2)

+ (M2K2 + L2N2)(M1N1 +M2N2)(M2K2 + L1N1)(M2N2 + L2N2)]

+ L1N1[(M1K1 + L1N1)(M1N1 +M2N2)(M1K1 + L1N1)(M2K2 + L2N2)

+ (M2K2 + L2N2)(M1N1 +M2N2)(M2K2 + L1N1)(M2K2 + L2N2)]
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|u4(t)− u3(t)| ≤ (M1K1 + L1N1)[(M1K1 + L1N1)(M1N1 +M2N2)(M1K1 + L1N1)(M2K2 + L2N2)

+ (M2K2 + L2N2)(M1N1 +M2N2)(M2K2 + L1N1)(M2K2 + L2N2)]

+ (M1K1 + L1N1)(M1N1 +M2N2)[(M1K1 + L1N1)(M2K2 + L2N2)

+ (M2K2 + L2N2)(M1N1 +M2N2)(M2K2 + L1N1)(M2K2 + L2N2)] < 1.

In the same way generalize the procedure and keeping the product sum less than unity, we get that

∞∑
n=1

|wn(τ)− wn−1(τ)| and
∞∑
n=1

|xn(τ)− xn−1(τ)|

are convergent. Thus {wn(τ)} and {xn(τ)} are uniformly convergent. So

w(τ) = h1(τ) + lim
n→∞

g1(τ, wn−1(τ), xn−1(τ))

∫ 1

0

τ

τ + s
Φ1(s, wn−1(s), xn−1(s))ds,

x(τ) = h2(τ) + lim
n→∞

g2(τ, wn−1(τ), xn−1(τ))

∫ 1

0

τ

τ + s
Φ2(s, wn−1(s), xn−1(s))ds,

are convergent sequences. For uniqueness let (w̄, x̄) be another solution of (4), then

|w̄(τ)− wn(τ)| =
∣∣∣∣g(τ, w̄(τ), x̄(τ)) ∫ 1

0

τ

τ + s
Φ1(s, w̄(τ), x̄(τ))ds− g(τ, wn, xn)

∫ 1

0

τ

τ + s
Φ1(s, wn, xn)ds

∣∣∣∣
like (4.1), we can show that limn→∞wn(τ) = w(τ) = w̄(τ). Similarly limn→∞ xn(τ) = x(τ) = x̄(τ). Thus
solution (w, x) is unique.

5. Discussion part

In few papers, Cahndraseker’s quadratic integral equations have been considered due to its tremendous
applications in applied sciences. But the consideration was limited to simple one. Mostly the researchers
considered only scaler class of aforementioned integral equations. Also in some paper coupled system has
been considered for existence and uniqueness. In this paper we study the coupled system of the aforesaid
integral equations by taking more complicated nonlinearity occurring in the system. Slightly more compu-
tation is required to obtain sufficient conditions for existence of solution as well as of uniqueness. We get the
required conditions by using Picard’s iterative technique which plays an important rules in the construction
of the required theory.

6. Example

To demonstrate our main results, we provide the example given bellow as:

Example 6.1. Consider a general Coupled system of Cahndraseker’s quadratic integral equations
w(τ) = τ2 +

sin(w(τ) + x(τ))

τ + 4

∫ 1

0

τ

τ + s

cos(w(τ) + x(τ))

6 + τ2
ds, τ ∈ [0, 1],

x(τ) = τ +
cos(w(τ) + x(τ))

τ2 + 5

∫ 1

0

τ

τ + s

sin(w(τ) + x(τ))

6 + τ2
ds, τ ∈ [0, 1].

(6.1)

From above system

h1(τ) = τ2, h2(τ) = τ,

g1(τ, w, x) = sin(w(τ) + x(τ)), g2(τ, w, x) = cos(w(τ) + x(τ)),

f1(τ, w, x) = cos(w(τ) + x(τ)),Φ2(τ, w, x) = sin(w(τ) + x(τ)).
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Clearly ∣∣∣∣sin(w(τ) + x(τ))

τ + 4

∣∣∣∣ ≤ 1

4
, M1 =

1

4
,M2 =

1

5
N2 = N1 =

1

6
, L1 =

1

4
, L2 =

1

5
K1 =

1

6
,K2 =

1

6
.

Now computing

M1K1 + L1N1 +M2K2 + L2N2 =
1

24
+

1

24
+

1

30
+

1

30
=

27

180
< 1.

So the coupled system (6.1) has a unique solution.

7. Conclusion

This paper is generalization of [19] where the author obtained the conditions for a coupled system given
by

w(τ) = h1(τ) + g1(τ, x(τ))

∫ 1

0

τ

τ + s
Φ1(s, x(s))ds, τ ∈ I = [0, 1],

x(τ) = h2(τ) + g2(τ, w(τ))

∫ 1

0

τ

τ + s
Φ2(s, w(s))ds, τ ∈ I = [0, 1].

While in this paper we extended the above system to the following and obtained the same condition as
obtained in [19] using the same technique

w(τ) = h1(τ) + g1(τ, w(τ), x(τ))

∫ 1

0

τ

τ + s
Φ1(s, w(s), x(s))ds, τ ∈ I = [0, 1],

x(τ) = h2(τ) + g2(τ, w(τ), x(τ))

∫ 1

0

τ

τ + s
Φ2(s, w(s), x(s))ds, τ ∈ I = [0, 1].
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