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Abstract

The aim of this paper is to introduce a new type of contraction called Θ-G-contraction on a metric
space endowed with a graph and establish some new fixed point theorems. Some examples are presented
to support the results proved herein. Our results unify, generalize and extend various results related with
G-contraction for a directed graph G. c⃝2016 All rights reserved.

Keywords: Metric space endowed with a graph, Θ-G-contractions, fixed point.
2010 MSC: 46S40, 47H10, 54H25.

1. Introduction and preliminaries

Banach’s contraction principle [4] is one of the pivotal results of analysis. It establishes that, given a
mapping F on a complete metric space (X, d) into itself and a constant α ∈ [0, 1) such that

d(Fx, Fy) ≤ αd(x, y), (1.1)

holds for all x, y ∈ X. Then F has a unique fixed point in X.

Due to its importance and simplicity, several authors have obtained many interesting extensions and
generalizations of the Banach contraction principle (see [1–3, 5–11, 13, 14] and references therein). In 2008,
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Jachymski [12] proved some fixed point results in metric spaces endowed with a graph and generalized
simultaneously Banach contraction principle from metric and partially ordered metric spaces. Consistent
with Jachymski, let (X, d) be a metric space and ∆ denote the diagonal of the Cartesian product X ×X.
Consider a directed graph G such that the set V (G) of its vertices coincides with X and the set E(G) of
its edges contains all loops, i.e., ∆ ⊆ E(G). Also assume that the graph G has no parallel edges and thus,
one can identify G with the pair (V (G), E(G)). Moreover, we may treat G as a weighted graph (see [12]) by

assigning to each edge the distance between its vertices. If x and y are vertices in a graph G, then a path
in G from x to y of length N (N ∈ N) is a sequence {xi}Ni=0 of N +1 vertices such that x0 = x, xN = y and
(xn−1, xn) ∈ E(G) for each i = 1, . . . , N.

Jachymski [12] gave the following definition of G-contraction:

Definition 1.1. [12] An operator F : X → X is called a Banach G-contraction or simply G-contraction if

(a) F preserves edges of G; for each x, y ∈ X with (x, y) ∈ E(G), we have (F (x), F (y)) ∈ E(G);

(b) F decreases weights of edges of G ; there exists α ∈ [0, 1) such that for all x, y ∈ X with (x, y) ∈ E(G),
we have

d(F (x), F (y)) ≤ αd(x, y). (1.2)

Notice that a graph G is connected if there is a directed path between any two vertices and it is weakly
connected if G̃ is connected, where G̃ denotes the undirected graph obtained from G by ignoring the direction
of edges. Denote by G−1 the graph obtained from G by reversing the direction of edges. Thus, we have

V
(
G−1

)
= V (G) and E

(
G−1

)
= {(x, y) ∈ X ×X : (y, x) ∈ E (G)} .

It is more convenient to treat G̃ as a directed graph for which the set of its edges is symmetric, under this
convention; we have that

E(G̃) = E(G) ∪ E(G−1).

By a subgraph of G we mean a graph H satisfying V (H) ⊆ V (G) and E(H) ⊆ E(G) such that V (H)
contains the vertices of all edges of E(H). If E(G) is symmetric, then for x ∈ V (G), then the subgraph
Gx consisting of all edges and vertices that are contained in some path in G beginning at x is called the
component of G containing x. In this case, V (Gx) = [x]G, where [x]G denotes the equivalence class of the
relation R defined on V (G) by the rule:

yRz if there is a path in G from y to z.

Clearly Gx is connected for all x ∈ G. We denote by Ψ = {G : G is a directed graph with V (G) = X and
∆ ⊆ E(G)}.

Consistent with [11, 15], the following definitions will be needed in the sequel.

Definition 1.2. [11] A mapping F : X → X is said to be orbitally continuous if for all x, y ∈ X and any
sequence (kn)n∈N of positive integers F knx → y =⇒ F (F knx) → Fy as n → ∞.

Definition 1.3. [11] A mapping F : X → X is said to be G-continuous if given x ∈ X and a sequence
(xn)n∈N with xn → x as n → ∞ and (xn, xn+1) ∈ E(G) for all n ∈ N, we have Fxn → Fx.

Definition 1.4. [11] A mapping F : X → X is said to be orbitally G-continuous if for all x, y ∈ X and any
sequence (kn)n∈N of positive integers F knx → y and (F knx, F kn+1x) ∈ E(G) =⇒ F (F knx) → Fy as n → ∞.

Definition 1.5. [15] Let (X, d) be a metric space and F : X → X be a self mapping. Then F is said to be
a Picard operator if F has a unique fixed point x∗ and limn→∞ Fnx = x∗ as n → ∞.

Definition 1.6. [11] Let (X, d) be a metric space and F : X → X be a self mapping. Then F is said to be
a weakly Picard operator if for any x ∈ X, limn→∞ Fnx exists and is a fixed point of F.
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Very recently, Jleli and Samet [13] introduced a new type of contraction called Θ-contraction and obtained
new fixed point theorems for such contraction in the setting of generalized metric spaces.

Definition 1.7. Let Θ : (0,∞) → (1,∞) be a function satisfying:

(Θ1) Θ is nondecreasing;

(Θ2) for each sequence {αn} ⊆ R+, limn→∞Θ(αn) = 1 if and only if limn→∞(αn) = 0;

(Θ3) there exists 0 < k < 1 and l ∈ (0,∞] such that lima→0+
Θ(α)−1

αk = l.

A mapping F : X → X is said to be Θ-contraction if there exist the function Θ satisfying (Θ1)-(Θ3) and
a constant α ∈ (0, 1) such that for all x, y ∈ X,

d(Fx, Fy) ̸= 0 =⇒ Θ(d(Fx, Fy)) ≤ Θ(d(x, y))]α. (1.3)

Theorem 1.8 ([13]). Let (X, d) be a complete metric space and F : X → X be a Θ-contraction, then F has
a unique fixed point.

To be consistent with Samet et al. [13], we denote by the Ω set of all functions Θ : (0,∞) → (1,∞)
satisfying the above conditions. In this paper, we define Θ-G-contraction and generalize the concepts of Θ-
contraction and G-contraction. We prove some fixed point theorems which extend some results of Jachymski
[11], Samet et al. [13] and thereby many more results by different authors. Throughout the article N, R,
R+ will denote the set of natural numbers, real numbers and positive real numbers, respectively.

2. Main Result

Motivated by the work of Samet et al. [13], we give the following definition of Θ-G-contraction.

Definition 2.1. A self mapping F : X → X is said to be a Θ-G-contraction if there exist Θ ∈ Ω and G ∈ Ψ,
such that

(i) for all x, y ∈ X,
(x, y) ∈ E(G) =⇒ (Fx, Fy) ∈ E(G). (2.1)

(ii) there exists some α ∈ (0, 1) such that

Θ(d(Fx, Fy)) ≤ [Θ(d(x, y))]α, (2.2)

for all x, y ∈ X with (x, y) ∈ E(G) and Fx ̸= Fy.

Remark 2.2. It follows from condition (2.1) that (F (V (G)), (F × F )(E(G))) is a subgraph of G where
(F × F )(x, y) = (Fx, Fy) for all x, y ∈ X.

Example 2.3. Any constant self mapping F : X → X is a Θ-G-contraction for every Θ ∈ Ω and G ∈ Ψ
because E(G) contains all loops.

Example 2.4. Let Θ ∈ Ω be an arbitrary. Then every Θ-contraction is a Θ-G0-contraction for the complete
graph G0 given by V (G0) = X and E(G0) = X ×X.

Example 2.5. Let G ∈ Ψ be an arbitrary. Then every G-contraction is a Θ-G-contraction for Θ given by
Θ(t) = e

√
t for all t > 0.

Example 2.6. Let ⪯ be a partial order in X. Define the graph G1 by E(G1) = {(x, y) ∈ X ×X : x ⪯ y}.
Then G ∈ Ψ and for any Θ ∈ Ω, a self mapping F : X → X is a Θ-G1-contraction if it satisfies:
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(i) F is nondecreasing w.r.t. ⪯;

(ii) there exists some α ∈ (0, 1) such that

Θ(d(Fx, Fy)) ≤ [Θ(d(x, y))]α,

for all x, y ∈ X with x ⪯ y and Fx ̸= Fy.

Remark 2.7. Conditions (2.1) and (2.2) are independent. And this fact is shown by the examples [17,18].

Remark 2.8. Let Gd be the graph given by V (Gd) = X and E(Gd) = ∆. Then conditions (2.1) and (2.2) are
satisfied for every mapping F : X → X. Thus every F : X → X is a Gd-contraction. Consequently, there
is no self mapping on X which is not a G-contraction for all G ∈ Ψ. But, for a fixed G ∈ Ψ it is possible to
find Θ ∈ Ω and a mapping F : X → X such that F is a Θ-G-contraction but not a G-contraction.

Example 2.9. Consider the sequence

τ1 = 1× 2,

τ2 = 1× 2 + 3× 4,

...

τn = 1× 2 + 3× 4 + . . .+ (2n− 1)(2n) =
n(n+ 1)(4n− 1)

3
.

Let X = {τn : n ∈ N} and d
(
τ∗, τ

′
)

=
∣∣∣τ∗ − τ

′
∣∣∣ . Then (X, d) is a complete metric space. Define the

mapping F : X → X by,

F (τ1) = τ1, F (τn) = τn−1, for all n ≥ 2.

Let us consider the mapping Θ : (0,∞) → (1,∞) defined by

Θ(t) = e
√
tet .

Let G be a graph given by V (G) = X and E(G) = {(τn, τn) : n ∈ N} ∪ {(τ1, τn) : n ∈ N}. It is easy to
see that F preserves edges. We show that F does not satisfy condition (1.2). Clearly (x, y) ∈ E(G) with
Fx ̸= Fy if and only if x = τ1 and y = τn for some n > 2. Thus, for n > 2, we have

lim
n→∞

d(F (τn), F (τ1))

d(τn, τ1)
= lim

n→∞

τn−1 − 1

τn − 1
= lim

n→∞

4n3 − 9n2 + 5n− 6

4n3 + 3n2 − n− 6
= 1.

Therefore F does not satisfy condition (1.2). But it satisfies condition (2.2) that is

e
√

d(F (τ1),F (τn))ed(F (τ1),F (τn)) ≤ ek
√

d(τ1,τn)ed(τ1,τn)
,

for some α ∈ (0, 1). The above condition is equivalent to

d(F (τ1), F (τn))e
d(F (τ1),F (τn)) ≤ α2d(τ1, τn)e

d(τ1,τn).

So, we have to check that

d(F (τ1), F (τn))e
d(F (τ1),F (τn))−d(τ1,τn)

d(τ1, τn)
≤ α2.

for some α ∈ (0, 1). Consider
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d(F (τ1), F (τn))e
d(F (τ1),F (τn))−d(τ1,τn)

d(τ1, τn)

=
d(τ1, τn−1)e

d(τ1,τn−1)−d(τ1,τn)

d(τ1, τn)

=
4n3 − 9n2 + 5n− 6

4n3 + 3n2 − n− 6
e−6n(n−1)

≤ e−1,

with α = e−
1
2 . Hence F is a Θ-G-contraction which is not a G-contraction.

Example 2.10. Let X = [0, 1] with usual metric. Define the mapping F : X → X by,

F (τ) =
1

3
if 0 ≤ τ < 1 and F (τ) =

1

6
for τ = 1.

Clearly F is not a Θ-contraction for any Θ ∈ Ω because it is not a continuous mapping. Let G be a graph
given by V (G) = X and E(G) = {( 1n ,

1
n+1) : n ∈ N} ∪ {(13 ,

1
6) : n ∈ N}. Clearly (τ∗, τ

′
) ∈ E(G) with

Fτ∗ ̸= Fτ
′
if and only if τ∗ = 1 and τ

′
= 1

2 . Now, we have

Θ

(
d

(
F1, F

1

2

))
= Θ

(
d

(
1

6
,
1

3

))
= Θ

(
1

6

)
<

[
Θ

(
1

2

)]α
=

[
Θ

(
d

(
1,

1

2

))]α
,

for some
lnΘ( 1

6
)

lnΘ( 1
2
)
< α ∈ (0, 1). Thus condition (2.2) holds for all τ∗, τ

′ ∈ X with (τ∗, τ
′
) ∈ E(G) and

Fτ∗ ̸= Fτ
′
. It is simple to observe that F preserves edges of G. Thus F is a Θ-G-contraction but not a

Θ-contraction for every Θ ∈ Ω.

Proposition 2.11. If a mapping F : X → X is such that the condition (2.1) ( resp. condition (2.2)) holds,
then condition (2.1) (resp. condition (2.2)) is also satisfied for G−1 and G̃. Thus if F is a Θ-G-contraction
then F is both Θ-G−1-contraction and Θ-G̃-contraction.

Proof. This is an obvious consequence of symmetry of d and condition (1.1).

Lemma 2.12. Let F : X → X be a Θ-G-contraction. For x ∈ X and y ∈ [x]G̃, we have d(Fnx, Fny) → 0
as n → ∞.

Proof. Let x ∈ X and y ∈ [x]G̃. Then there exists a path (xj)
N
j=0 in G̃ from x to y. That is, x0 = x, xN = y

and (xj−1, xj) ∈ E(G̃) for all j = 1, 2, . . . , N. Proposition 2.11 shows that F is a Θ-G̃-contraction. So,
inductively (Fnxj−1, F

nxj) ∈ E(G̃) for all n ∈ N and j = 1, 2, . . . , N and there exists some α ∈ (0, 1) such
that

Θ(d(Fnxj−1, F
nxj)) ≤ [Θ(d(xj−1, xj))]

αn
, (2.3)

for all n ∈ N and j = 1, 2, . . . , N with Fnxj−1 ̸= Fnxj . If for some j = 1, 2, . . . , N and k ∈ N, F kxj−1 = F kxj ,
then Fnxj−1 = Fnxj for all n ≥ k. Hence d(Fnxj−1, F

nxj) → 0 as n → ∞ for all j = 1, 2, . . . , N.
Consider the case, when Fnxj−1 ̸= Fnxj for all n ∈ N. Then the condition (2.3) is satisfied for all
n ∈ N. Letting n → ∞ in condition (2.3), we have limn→∞Θ(d(Fnxj−1, F

nxj)) = 1. By (Θ2), we get
limn→∞ d(Fnxj−1, F

nxj) = 0. Hence, for all j = 1, 2, . . . , N, we get limn→∞ d(Fnxj−1, F
nxj) = 0. By

triangular inequality, we have

d(Fnx, Fny) ≤
N∑
j=1

d(Fnxj−1, F
nxj) → 0 as n → ∞.
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Theorem 2.13. Let (X, d) be a complete metric space. Then following statements are equivalent:

(i) G is weakly connected;

(ii) for any Θ-G-contraction, a mapping F : X → X and x, y ∈ X, the sequences {Fnx} and {Fny} are
Cauchy and equivalent;

(iii) for any Θ-G-contraction, a mapping F : X → X, Card(FixF ) ≤ 1.

Proof. (i) =⇒ (ii) Let G be weakly connected, F : X → X be a Θ-G-contraction and x, y ∈ X. Then
X = [x]G̃. Take y = Tx ∈ [x]G̃ in Lemma 2.12. We can find a path (xj)

N
j=0 in G̃ such that x0 = x, xN = Tx

and (xj−1, xj) ∈ E(G̃) for all j = 1, 2, . . . , N. If for some k ∈ N, F k+1x = F kx, then {Fnx} becomes
eventually constant and hence Cauchy. So, without loss of generality we assume that Fn+1x = Fnx that is,
d(Fnx, Fn+1x) > 0 for all n ∈ N. By triangular inequality, we have

d(Fnx, Fn+1x) ≤
N∑
j=1

d(Fnxj−1, F
nxj) ≤

∞∑
j=1

d(Fnxj−1, F
nxj). (2.4)

We show that
∑∞

j=1 d(F
nxj−1, F

nxj) is convergent for all j. Fix j ∈ {1, 2, ..., N}. If d(Fn0xj−1, F
n0xj) for

some n0, then d(Fnxj−1, F
nxj) = 0 for all n ≥ n0. Hence

∑∞
j=1 d(F

nxj−1, F
nxj) becomes a finite sum

and thus convergent. So, we assume that d(Fnxj−1, F
nxj) > 0 for all n ∈ N. Then as in Lemma 2.12,

Θ(d(Fnxj−1, F
nxj)) ≤ [Θ(d(xj−1, xj))]

αn
for all n ∈ N. By (Θ2), we have

lim
n→∞

Θ(d(Fnxj−1, F
nxj)) = 1 ⇐⇒ lim

n→∞
d(Fnxj−1, F

nxj) = 0. (2.5)

By (Θ3), there exists 0 < kj < 1 and l ∈ (0,∞] such that

lim
n→∞

Θ(d(Fnxj−1, F
nxj))− 1

(d(Fnxj−1, Fnxj))kj
= l.

Suppose that l < ∞. In this case, let B = l
2 > 0. From the definition of the limit, there exists mj ∈ N such

that ∣∣∣∣Θ(d(Fnxj−1, F
nxj))− 1

(d(Fnxj−1, Fnxj))kj
− l

∣∣∣∣ ≤ B,

for all n > mj . This implies that

Θ(d(Fnxj−1, F
nxj))− 1

(d(Fnxj−1, Fnxj))kj
≥ l −B =

l

2
= B,

for all n > mj . Then
(d(Fnxj−1, F

nxj))
kj ≤ An[Θ(d(Fnxj−1, F

nxj))− 1].

Then, there exists mj ∈ N such that

d(Fnxj−1, F
nxj))

kj ≤ 1

n1/kj
, (2.6)

for all n > mj . This implies that
∑∞

j=1 d(F
nxj−1, F

nxj) is convergent. By inequality (2.4), it is clear that∑∞
j=1 d(F

nx, Fnx) is also convergent. Now for m > n > mj , we have

d(Fnx, Fmx) ≤ d(Fnx, Fn+1x) + d(Fn+1x, Fn+2x) + · · ·+ d(Fm−1x, Fmx)

=
m−1∑
j=n

d(F jx, F j+1x) <
∞∑
j=n

d(F jx, F j+1x) → 0 as n → ∞.
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Hence {Fnx} is a Cauchy sequence. By Lemma 2.12, we get d(Fnx, Fny) → 0 as n → ∞. Thus {Fny} is
also Cauchy sequence.

(ii) =⇒ (iii) Let a self mapping F : X → X be a Θ-G-contraction and x, y ∈ FixF. By the condition
(ii) that {Fnx} and {Fny} are equivalent. This gives x = y. Thus Card(FixF ) ≤ 1.

(iii) =⇒ (i) Let Card(FixF ) ≤ 1 and suppose on the contrary that G be not weakly connected. Then
G̃ is also disconnected. Let x0 ∈ X. Then both [x0]G̃ and X\[x0]G̃ are nonempty. Choose y0 ∈ X\[x0]G̃.
Define

F (x) =

{
x0 if x ∈ [x0]G̃,

y0 if x ∈ X\[x0]G̃.

Then FixF = {x0, y0}. We now show that F is a Θ-G-contraction. Let (x, y) ∈ E(G) be arbitrary.
Then [x]G̃ = [y]G̃. So x, y ∈ [x0]G̃ or x, y ∈ X\[x0]G̃. In both cases, we have Fx = Fy. This shows that
(Fx, Fy) ∈ E(G) because ∆ ⊆ E(G). So condition (2.1) holds and since there is no (x, y) ∈ E(G) with
Fx ̸= Fy. Therefore, the inequality (2.2) is vacuously satisfied. Thus F is a Θ-G-contraction having two
fixed points. That is a contradiction because the assumption Card(FixF ) ≤ 1 is hold. Hence G must be
weakly connected.

Corollary 2.14. Let (X, d) be a complete metric space. Then following statements are equivalent:

(i) G is weakly connected;

(ii) for any Θ-G-contraction, a mapping F : X → X, there exists z ∈ X such that Fnx = z for all x ∈ X.

Theorem 2.15. Let (X, d) be a complete metric space and F : X → X be a Θ-G-contraction such that
Fx0 ∈ [x0]G̃ for some x0 ∈ X. Let G̃x0 be component of G̃ containing x0. Then [x0]G̃ is F -invariant and

F |[x0]G̃
is a Θ-G̃x0-contraction. Moreover, if x, y ∈ [x0]G̃ then the sequences {Fnx} and {Fny} are Cauchy

and equivalent.

Proof. Let x ∈ [x0]G̃ be an arbitrary point. Then there exists a path (xj)
N
j=0 in G̃ from x0 to x. That is

xN = x and (xj−1, xj) ∈ E(G̃) for all j = 1, 2, . . . , N. Proposition 2.11 shows that F is a Θ-G̃-contraction.
So, inductively (Fxj−1, Fxj) ∈ E(G̃) for all j = 1, 2, . . . , N. Consequently (Fxj)

N
j=0 is a path in G̃ from Fx0

to Fx. Thus Fx ∈ [Fx0]G̃. But it is given that Fx0 ∈ [x0]G̃. So [Fx0]G̃ = [x0]G̃. Hence Fx ∈ [x0]G̃. Thus

[x0]G̃ is F -invariant. Now, let (x, y) ∈ E(G̃x0) be an arbitrary. Then, there exists a path (xj)
N
j=0 in G̃ from

x0 to y such that xN = x. Repeating the argument from the first part of the proof we infer that (Fxj)
N
j=0 is a

path in G̃ from Fx0 to Fy. It is given that Fx0 ∈ [x0]G̃. Therefore, there exists a path (yj)
M
j=0 in G̃ from x0

to Fx0. It follows that there is a path (y0, y1, . . . , yM , Fx1, Fx2, . . . , FxN ) in G̃ from x0 to Fy. In particular,
(FxN−1, FxN ) ∈ E(G̃x0) that is (Fx, Fy) ∈ E(G̃x0). Since E(G̃x0) ⊆ E(G̃) and F is a Θ-G-contraction.
Therefore the condition (2.2) holds for the graph G̃x0 as well. Hence F |[x0]G̃

is a Θ-G̃x0-contraction. Finally

Theorem 2.13 and connectedness of G̃x0 implies that {Fnx} and {Fny} are Cauchy and equivalent for all
x, y ∈ [x0]G̃.

Theorem 2.16. Let (X, d) be a complete metric space and (X, d,G) satisfy the following property. For any
sequence (xn)n∈N in X with xn → x and (xn, xn+1) ∈ E(G), there exists a subsequence (xkn)n∈N of (xn)n∈N
satisfying (xkn , x) ∈ E(G) for all n ∈ N. Let F : X → X be a Θ-G-contraction and XF = {x ∈ X : (x, Tx) ∈
E(G)}. Then

(a) Card(FixF ) = Card {[x]G̃ : x ∈ XF };

(b) Fix F ̸= ∅ if and only if XF ̸= ∅;

(c) F has a unique fixed point if and only if there exists a point x0 ∈ XF such that XF ⊆ [x0]G̃;
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(d) for any x ∈ XF , F |[x]G̃ is a Picard operator;

(e) if XF ̸= ∅ and G is weakly connected then F is a Picard operator;

(f) if X
′
= ∪{[x]G̃ : x ∈ XF }, then F |X′ is a weakly Picard operator;

(g) if F ⊆ E(G), then F is a weakly Picard operator.

Proof. We start from the proof of (d). Let x ∈ XF = {x ∈ X : (x, Fx) ∈ E(G)} be an arbitrary point.
Then (x, Fx) ∈ E(G). This implies that Fx ∈ [x]G̃. So by Theorem 2.15, for any y ∈ X sequences {Fnx}
and {Fny} are Cauchy and equivalent. Since (X, d) be a complete metric space, so there exists z ∈ X such
that

lim
n→∞

Fnx = z = lim
n→∞

Fny.

Since (x, Fx) ∈ E(G). So (2.1) yields that

(Fnx, Fn+1x) ∈ E(G), (2.7)

for all n ∈ N. Condition (2.7) implies that there exists a subsequence {F knx}n∈ of {F kx}n∈N such that
(F knx, z) ∈ E(G) for all n ∈ N. Thus from (2.7), we have (x, Fx, F 2x, . . . , F k1 , z) a path in G (and hence
in G̃) from x to z. So z ∈ [x]G̃. Now as (F knx, z) ∈ E(G) and F : X → X is a Θ-G-contraction, so there
exists some k ∈ (0, 1) such that

Θ(d(F (F knx), F (z))) ≤ [Θ(d(F knx, z))]α < Θ(d(F knx, z)).

By (Θ1), we have
d(F (F knx), F (z)) < Θ(d(F knx, z)).

Letting n → ∞, we get
d(z, F (z)) = 0.

Thus z = F (z). Hence F |[x]G̃ is a Picard operator.

(e) Further suppose that G is weakly connected and x ∈ XF , then X = [x]G̃. Thus F is a Picard operator.

(f) Suppose X
′
= ∪{[x]G̃ : x ∈ XF }, then F |X′ is a Picard operator from (d). Hence F |X′ is a weakly

Picard operator.

(g) Suppose that F ⊆ E(G). Then X = XF which gives X
′
= X and hence F is a weakly Picard operator

by (d).

(a) Consider the mapping τ : FixF → Ω by

τ(x) = [x]G̃

for all x ∈ FixF, where Ω = {[x]G̃ : x ∈ Fx}. To prove that Card(FixF ) = Card {[x]G̃ : x ∈ XF }, it
suffices to show that τ is a bijection mapping. Let x ∈ Fx be an arbitrary point. By (d), we have F |[x]G̃ is
a Picard operator. Let z = limn→∞ Fnx. Then z ∈ FixF ∩ [x]G̃ and τz = [z]G̃ = [x]G̃. So τ is surjective.
Now, let x1, x2 ∈ FixF be an arbitrary with [x1]G̃ = [x2]G̃. Then x2 ∈ [x1]G̃. By (d), we have

lim
n→∞

Fnx2 ∈ FixF ∩ [x1]G̃ = {x1}.

But Fnx2 = x2 for all n ∈ N. Thus, we get x1 = x2. Thus τ is surjective. Hence τ is a bijection mapping.

(b) Suppose FixF ̸= ∅. Then Card(FixF ) ̸= 0. From (a), we have Card {[x]G̃ : x ∈ XF } ̸= 0. This
implies that XF ̸= ∅. Conversely, suppose that XF ̸= ∅. Then Card {[x]G̃ : x ∈ XF } ̸= 0. From (a), we have
Card(FixF ) ̸= 0. This implies that FixF ̸= ∅.

(c) Suppose F has a unique fixed point. As Card(FixF ) = Card {[x]G̃ : x ∈ XF }, so there exists a
point x0 ∈ XF such that XF ⊆ [x0]G̃. And similarly the converse can be obtained from (a).
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Corollary 2.17. Let (X, d) be a complete metric space and (X, d,G) satisfy the following property. For any
sequence (xn)n∈N in X with xn → x and (xn, xn+1) ∈ E(G), there exists a subsequence (xkn)n∈N of (xn)n∈N
satisfying (xkn , x) ∈ E(G) for all n ∈ N. Then the following statements are equivalent.

(a) G is weakly connected;

(b) every Θ-G-contraction, a mapping F : X → X such that (Fx0, x0) ∈ X for some x0 ∈ E(G), is a
Picard operator;

(c) for any Θ-G-contraction, a mapping F : X → X, Card(FixF ) ≤ 1.

Proof. (a) =⇒ (b): Suppose that G is weakly connected and F : X → X be a Θ-G-contraction such that
(Fx0, x0) ∈ E(G) for some x0 ∈ X. That is x0 ∈ XF . So XF ̸= ∅. Thus by (e) of Theorem 2.16, F is a
Picard operator.

(b) =⇒ (c): Let F : X → X be a Θ-G-contraction. If XF = ∅, then FixF = ∅ as FixF ⊆ XF . But, if
XF ̸= ∅, then by (b), FixF is singleton. In both cases, Card(FixF ) ≤ 1.

(c) =⇒ (a): It is a direct consequence of Theorem 2.13.

Theorem 2.18. Let (X, d) be a complete metric space and F : X → X be an orbitally G-continuous
Θ-G-contraction. Let XF = {x ∈ X : (x, Tx) ∈ E(G)}. Then the following statements hold:

(a) FixF ̸= ∅ if and only if XF ̸= ∅;

(b) for any x ∈ XF and y ∈ [x]G̃, the sequence {Fny}n∈N converges to a fixed point of F and limn→∞ Fny;

(c) if XF ̸= ∅ and G is weakly connected, then F is a Picard operator does not depend on y;

(d) if F ⊆ E(G), then F is a weakly Picard operator.

Proof. (a) The proof is same as of (b) Theorem 2.16.

(b) Let x ∈ XF be an arbitrary and suppose y ∈ [x]G̃. Then (x, Fx) ∈ E(G). It follows by Theorem 2.16
that both sequences {Fnx}n∈N and {Fny}n∈N converges to one point xΛ. Moreover (Fnx, Fn+1x) ∈ E(G)
for all n ∈ N. Since F : X → X be an orbitally G-continuous. So, we get

lim
n→∞

Fn+1x = lim
n→∞

F (Fnx) = FxΛ.

This implies that xΛ = FxΛ. Thus (b) proved.

(c) Suppose XF ̸= ∅ and G is weakly connected. Let x0 ∈ XF , then [x0]G̃ = X. Then (b) yield that F
has fixed point which is unique. Thus F is a Picard operator.

(d) Suppose F ⊆ E(G). This means that XF = X. Hence F has a fixed point. Thus F is a weakly
Picard operator.

Now, we take F : X → X as orbitally continuous instead of orbitally G-continuous. This will make the
previous theorem strengthen.

Theorem 2.19. Let (X, d) be a complete metric space and F : X → X be an orbitally continuous Θ-G-
contraction. Let XF = {x ∈ X : (x, Tx) ∈ E(G)}. Then, the following statements hold:

(a) FixF ̸= ∅ if and only if there exists x0 ∈ X with Fx0 ∈ [x0]G̃;

(b) if x ∈ X and Fx ∈ [x]G̃, then for y ∈ [x]G̃, the sequence {Fny}n∈N converges to a fixed point of F and
limn→∞ Fny does not depend on y;
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(c) if G is weakly connected, then F is a Picard operator;

(d) if Fx ∈ [x]G̃ for any x ∈ X, then F is a weakly Picard operator.

Proof. (a) It is obvious.

(b) Let x ∈ X be such that Tx ∈ [x]G̃ and let y ∈ [x]G̃. It follows by Theorem 2.16 that both sequences
{Fnx}n∈N and {Fny}n∈N converges to one point xΛ. Since F : X → X be an orbitally continuous so, we get

lim
n→∞

Fn+1x = lim
n→∞

F (Fnx) = FxΛ.

This implies that xΛ = FxΛ. Thus (b) proved.

(c) Suppose G is weakly connected. Then [x0]G̃ = X. Thus (b) yield that F has fixed point which is
unique. Thus F is a Picard operator.

(d) Suppose Fx ∈ [x]G̃ for any x ∈ X. Hence F has a fixed point. Thus F is a weakly Picard operator.

Corollary 2.20. Let (X, d) be a complete metric space. Then the following statements are equivalent.

(a) G is weakly connected;

(b) every orbitally continuous Θ-G-contraction, a mapping F : X → X is a Picard operator;

(c) for any orbitally continuous Θ-G-contraction, a mapping F : X → X,
Card(FixF ) ≤ 1.

Hence if G̃ is disconnected. Then, there exists at least one orbitally continuous Θ-G-contraction, a
mapping F : X → X which has at least two fixed points.
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