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1. Introduction

In this paper, we study the following Darboux problem for a third order hyperbolic differential inclusion:

uxyz(x, y, z) ∈ F (x, y, z, u(x, y, z), s), (x, y, z) ∈ Π := [0, 1]× [0, 1]× [0, 1], (1.1)

with the initial values

u(x, y, 0) = φ(x, y), (x, y) ∈ Π1 := [0, 1]× [0, 1],

u(0, y, z) = ψ(y, z), (y, z) ∈ Π1, (1.2)

u(x, 0, z) = χ(x, z), (x, z) ∈ Π1,

where φ,ψ, χ are absolutely continuous functions satisfying:

u(x, 0, 0) = φ(x, 0) = χ(x, 0) =: v1(x), x ∈ [0, 1],

u(0, y, 0) = φ(0, y) = ψ(y, 0) =: v2(y), y ∈ [0, 1], (1.3)

u(0, 0, z) = ψ(0, z) = χ(0, z) =: v3(z), z ∈ [0, 1],

u(0, 0, 0) = v1(0) = v2(0) = v3(0) =: v0.
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S is a separable metric space and F : Π× Rn × S → P(Rn) is a set-valued map.

Several existence results for solutions of Darboux problem (1.1)-(1.2) have been obtained by many
authors [3, 4, 6, 8–10] etc. As far as we know, there are no papers concerning qualitative properties of the
solutions of this problem, excepting [3], where it is proved the arcwise connectedness of the solution set of
this problem.

The aim of the present paper is to prove that the solution set of the problem (1.1)-(1.2) is a retract of a
convex set of a Banach space. At the same time this result provides the existence of continuous selections
of the solution set multifunction. Moreover, we prove that any two continuous selections from the solution
map are homotopic.

We essentially use a result of Bressan, Cellina and Fryszkowski [2] concerning the existence of a retraction
of a Banach space on the set of the fixed points of a contractive set-valued map, in the same way as this result
was used in [5] by De Blasi, Pianigiani and Staicu to obtain similar topological properties for ”classical”
hyperbolic differential inclusions. The results in this paper may be interpreted as extensions of the results
in [5] to hyperbolic differential inclusions of third order.

The paper is organized as follows: in Section 2 we present the notations, definitions and preliminary
results to be used in the sequel and in Section 3 we prove the main results.

2. Preliminaries

Let P(Rn) be the family of all nonempty subsets of Rn, let Π := [0, 1]× [0, 1]× [0, 1], Π1 := [0, 1]× [0, 1],
I = [0, 1], denote by L(Π) the σ-algebra of all Lebesgue measurable subsets of Π. Denote by B(Rn) the
family of all Borel subsets of Rn. If A ⊂ Π then χA(.) : Π → {0, 1} denotes the characteristic function of A.
For any subset A ⊂ Rn, we denote by cl(A) the closure of A.

In what follows, as usual, we denote by C(Π,Rn) the Banach space of all continuous functions
x(.) : Π → Rn endowed with the norm |x(.)|C = sup(x,y,z)∈Π ||x(t)|| and by L1(Π,Rn) the Banach space of

all integrable functions x(.) : Π → Rn. Given a : Π → Rn we denote by L1
a the Banach space of all integrable

functions σ(.) : Π → Rn with the norm

|σ|1 =
∫ ∫ ∫

Π
a(x, y, z)||σ(x, y, z)||dxdydz.

Let X be a real separable Banach space with the norm |.| and let (S, d) be a separable metric space. A
subset D ⊂ L1(Π, X) is said to be decomposable, if for any u(·), v(·) ∈ D and any subset A ∈ L(Π) one has
uχA + vχB ∈ D, where B = Π\A. We denote by D(Π, X) the family of all decomposable nonempty closed
subsets of L1(Π, X) and by D1(Π, X) the family of all decomposable non empty closed bounded subsets of
L1(Π, X).

Definition 2.1. Let Y be a Hausdorff topological space. A subspace X of Y is called retract of Y , if there
is a continuous map h : Y → X such that h(x) = x, ∀x ∈ X.
Let M,N be metric spaces with distances dM , resp. dN . We denote by K(M) the space of all nonempty
closed bounded subsets of M endowed with the Hausdorff metric dM , given by

HdM (A,B) = max{supy∈BdM (y,A), supx∈AdM (x,B)}, A,B ∈ K(M).

By BM (x, r), we denote the open ball in M centred at x with radius r > 0.
A multifunction F : N → K(M) is called Hausdorff lower ( resp. upper) semicontinuous, if ∀x0 ∈ N
and ε > 0, there exists δ > 0 such that F (x0) ⊂ {y ∈ M ; dM (y, F (x)) < ε} (resp. F (x) ⊂ {y ∈
M ; dM (y, F (x0)) < ε}) for every x ∈ BN (x0, δ). F is called Hausdorff continuous, if it is Hausdorff lower
and upper semicontinuous.

The next result [2] is essential in the proof of our main theorem.
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Theorem 2.2. Let E be a measure space with a finite, positive, nonatomic measure µ and let L1 := L1(E,X)
be the Banach space of all Bochner integrable functions u : E → X with the norm ||u||1 =

∫
E |u(t)|dµ(t).

We assume that L1 is separable. Let a(., .) : S × L1 → D1(E,X) be a Hausdorff continuous multifunction,
that is a contraction with respect to the second argument. Consider the set of fixed points

Fs := {u; u ∈ a(s, u)}.

Then there exists a continuous mapping g : S × L1 → L1 such that

g(s, u) ∈ Fs ∀u ∈ L1, g(s, u) = u ∀u ∈ Fs.

In what follows by Λ we mean the linear subspace of C(Π,Rn) consisting of all λ ∈ C(Π,Rn) such
that there exist continuous functions φ : Π1 → Rn, ψ : Π1 → Rn, χ : Π1 → Rn satisfying (1.3) with
λ(x, y, z) = φ(x, y) + ψ(y, z) + χ(x, z)− φ(x, 0)− φ(0, y)− ψ(0, z) + ψ(0, 0) = φ(x, y) + ψ(y, z) + χ(x, z)−
v1(x)−v2(y)−v3(z)+v0, (x, y, z) ∈ Π. Observe that Λ, equipped with the norm of C(Π,Rn), is a separable
Banach space. In order to study problems (1.1)-(1.3), we introduce the following assumption:

Hypothesis 2.3. i) F : Π×Rn×S → P(Rn) is L(Π)⊗B(Rn ×S) measurable with nonempty compact
values;

ii) For any (x, y, z, u) ∈ Π× Rn the set-valued map s→ F (x, y, s) is (Hausdorff) continuous on S;

iii) There exist h ∈ L1(Π,R), k ∈ L1(Π,R) such that

H(F (x, y, z, u, s), {0}) ≤ h(x, y, z), ∀(x, y, z, u, s) ∈ Π× Rn × S,

H(F (x, y, z, u1, s), F (x, y, z, u2, s)) ≤ k(x, y, z)||u1 − u2||,
∀ u1, u2 ∈ Rn, (x, y, z) ∈ Π, s ∈ S.

For (x, y, z) ∈ Π and ε > 0 we define,

Q(x, y, z) = [0, x]× [0, y]× [0, z], R(x, y, z) = [x, 1]× [y, 1]× [z, 1],

P (x, y, z, ε) = [x− ε, x+ ε]× [y − ε, y + ε]× [z − ε, z + ε].

For σ ∈ L1
a, consider the following Darboux problem:

uxyz(x, y, z) = σ(x, y, z),

u(x, y, 0) = φ(x, y), (2.1)

u(0, y, z) = ψ(y, z),

u(x, 0, z) = χ(x, z).

Definition 2.4. Let λ ∈ Λ. The function u ∈ C(Π,Rn) given by

u(x, y, z) = λ(x, y, z) +

∫ ∫ ∫
Q(x,y,z)

σ(ξ, η, µ)dξdηdµ, (x, y, z) ∈ Π,

is said to be a solution of (2.1).
Obviously, problem (2.1) has a unique solution, which will be denoted by uλ,σ.

Definition 2.5. Let Hypothesis 2.3 be satisfied and let λ ∈ Λ. A function u ∈ C(Π,Rn) is said to be a
solution of problem (1.1)-(1.2), if there exists a function σ ∈ L1

a such that

σ(x, y, z) ∈ F (x, y, z, u(x, y, z), s), a.e. (Π),

u(x, y, z) = λ(x, y, z) +

∫ ∫ ∫
Q(x,y,z)

σ(ξ, η, µ)dξdηdµ, (x, y, z) ∈ Π.

We denote by S(λ, s) the solution set of (1.1)-(1.2).
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Proposition 2.6. Let k(., .) ∈ L1(Π,R+) and α ∈ (0, 1). Then, there exists a continuous function a : Π →
R, a(x, y, z) > 0 ∀(x, y, z) ∈ Π such that, for any (x, y, z) ∈ Π, one has∫ ∫ ∫

R(x,y,z)
k(ξ, η, µ)a(ξ, η, µ)dξdηdµ = α(a(x, y, z)− 1).

Proof. For n ∈ N, consider xi = i/n, i = 0, 1, ..., n. Take n ∈ N such that∫ ∫ ∫
[xi−1,xi]×I×I

k(ξ, η, µ)dξdηdµ < α, 1 = 1, 2, ..., n.

Define T : Cn → Cn by (Ta)(x, y, z) = 1
α

∫ ∫ ∫
R(x,y,z) k(ξ, η, µ)a(ξ, η, µ)dξdηdµ+1, where Cn = C([xn−1, xn]×

I × I,R). Since,

|Ta1 − Ta2|C ≤ 1

α

∫ ∫ ∫
[xn−1,xn]×I×I

k(ξ, η, µ)dξdηdµ|a1 − a2|C < |a1 − a2|C ,

from Banach fixed point theorem, we deduce the existence of a continuous function an : [xn−1, xn]× I× I →
(0,∞) such that ∫ ∫ ∫

R(x,y,z)
k(ξ, η, µ)an(ξ, η, µ)dξdηdµ = α(an(x, y, z)− 1)

for any (x, y, z) ∈ [xn−1, xn]× I × I.
By induction, we find ai : [xi−1, xi]× I × I → (0,∞), i = 1, 2, ..., n− 1, such that∫ ∫ ∫

[x,xi]×[y,1]×[z,1]
k(ξ, η, µ)ai(ξ, η, µ)dξdηdµ = α(ai(x, y, z)− ai+1(x, y, z))

for any (x, y, z) ∈ [xi−1, xi]× I × I. Finally, we define a(., .) : Π → R by

a(x, y, z) :=
n∑

i=1

ai(x, y, z)χUi(x, y, z),

where U1 = [x0, x1]× I × I and Ui = (xi−1, xi]× I × I, i = 2, ..., n and the proof is completed.

Proposition 2.7. Consider T : Λ × L1
a → C(Π,Rn) defined by T (λ, σ) = uλ,σ, where uλ,σ is solution of

(2.1). Then T is a one-to-one maping.

Proof. Obviously, T is linear. In order to prove that T is injective, let (λi, σi) ∈ Λ× L1
a, i = 1, 2 such that

T (λ1, σ1) = T (λ2, σ2). It follows λ1 = λ2 and if we put σ = σ1 − σ2, we find∫ ∫ ∫
Q(x,y,z)

σ(ξ, η, µ)dξdηdµ = 0, ∀(x, y, z) ∈ Π. (2.2)

Consider L the set of Lebesgue points of σ(., .) which belongs to the interior of Π; the Lebesgue measure of
the set Π\L is 0 (e.g., [7] page 217) and for any (ξ, η, µ) ∈ L,

lim
ε→0

1

8ε3

∫ ∫ ∫
P (ξ,η,µ,ε)

(σ(ξ, η, µ)− σ(x, y, z))dxdydz = 0.

It is clear that

σ(ξ, η, µ) =
1

8ε3

∫ ∫ ∫
P (ξ,η,µ,ε)

(σ(ξ, η, µ)− σ(x, y, z))dxdydz (2.3)

+
1

8ε3

∫ ∫ ∫
P (ξ,η,µ,ε)

σ(x, y, z)dxdydz



Aurelian Cernea, Commun. Nonlinear Anal. 2 (2016), 95–103 99

and ∫ ∫ ∫
P (ξ,η,µ,ε)

σ(x, y, z)dxdydz =

∫ ∫ ∫
Q(x+ε,y+ε,z+ε)

σ(x, y, z)dxdydz

+

∫ ∫ ∫
Q(x+ε,y−ε,z−ε)

σ(x, y, z)dxdydz

+

∫ ∫ ∫
Q(x−ε,y+ε,z−ε)

σ(x, y, z)dxdydz

+

∫ ∫ ∫
Q(x−ε,y−ε,z+ε)

σ(x, y, z)dxdydz

−
∫ ∫ ∫

Q(x−ε,y+ε,z+ε)
σ(x, y, z)dxdydz

−
∫ ∫ ∫

Q(x+ε,y−ε,z+ε)
σ(x, y, z)dxdydz

−
∫ ∫ ∫

Q(x+ε,y+ε,z−ε)
σ(x, y, z)dxdydz

−
∫ ∫ ∫

Q(x−ε,y−ε,z−ε)
σ(x, y, z)dxdydz. (2.4)

From (2.2), (2.3) and (2.4), passing with ε→ 0, we obtain σ(ξ, η, µ) ≡ 0 and therefore σ1 = σ2.

Let (λ, s, v) ∈ Λ× S × L1
a, let u

λ,σ : Π → Rn be solution of (2.1). Define

V(λ, s, σ) := {g ∈ L1
a; g(x, y, z) ∈ F (x, y, z, uλ,σ(x, y, z), s), a.p.t.(Π)}. (2.5)

F(λ, s) := {g ∈ L1
a; g ∈ V(λ, s, σ)}. (2.6)

W = {u ∈ C(Π,Rn); ∃(λ, σ) ∈ Λ× L1
a such that u = uλ,σ}.

Since V(λ, s, σ) is a bounded closed decomposable set, (2.5) defines a set-valued map V : Λ×S×L1
a → D(L1

a).
From Proposition 2.7 for any u ∈W, there exists a unique pair (λ, σ) ∈ Λ×L1

a such that, u = uλ,σ. Therefore,
we denote by uλ,σ any element of W .
Let k(., .) ∈ L1(Π,R) as in Hypothesis 2.3 and a : Π → R the corresponding mapping given by Proposition
2.6. With this choice of a, for uλ,σ ∈W we define,

|uλ,σ|W = |uλ,σ|C + |σ|1. (2.7)

Proposition 2.8. W endowed with the norm defined in (2.7) is a Banach space.

Proof. Let T the map defined in Proposition 2.7. Since W = T (Λ × L1
a), W is a linear space. From the

injectivity of T , we find that |.|W is a norm on W . It remains to prove that W with the norm in (2.7) is
complete. Let {uλn,σn} a Cauchy sequence in W . If m,n ∈ N, we have

|uλn,σn − uλm,σm |W = |uλn,σn − uλm,σm |C + |σn − σm|1.

Since |λn − λm|C ≤ |uλn,σn − uλm,σm |C and {uλn,σn} is Cauchy in C(I,Rn), it follows that the sequence
{λn}n is convergent to some λ ∈ Λ. Similarly, we get that {σn}n converges to some σ ∈ L1

a.
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Obviously, if uλ,σ is solution of problem (2.1), then uλ,σ ∈W . Finally, taking into account Proposition 2.6,
one may write

||uλn,σn(x, y, z)− uλ,σ(x, y, z)|| ≤ |λn − λ|C +

∫ ∫ ∫
Q(x,y,z)

||σn(ξ, η, µ)− σ(ξ, η, µ)||dξdηdµ

= |λn − λ|C +

∫ ∫ ∫
Q(x,y,z)

1

a(ξ, η, µ)
a(ξ, η, µ)||σn(ξ, η, µ)− σ(ξ, η, µ)||dξdηdµ

< |λn − λ|C +

∫ ∫ ∫
Q(x,y,z)

a(ξ, η, µ)||σn(ξ, η, µ)− σ(ξ, η, µ)||dξdηdµ

≤ |λn − λ|C + |σn − σ|1

and thus uλn,σn converges to uλ,σ in W , i.e. W is completed.

For λ ∈ Λ we define,

W (λ) = {u ∈W ; u(x, y, 0) = λ(x, y, 0), u(0, y, z) = λ(0, y, z), u(x, 0, z) = λ(x, 0, z), ∀(x, y, z) ∈ Π}.

Clearly, W (λ) ⊂W is nonempty closed convex set and S(λ, s) ⊂W (λ), ∀s ∈ S.

3. Main results

We are able now to prove the main result of this paper.

Theorem 3.1. Assume that Hypothesis 2.3 is satisfied and define,

G = {(λ, s, u) ∈ Λ× S ×W ; (λ, s) ∈ Λ× S, u ∈W (λ)}.

Then, there exists a continuous mapping Φ : G→W such that for any (λ, µ) ∈ Λ× S,

Φ(λ, s, u) ∈ S(λ, s), ∀u ∈W (λ), (3.1)

Φ(λ, s, u) = u, ∀u ∈ S(λ, s). (3.2)

Proof. Consider V : Λ × S × L1
a → D(L1

a) the set-valued map defined in 2.5. First, we prove that V(.)
is (Hausdorff) continuous. At the begining, we show that V(.) is (Hausdorff) lower semicontinuous. By
contrary, assume that there exists ε > 0 and a sequence (λn, sn, σn)n∈N that converges to (λ0, s0, σ0) in
Λ× S × L1

a and a sequence gn ∈ L1
a with gn ∈ V(λ0, s0, σ0) such that

dL1
a
(gn,V(λn, sn, σn)) ≥ ε, ∀n ∈ N. (3.3)

For n ∈ N, we define Mn : Π → P(Rn) by

Mn(x, y, z) := F (x, y, z, uλn,σn(x, y, z), sn) ∩B(gn(x, y, z), d(gn(x, y, z), F (x, y, z, u
λn,σn(x, y, z), sn))).

Since the set-valued map Mn is measurable, there exists a measurable selection gn ∈ V(λn, sn, σn) such that
for a.e. (Π)

||gn(x, y, z)− gn(x, y, z)|| = d(gn(x, y, z), F (x, y, z, u
λn,σn(x, y, z), sn)).

Since gn(x, y, z) ∈ F (x, y, z, uλ0,σ0(x, y, z), s0), one has∫ ∫ ∫
Π
a(x, y, z)||gn(x, y, z)− gn(x, y, z)||dxdydz =∫ ∫ ∫

Π
a(x, y, z)H(F (x, y, z, uλ0,σ0(x, y, z), s0), F (x, y, z, u

λn,σn(x, y, z), sn))dxdydz ≤∫ ∫ ∫
Π
a(x, y, z)H(F (x, y, z, uλn,σn(x, y, z), sn), F (x, y, z, u

λ0,σ0(x, y, z), sn))dxdydz+∫ ∫ ∫
Π
a(x, y, z)H(F (x, y, z, uλ0,σ0(x, y, z), sn), F (x, y, z, u

λ0,σ0(x, y, z), s0))dxdydz.
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Let wn(., .) be the function under the second integral; using Hypothesis 2.3 we get,

|gn − gn|1 ≤
∫ ∫ ∫

Π
a(x, y, z)k(x, y, z)||uλn,σn(x, y, z)− uλ0,σ0(x, y, z)||dxdydz +

∫ ∫ ∫
Π
wn(x, y, z)dxdydz.

Letting n→ ∞, using Lebesgue’s dominated convergence Theorem, we obtain |gn − gn|1 → 0 as n→ ∞.
Therefore, there exists n0 ∈ N, such that |gn − gn|1 < 1

2ε, ∀n ≥ n0 and thus dL1
a
(gn,V(λn, sn, σn)) < ε

2 ,
∀n ≥ n0, which contradicts (3.3). So, V(.) is (Hausdorff) lower semicontinuous. Similarly, we can prove that
V(.) is (Hausdorff) upper semicontinuous. Hence V(.) is (Hausdorff) continuous.
Secondly, we prove that for any (λ, s, σ1), (λ, s, σ2) ∈ Λ× S × L1

a,

H(V(λ, s, σ1),V(λ, s, σ2)) ≤ α|σ1 − σ2|1. (3.4)

Let (λ, s, σi) ∈ Λ× S × L1
a, i = 1, 2. For any (x, y, z) ∈ Π we have,

||uλ,σ1(x, y, z)− uλ,σ2(x, y, z)|| ≤
∫ ∫ ∫

Q(x,y,z)
||σ1(ξ, η, µ)− σ2(ξ, η, µ)||dξdηdµ. (3.5)

Consider an arbitrary g1 ∈ V(λ, s, σ1) and take g2 ∈ V(λ, s, σ2) such that,

||g1(x, y, z)− g2(x, y, z)|| = d(g1(x, y, z), F (x, y, z, u
λ,σ2(x, y, z), s) a.e.(Π).

From the last equality, the fact that g1(x, y, z) ∈ F (x, y, z, uλ,σ1(x, y, z), s), (3.5) and Proposition 2.6 one
has

|g1 − g2|1 ≤
∫ ∫ ∫

Π
a(x, y, z)H(F (x, y, z, uλ,σ1(x, y, z), s), F (x, y, z, uλ,σ2(x, y, z), s))dxdydz

≤
∫ ∫ ∫

Π
a(x, y, z)k(x, y, z)||uλ,σ1(x, y, z)− uλ,σ2(x, y, z)||dxdydz

≤
∫ ∫ ∫

Π
a(x, y, z)k(x, y, z)(

∫ ∫ ∫
Q(x,y,z)

||σ1(ξ, η, µ)− σ2(ξ, η, µ)||dξdηdµ)dxdydz

=

∫ ∫ ∫
Π
||σ1(ξ, η, µ)− σ2(ξ, η, µ)||(

∫ ∫ ∫
R(ξ,η,µ)

a(x, y, z)k(x, y, z)dxdydz)dξdηdµ)

≤ α

∫ ∫ ∫
Π
||σ1(ξ, η, µ)− σ2(ξ, η, µ)||a(ξ, η, µ)dξdηdµ

= α|σ1 − σ2|1.

It follows that dL1
a
(g1,V(λ, s, σ2)) ≤ α|σ1 − σ2|1 and since g1 ∈ V(λ, s, σ1) is arbitrary, we deduce that

supg1∈V(λ,s,σ1) dL1
a
(g1,V(λ, s, σ2)) ≤ α|σ1−σ2|1. From the last inequality and the similar inequality obtained

by interchanging g1 with g2 we find (3.4).
In the next step of the proof, we apply Theorem 2.2 and we find a continuous function ϕ : Λ×S×L1

a → L1
a

such that, for any (λ, s) ∈ Λ× S,

ϕ(λ, s, σ) ∈ F(λ, s), ∀σ ∈ L1
a, (3.6)

ϕ(λ, s, σ) = σ, ∀σ ∈ F(λ, s). (3.7)

Let (λ, s, σ) ∈ G. Since u ∈W (λ), there exists σ ∈ L1
a such that u = uλ,σ with uλ,σ solution of (2.1). Thus

(λ, s, σ) = (λ, s, uλ,σ). Consider Φ(λ, s, uλ,σ) : Π → Rn defined by

Φ(λ, s, uλ,σ)(x, y, z) = λ(x, y, z) +

∫ ∫ ∫
Q(x,y,z)

ϕ(λ, s, σ)(ξ, η, µ)dξdηdµ. (3.8)
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Since Φ(λ, s, uλ,σ) = uλ,ϕ(λ,s,σ) the last equality defines a set-valued map Φ : G → P(W ). Next, we show
that Φ is continuous and satisfies (3.1) and (3.2). Take ε > 0, for (λ0, s0, u

λ0,σ0), (λ, s, uλ,σ) ∈ G we have

|Φ(λ, s, uλ,σ)− Φ(λ0, s0, u
λ0,σ0)|W = |uλ,ϕ(λ,s,σ) − uλ0,ϕ(λ0,s0,σ0)|C + |ϕ(λ, s, σ)− ϕ(λ0, s0, σ0)|1

≤ |λ− λ0|C + (1 +
1

m
) + |ϕ(λ, s, σ)− ϕ(λ0, s0, σ0)|1, (3.9)

where m = min(x,y,z)∈Π a(x, y, z) ≥ 1 (see Proposition 2.6).

Taking into account that ϕ is continuous we find δ ∈ (0, ε) such that if |λ − λ0|C < δ, d(s, s0) < δ,
|σ−σ0|1 < δ, then |ϕ(λ, s, σ)−ϕ(λ0, s0, σ0)|1 < ε. Take (λ, s, uλ,σ) ∈ G such that |λ−λ0|C < δ, d(s, s0) < δ,
|uλ,σ − uλ0,σ0 |W < δ. Since |σ − σ0|1 ≤ |uλ,σ − uλ0,σ0 |W < δ it follows |ϕ(λ, s, σ)− ϕ(λ0, s0, σ0)|1 < ε.
Therefore, from (3.9), we deduce |Φ(λ, s, uλ,σ) − Φ(λ0, s0, u

λ0,σ0)|W < δ + (1 + 1
m)ε < (2 + 1

m)ε i.e., Φ is
continuous.
Let, now (λ, s) ∈ Λ×S. If u ∈W (λ) there exists σ ∈ L1

a such that u = uλ,σ. From (3.6), ϕ(λ, s, σ) ∈ F(λ, s)
and thus uλ,ϕ(λ,s,σ) ∈ S(λ, s). But Φ(λ, s, uλ,σ) = uλ,ϕ(λ,s,σ) and uλ,σ = u, then Φ(λ, s, σ) ∈ S(λ, s) which
proves (3.1)
Consider, again, (λ, s) ∈ Λ × S and u ∈ S(λ, s). There exists σ ∈ V(λ, s, σ) such that uλ,σ = u. So,
σ ∈ F(λ, s) and by (3.7) ϕ(λ, s, σ) = σ. From the last equality and (3.8) we get Φ(λ, s, σ) = Φ(λ, s, uλ,σ) =
uλ,ϕ(λ,s,σ) = uλ,σ = u, which proves (3.2).

Remark 3.2. From Theorem 3.1, S(λ, s) ⊂W (λ) is a retract. Since W (λ) ⊂W is convex, from [1], page 85,
S(λ, s) ⊂W (λ) is an absolute retract. Therefore, S(λ, s) is a closed contractible subspace of W .

Corollary 3.3. Assume that Hypothesis 2.3 is satisfied. Then, there exists a continuous function τ : Λ×S →
W such that

τ(λ, s) ∈ S(λ, s), ∀(λ, s) ∈ Λ× S. (3.10)

Proof. For λ ∈ Λ we set u(λ) = uλ,0 solution of problem (2.1) (with σ = 0). Define τ : Λ × S → W by
τ(λ, s) := Φ(λ, s, u(λ)), where Φ(.) is the mapping constructed in Theorem 3.1. Since u(λ) ∈ W (λ), the
map τ is well defined. On the other hand, since |u(λ) − u(λ0)|W = |λ − λ0|C , ∀λ, λ0 ∈ Λ, τ is continuous
and from (3.1), τ(., .) satisfies (3.10).

Corollary 3.4. Assume that Hypothesis 2.3 is satisfied. For i = 1, 2, consider τi : Λ× S → W continuous
functions such that

τi(λ, s) ∈ S(λ, s), ∀(λ, s) ∈ Λ× S.

Then, there exists a continuous function h : Λ× S × I →W such that

i) h(λ, s, 0) = τ1(λ, s), h(λ, s, 1) = τ2(λ, s), ∀(λ, s) ∈ Λ× S;

ii) h(λ, s, x) ∈ S(λ, s), ∀(λ, s, x) ∈ Λ× S × I.

Proof. Define h : Λ× S × I →W , by

h(λ, s, x) := Φ(λ, s, (1− x)τ1(λ, s) + xτ2(λ, s)),

where Φ(.) is the mapping constructed in Theorem 3.1.
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