On the existence of solution for a singular Riemann-Liouville fractional differential system by using measure of non-compactness

Shahram Rezapour ${ }^{\text {a,* }}$, Mehdi Shabibi ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran.
${ }^{b}$ Department of Mathematics, Islamic Azad University, Ilam Branch, Ilam, Iran.

Abstract

We investigate the existence of solution for a singular fractional differential system with Riemann-Liouville integral boundary conditions by using the measure of non-compactness. © 2016 All rights reserved.

Keywords: measure of non-compactness, Riemann-Liouville fractional derivative, singular system. 2010 MSC: 34A08, 34B16, 47H08.

1. Introduction

Many works have been published on the existence of solutions for different singular fractional differential systems (see for example, [1], [6] and [7]-[9]). In 2012, the existence of positive solution for the singular equation $D^{\alpha} u(t)+f(t, u(t))=0$ with boundary conditions $u(1)=0$ and $\left[I^{2-\alpha} u(t)\right]_{t=0}^{\prime}=0$ investigated, where $t \in[0,1], \alpha \in(1,2)$ and D^{α} is the Riemann-Liouville fractional derivative ([3]). In 2013, the existence of positive solution for the system $D^{\alpha} u_{i}(t)+f_{i}\left(t, u_{1}(t), u_{2}(t)\right)=0(i=1,2)$ with boundary conditions $u_{1}(0)=u_{1}^{\prime}(0)=0, u_{1}(1)=\int_{0}^{1} u_{1}(t) d \eta(t), u_{2}(0)=u_{2}^{\prime}(0)=0$ and $u_{2}(1)=\int_{0}^{1} u_{2}(t) d \eta(t)$ investigated, where $t \in[0,1], \alpha \in(2,3], f_{1}, f_{2} \in C([0,1] \times[0, \infty) \times[0, \infty), \mathbb{R}), D^{\alpha}$ is the Riemann-Liouville fractional derivative and $\int_{0}^{1} u_{i}(t) d \eta(t)$ denotes the Riemann-Stieltjes integral ([10]). In 2014, the existence of solution for the problem $D^{\alpha} u(t)+f(t, u(t))=0$ with boundary conditions $u^{\prime}(0)=\ldots=u^{(n-1)}=0$ and $u(1)=\int_{0}^{1} u(s) d \mu(s)$ investigated, where $n \geq 2, \alpha \in(n-1, n), \mu$ is bounded variation, f may have singularity at $t=0$ and $\int_{0}^{1} d \mu(s)<1$ ([11]). By using the main idea of the above papers, we investigate the existence of solution for the singular system

$$
\left\{\begin{array}{l}
D^{\alpha_{1}} x(t)+f_{1}(t, x(t), y(t))=0, \tag{1.1}\\
D^{\alpha_{2}} y(t)+f_{2}(t, x(t), y(t))=0,
\end{array}\right.
$$

[^0]with boundary conditions $x(0)=y(0)=0, x^{(i)}(0)=y^{(i)}(0)=0$ for $i=2, \ldots, n-1, x(1)=\left[I^{p_{1}}\left(h_{1}(t) x(t)\right)\right]_{t=1}$ and $y(1)=\left[I^{p_{2}}\left(h_{2}(t) y(t)\right)\right]_{t=1}$, where $n \geq 3, \alpha_{1}, \alpha_{2} \in(n, n+1] p_{1}, p_{2} \geq 1, f_{1}, f_{2} \in C((0,1] \times[0, \infty) \times[0, \infty))$, f_{1}, f_{2} are singular at $t=0, h_{1}, h_{2} \in L^{1}[0,1]$ are non-negative and $\left[I^{p_{j}}\left(h_{j}(t)\right)\right]_{t=1} \in\left[0, \frac{1}{2}\right)$ for $j=1,2$ and f_{1}, f_{2} satisfy the local Caratheodory condition on $(0,1] \times(0, \infty) \times(0, \infty)$.
We say that f satisfies the local Caratheodory condition on $[0,1] \times(0, \infty) \times(0, \infty)$ and denote it by $f \in \operatorname{Car}([0,1] \times(0, \infty) \times(0, \infty))$, whenever the function $f(., x, y):[0,1] \rightarrow \mathbb{R}$ is measurable for all $(x, y) \in(0, \infty) \times(0, \infty)$, the function $f(t, .,):.(0, \infty) \times(0, \infty) \rightarrow \mathbb{R}$ is continuous for almost all $t \in[0,1]$ and for each compact subset κ of $(0, \infty) \times(0, \infty)$ there exists a function $\varphi_{\kappa} \in L^{1}[0,1]$ such that $|f(t, x, y)| \leq \varphi_{\kappa}(t)$ for almost all $t \in[0,1]$ and all $(x, y) \in \kappa$.

Definition 1.1 ([5]). The Riemann-Liouville integral of order p for a function $f:(0, \infty) \rightarrow \mathbb{R}$ is defined by

$$
I^{p} f(t)=\frac{1}{\Gamma(p)} \int_{0}^{t}(t-s)^{p-1} f(s) d s
$$

whenever the right-hand side is pointwise defined on $(0, \infty)$.
Definition $1.2([5])$. The Caputo fractional derivative of order $\alpha>0$ for a function $f:(a, \infty) \rightarrow \mathbb{R}$ is defined by

$$
{ }^{c} D^{\alpha} f(t)=\frac{1}{\Gamma(n-\alpha)} \int_{0}^{t} \frac{f^{n}(s)}{(t-s)^{\alpha+1-n}} d s
$$

where $n=[\alpha]+1$.
One can check that $\int_{0}^{t}(t-s)^{\alpha-1} s^{\beta} d s=B(\beta+1, \alpha) t^{\alpha+\beta}$ for all $\beta>0$ and $\alpha>-1$, where $B(\beta, \alpha)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}$ ([9]).
Suppose that X is a Banach space and m_{X} denotes the collection of all bounded subset of X.
Definition $1.3([4])$. A function $\mu: m_{X} \rightarrow[0, \infty)$ is called a measure of non-compactness, if it satisfies the following conditions:
(1) $\mu(Q)=0$ if and only if Q is relatively compact.
(2) $\mu\left(Q_{1}\right) \leq \mu\left(Q_{2}\right)$ whenever $Q_{1} \subset Q_{2}$,
(3) $\mu(\overline{\operatorname{conv}(Q)})=\mu(Q)$.
(4) $\mu\left(Q_{1} \cup Q_{2}\right)=\max \left\{\mu\left(Q_{1}\right), \mu\left(Q_{2}\right)\right\}$.
(5) $\mu\left(Q_{1}+Q_{2}\right) \leq \mu\left(Q_{1}\right)+\mu\left(Q_{2}\right)$.
(6) $\mu(\lambda Q)=|\lambda| \mu(Q)$ for all scalar λ,
for $Q \in m_{X}$.
The Kuratowski measure of non-compactness of Q is denoted by $K(Q)$ and defined by

$$
K(Q)=\inf \left\{\epsilon>0: Q \subset \bigcup_{i=1}^{n} S_{i} \text { and } \operatorname{diam}\left(S_{i}\right)<\epsilon \text { for } i=1, \ldots, n\right\}
$$

([4]). If Q is unbounded, then put $K(Q)=\infty$ and $K(Q)=0$ whenever $Q=\emptyset([4])$. Note that, $K(Q) \leq \operatorname{diam}(Q)$ for all $Q \in m_{X}([4])$.

Lemma 1.4 ([9]). Suppose that $0<n-1 \leq \alpha<n$ and $x \in C[0,1] \cap L^{1}[0,1]$. Then, we have

$$
I^{\alpha} D^{\alpha} x(t)=x(t)+\sum_{i=0}^{n-1} c_{i} t^{i}
$$

for some real constants c_{0}, \ldots, c_{n-1}.

Theorem 1.5 ([2]). Let C be a nonempty, bounded, closed and convex subset of a Banach space X, K the Kuratowski measure of non-compactness on X and $T: C \rightarrow C$ a continuous operator. If there exists a constant $c \in[0,1)$ such that $K(T(Q)) \leq c . K(Q)$ for all $Q \subset C$, then T has a fixed point.

Now, we provide our first key result.
Lemma 1.6. Let $y \in L^{1}[0,1], p \geq 1$ and $\alpha \geq 3$. Then $x(t)=\int_{0}^{1} G(t, s) y(s) d s$ is a solution for the problem $D^{\alpha} x(t)+y(t)=0$ with boundary conditions $x(0)=x^{(2)}(0)=\cdots=x^{(n-1)}(0)=0$ and $x(1)=$ $\left[I^{p}(h(t) x(t))\right]_{t=1}$, where $h \in L^{1}[0,1]$,

$$
G(t, s)=G_{1}(t, s)+\frac{t}{\mu(p)} \int_{0}^{1}(1-t)^{p-1} h(t) G_{1}(t, s) d t
$$

$G_{1}(t, s)=\frac{t(1-s)^{\alpha-1}}{\Gamma(\alpha)}$ whenever $0 \leq t \leq s \leq 1, G_{1}(t, s)=\frac{t(1-s)^{\alpha-1}-(t-s)^{\alpha-1}}{\Gamma(\alpha)}$ whenever $0 \leq s \leq t \leq 1$ and $\mu(p)=\Gamma(p)-\int_{0}^{1} t(1-t)^{p-1} h(t) d t$.

Proof. By using Lemma 1.4, we have $x(t)=-\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} y(s) d s+c_{0}+c_{1} t+\ldots+c_{n} t^{n}$ for some real constants. Since $x(0)=x^{(i)}(0)=0$ for $i \geq 2$, we get $c_{0}=c_{2}=c_{3}=\ldots=c_{n}=0$. Thus, $x(t)=$ $-\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} y(s) d s+c_{1} t$. Since $\left[I^{p}(h(t) x(t))\right]_{t=1}=\frac{1}{\Gamma(p)} \int_{0}^{1}(1-s)^{p-1} h(s) d s$, by using the boundary condition at $t=1$ we obtain

$$
-\frac{1}{\Gamma(\alpha)} \int_{0}^{1}(1-s)^{\alpha-1} y(s) d s+c_{1}=\frac{1}{\Gamma(p)} \int_{0}^{1}(1-s)^{p-1} h(s) d s
$$

and so $c_{1}=\frac{1}{\Gamma(p)} \int_{0}^{1}(1-s)^{p-1} h(s) x(s) d s+\frac{1}{\Gamma(\alpha)} \int_{0}^{1}(1-s)^{\alpha-1} y(s) d s$. Thus,

$$
\begin{aligned}
x(t) & =-\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} y(s) d s+\frac{t}{\Gamma(\alpha)} \int_{0}^{1}(1-s)^{\alpha-1} y(s) d s+\frac{t}{\Gamma(p)} \int_{0}^{1}(1-s)^{p-1} h(s) d s \\
& =\int_{0}^{1} G_{1}(t, s) y(s) d s+t\left[I^{p}(h(t) x(t))\right]_{t=1}
\end{aligned}
$$

which implies

$$
\begin{aligned}
{\left[I^{p}(h(t) x(t))\right]_{t=1}=} & \frac{1}{\Gamma(p)} \int_{0}^{1} \int_{0}^{1}(1-t)^{p-1} h(t) G_{1}(t, s) y(s) d s d t \\
& +\frac{1}{\Gamma(p)} \int_{0}^{1}(1-t)^{p-1} t h(t)\left[I^{p}(h(t) x(t))\right]_{t=1} d t
\end{aligned}
$$

Since $\left[I^{p}(h(t) x(t))\right]_{t=1}=\int_{0}^{1}\left[I^{p}(h(t) x(t))\right]_{t=1} d t$, we get

$$
\int_{0}^{1}\left(1-\frac{1}{\Gamma(p)}(1-t)^{p-1} t h(t)\right)\left[I^{p}(h(t) x(t))\right]_{t=1} d t=\frac{1}{\Gamma(p)} \int_{0}^{1}(1-t)^{p-1} h(t) \int_{0}^{1} G_{1}(t, s) y(s) d s d t
$$

Hence,

$$
\left[I^{p}(h(t) x(t))\right]_{t=1}\left(1-\frac{1}{\Gamma(p)} \int_{0}^{1}(1-t)^{p-1} t h(t) d t\right)=\frac{1}{\Gamma(p)} \int_{0}^{1}(1-t)^{p-1} h(t) \int_{0}^{1} G_{1}(t, s) y(s) d s d t
$$

and so $\left[I^{p}(h(t) x(t))\right]_{t=1}=\frac{\int_{0}^{1}(1-t)^{p-1} h(t) \int_{0}^{1} G_{1}(t, s) y(s) d s d t}{\Gamma(p)\left(1-\frac{1}{\Gamma(p)} \int_{0}^{1}(1-t)^{p-1} t h(t) d t\right)}$. This implies that

$$
x(t)=\int_{0}^{1} G_{1}(t, s) y(s) d s+\frac{t \int_{0}^{1}(1-t)^{p-1} h(t) \int_{0}^{1} G_{1}(t, s) y(s) d s d t}{\Gamma(p)-\int_{0}^{1}(1-t)^{p-1} t h(t) d t}=\int_{0}^{1} G(t, s) y(s) d s
$$

where $G(t, s)=G_{1}(t, s)+\frac{t}{\mu(p)} \int_{0}^{1}(1-t)^{p-1} h(t) G_{1}(t, s) d t$.

By using some calculations, one can see that $G(t, s) \geq 0$ and $G(t, s) \leq \frac{(1-s)^{\alpha-1}}{\Gamma(\alpha-1)}(1+\Lambda(p))$ for all $t, s \in[0,1]$, where $\Lambda(p)=\frac{1}{\mu(p)} \int_{0}^{1}(1-t)^{p-1} h(t) d t$.
Now for each natural number n, consider the map $f_{i, n}(t, x, y)=f_{i}\left(t, \chi_{n}(x), \chi_{n}(y)\right)$, where $\chi_{n}(x)=x$ whenever $x \geq \frac{1}{n}$ and $\chi_{n}(x)=\frac{1}{n}$ whenever $x<\frac{1}{n}$. Here, we first investigate the regular system

$$
\left\{\begin{array}{l}
D^{\alpha_{1}} x+f_{1, n}(t, x, y)=0 \tag{1.2}\\
D^{\alpha_{2}} y+f_{2, n}(t, x, y)=0
\end{array}\right.
$$

with same boundary conditions in the problem (1). For each $n \geq 1$ and $i=1,2$, consider the map $T_{n, i}(x, y)(t)=\int_{0}^{1} G_{\alpha_{i}}(t, s) f_{n, i}(s, x(s), y(s)) d s$, where $G_{\alpha_{i}}(t, s)$ is the Green function in Lemma 1.6 which replaced α and p by α_{i} and p_{i}. Put

$$
T_{n}(x, y)(t)=\left(T_{n, 1}(x, y)(t), T_{n, 2}(x, y)(t)\right)
$$

and

$$
\left\|T_{n}(x, y)(t)\right\|_{*}=\max \left\{T_{n, 1}(x, y)(t), T_{n, 2}(x, y)(t)\right\}
$$

Since $f_{1}, f_{2} \in \operatorname{Car}\left([0,1] \times \mathbb{R}^{2}\right)$, it is easy to check that $f_{n, 1}, f_{n, 2} \in \operatorname{Car}\left([0,1] \times \mathbb{R}^{2}\right)$ for all n and so there exist $\varphi_{1}, \varphi_{2} \in L^{1}[0,1]$ such that $\left|f_{n, i}(t, x(t), y(t))\right| \leq \varphi_{i}(t)$ for almost all $t \in[0,1], n \geq 1$ and $i=1$, 2 . Now, consider the set $C=\left\{(x, y) \in C[0,1] \times C[0,1]:\|(x, y)\|_{*} \leq\|\varphi\|_{\infty}^{*}\right\}$, where $\|\varphi\|_{\infty}^{*}=\max \left\{\left\|\varphi_{1}\right\|_{\infty},\left\|\varphi_{2}\right\|_{\infty}\right\}$. Note that, C is closed, bounded and convex.

Lemma 1.7. For each $n \geq 1, T_{n}$ maps C into C and is equi-continuous on each bounded subset of $C([0,1], \mathbb{R}) \times C([0,1], \mathbb{R})$.
Proof. Let $n \geq 1$ and $(x, y) \in C$ be given. First, we show that T_{n} maps C into C. Note that,

$$
T_{n, i}(x, y)(t) \leq \int_{0}^{1} \frac{(1-s)^{\alpha_{i}-1}}{\Gamma\left(\alpha_{i}-1\right)}\left(1+\frac{1}{\mu\left(p_{i}\right)} \int_{0}^{1}(1-t)^{p_{i}-1} h_{i}(t) d t\right) f_{n, i}(s, x(s), y(s)) d s
$$

for $i=1,2$. Hence,

$$
\begin{equation*}
T_{n, i}(x, y)(t) \leq \int_{0}^{1} \frac{(1-s)^{\alpha_{i}-1}}{\Gamma\left(\alpha_{i}-1\right)}\left(1+\frac{1}{\mu\left(p_{i}\right)} \int_{0}^{1}(1-t)^{p_{i}-1} h_{i}(t) d t\right) \varphi_{i}(s) d s \tag{1.3}
\end{equation*}
$$

for $i=1,2$. Since $\left[I^{p_{i}}\left(h_{i}(t)\right)\right]_{t=1} \in\left[0, \frac{1}{2}\right), \frac{1}{\Gamma\left(p_{i}\right)} \int_{0}^{1}(1-t)^{p_{i}-1} h_{i}(t) d t \in\left[0, \frac{1}{2}\right)$. Also, we have

$$
\frac{1}{\Gamma\left(p_{i}\right)} \int_{0}^{1}(1-t)^{p_{i}-1} t h_{i}(t) d t \leq \frac{1}{\Gamma\left(p_{i}\right)} \int_{0}^{1}(1-t)^{p_{i}-1} h_{i}(t) d t
$$

Thus, $\frac{1}{\Gamma\left(p_{i}\right)} \int_{0}^{1}(1-t)^{p_{i}-1} t h_{i}(t) d t \in\left[0, \frac{1}{2}\right)$ and so $\left.1-\frac{1}{\Gamma\left(p_{i}\right)} \int_{0}^{1}(1-t)^{p_{i}-1} t h_{i}(t) d t\right) \in\left[0, \frac{1}{2}\right)$. This implies that

$$
\begin{aligned}
\frac{1}{\mu\left(p_{i}\right)} \int_{0}^{1}(1-t)^{p_{i}-1} h_{i}(t) d t & =\frac{\int_{0}^{1}(1-t)^{p_{i}-1} h_{i}(t) d t}{\Gamma\left(p_{i}\right)-\int_{0}^{1}(1-t)^{p_{i}-1} t h_{i}(t) d t} \\
& =\frac{\frac{1}{\Gamma\left(p_{i}\right)} \int_{0}^{1}(1-t)^{p_{i}-1} h_{i}(t) d t}{1-\frac{1}{\Gamma\left(p_{i}\right)} \int_{0}^{1}(1-t)^{p_{i}-1} t h_{i}(t) d t} \in[0,1)
\end{aligned}
$$

and so $1+\frac{1}{\mu\left(p_{i}\right)} \int_{0}^{1}(1-t)^{p_{i}-1} h_{i}(t) d t \leq 2$. By using this inequality and (1.3), we get

$$
\begin{aligned}
T_{n, i}(x, y)(t) & \leq \frac{2}{\Gamma\left(\alpha_{i}-1\right)} \int_{0}^{1}(1-s)^{\alpha_{i}-1} \varphi_{i}(s) d s \leq \frac{2\left\|\varphi_{i}\right\|_{\infty}}{\Gamma\left(\alpha_{i}-1\right)} \int_{0}^{1}(1-s)^{\alpha_{i}-1} d s \\
& =\frac{2}{\Gamma\left(\alpha_{i}\right)}\left\|\varphi_{i}\right\|_{\infty} \leq\left\|\varphi_{i}\right\|_{\infty} \leq\|\varphi\|_{\infty}^{*}
\end{aligned}
$$

and so $\left\|T_{n}(x, y)\right\|_{*} \leq\|\varphi\|_{\infty}^{*}$. Now, we show that T is equi-continuous on each bounded subset F of $C([0,1], \mathbb{R}) \times C([0,1], \mathbb{R})$. Let $\left\{\left(x_{k}, y_{k}\right)\right\}_{k=1}^{\infty}$ be a bounded sequence in F and $0 \leq t_{1}<t_{2} \leq 1$. Then, we have

$$
\begin{aligned}
\mid T_{i, n}\left(x_{k}, y_{k}\right)\left(t_{2}\right) & -T_{i, n}\left(x_{k}, y_{k}\right)\left(t_{1}\right) \left\lvert\, \leq \frac{1}{\Gamma\left(\alpha_{i}\right)}\left[\int_{0}^{t_{1}}\left[\left(t_{2}-s\right)^{\alpha_{i}-1}-\left(t_{1}-s\right)^{\alpha_{i}-1}\right]\right.\right. \\
& \left.\times f_{n, i}\left(s, x_{k}(s), y_{k}(s)\right) d s+\int_{t_{1}}^{t_{2}}\left(t_{2}-s\right)^{\alpha_{i}-1} f_{n, i}\left(s, x_{k}(s), y_{k}(s)\right)\right] d s \\
& +\left(t_{2}-t_{1}\right) \int_{0}^{1}\left[\frac{(1-s)^{\alpha_{i}-1}}{\Gamma\left(\alpha_{i}\right)}+G_{2, i}(s)\right] f_{n, i}\left(s, x_{k}(s), y_{k}(s)\right) d s \\
& \leq \frac{1}{\Gamma\left(\alpha_{i}\right)}\left[\int_{0}^{1}\left[\left(t_{2}-s\right)^{\alpha_{i}-1}-\left(t_{1}-s\right)^{\alpha_{i}-1}\right] \varphi_{i}(s) d s+\left(t_{2}-t_{1}\right)^{\alpha_{i}-1}\left\|\varphi_{i}\right\|_{1}\right. \\
& +\left(t_{2}-t_{1}\right)\left\|\varphi_{i}\right\|_{1}\left(\frac{1}{\Gamma\left(\alpha_{i}\right)}+\Lambda_{i}\left(p_{i}\right)\right)
\end{aligned}
$$

where for $i=1,2, \Lambda_{i}\left(p_{i}\right)=\frac{1}{\mu\left(p_{i}\right)} \int_{0}^{1}(1-t)^{p_{i}-1} h_{i}(t) d t, G_{2, i}(s)=\frac{1}{\mu\left(p_{i}\right)} \int_{0}^{1}(1-t)^{p_{i}-1} h_{i}(t) G_{1, i}(t, s) d t$ and $G_{1, i}(t, s)$ is defined as $G_{1}(t, s)$ by replacing α_{i} instead α. Let $0<\epsilon<1,0 \leq t_{1}<t_{2} \leq 1$ and $0 \leq s \leq t_{1}$. Choose $\delta>0$ such that $t_{1}-t_{2}<\delta$ implies $\left(t_{2}-s\right)^{\alpha_{i}-1}-\left(t_{1}-s\right)^{\alpha_{i}-1}<\epsilon$ for $i=1,2$. Let $k \geq 1$ and $0 \leq t_{1}<t_{2} \leq 1$ with $t_{1}-t_{2}<\min \{\delta, \epsilon\}$ be given. Then, we have

$$
\left|T_{i, n}\left(x_{k}, y_{k}\right)\left(t_{2}\right)-T_{i, n}\left(x_{k}, y_{k}\right)\left(t_{1}\right)\right| \leq \epsilon\left\|\varphi_{i}\right\|_{1}\left(\frac{3}{\Gamma\left(\alpha_{i}\right)}+\Lambda_{i}\left(p_{i}\right)\right)
$$

and so $\lim _{t_{2} \rightarrow t_{1}}\left\|T_{n}\left(x_{k}, y_{k}\right)\left(t_{2}\right)-T_{n}\left(x_{k}, y_{k}\right)\left(t_{1}\right)\right\|_{*}=0$. Also, we have

$$
\begin{aligned}
\left\|T_{n}\left(x_{k}, y_{k}\right)(t)\right\|_{*} & \leq \max \left\{\int_{0}^{1} \frac{(1-s)^{\alpha_{1}-1}}{\Gamma\left(\alpha_{1}-1\right)}\left(1+G_{2,1}(s)\right) \varphi_{1}(s) d s, \int_{0}^{1} \frac{(1-s)^{\alpha_{2}-1}}{\Gamma\left(\alpha_{2}-1\right)}\left(1+G_{2,2}(s)\right) \varphi_{2}(s) d s\right\} \\
& \leq \max \left\{\frac{\left\|\varphi_{1}\right\|_{1}\left(1+\Lambda_{1}\left(p_{1}\right)\right)}{\Gamma\left(\alpha_{1}-1\right)}, \frac{\left\|\varphi_{2}\right\|_{1}\left(1+\Lambda_{2}\left(p_{2}\right)\right)}{\Gamma\left(\alpha_{2}-1\right)}\right\}
\end{aligned}
$$

Let $\left\{\left(x_{k}, y_{k}\right)\right\}_{k=1}^{\infty}$ be sequence in F and $\left(x_{k}, y_{k}\right) \rightarrow(x, y)$. Hence, $x_{k} \rightarrow x, y_{k} \rightarrow y$. Note that,

$$
\begin{aligned}
\left\|T_{n}\left(x_{k}, y_{k}\right)(t)-T_{n}(x, y)(t)\right\|_{*} & \leq \max \left\{\int_{0}^{1} G_{\alpha_{1}}(t, s)\left|f_{1, n}\left(s, x_{k}(s), y_{k}(s)\right)-f_{1, n}(s, x(s), y(s))\right| d s\right. \\
& \left.\int_{0}^{1} G_{\alpha_{2}}(t, s)\left|f_{2, n}\left(s, x_{k}(s), y_{k}(s)\right)-f_{2, n}(s, x(s), y(s))\right| d s\right\} \\
& \leq 2\|\varphi\|_{1}^{*}\left(\frac{1}{\Gamma\left(\alpha_{m}-1\right)}\left(1+\Lambda_{M}\right)\right)
\end{aligned}
$$

where $\alpha_{m}=\min \left\{\alpha_{1}, \alpha_{2}\right\}$ and $\Lambda_{M}=\max \left\{\Lambda_{1}\left(p_{1}\right), \Lambda_{2}\left(p_{2}\right)\right\}$. Since

$$
\left|f_{i, n}\left(s, x_{k}(s), y_{k}(s)\right)-f_{i, n}(s, x(s), y(s))\right| \rightarrow 0
$$

for $i=1,2$, by using the Lebesgue dominated convergence Theorem, we conclude that T_{n} is equi-continuous on F for all n.

2. Main Results

Theorem 2.1. Let $n \geq 3, f_{1}, f_{2} \in \operatorname{Car}\left([0,1] \times(0, \infty)^{2}\right), \alpha_{1}, \alpha_{2} \in(n, n+1], p_{1}, p_{2} \geq 1, h_{1}, h_{2} \in L^{1}[0,1]$ be nonnegative functions and $\left[I^{p_{1}}\left(h_{1}(t)\right)\right]_{t=1},\left[I^{p_{1}}\left(h_{1}(t)\right)\right]_{t=1} \in\left[0, \frac{1}{2}\right)$. Suppose that there exist $g_{1}, g_{2} \in L^{1}([0,1])$ such that $\left\|g_{i}\right\|_{1}<\frac{\Gamma\left(\alpha_{i}-1\right)}{2}$ for almost all $t \in[0,1]$ and $i=1,2$. Assume that $K\left(f_{i}(t, Q)\right) \leq g_{i}(t) K(Q)$ for all
bounded subset Q of $C[0,1] \times C[0,1]$ and $i=1,2$, where K is the Kuratowski measure of non-compactness. Then, for each $n \geq 1$ the system

$$
\left\{\begin{array}{l}
D^{\alpha_{1}} x+f_{1, n}(t, x, y)=0 \\
D^{\alpha_{2}} y+f_{2, n}(t, x, y)=0
\end{array}\right.
$$

with boundary conditions $x(0)=y(0)=0, x^{(i)}(0)=y^{(i)}(0)=0$ for $i=2, \ldots, n-1, x(1)=\left[I^{p_{1}}\left(h_{1}(t) x(t)\right)\right]_{t=1}$ and $y(1)=\left[I^{p_{2}}\left(h_{2}(t) y(t)\right)\right]_{t=1}$ has a solution.

Proof. Let Q be a bounded subset $C[0,1] \times C[0,1], n \in \mathbb{N}$ and $i=1$ or 2 . Choose bounded sets $F, S \subset C[0,1]$ such that $Q=(F, S)$. Put $F_{1}:=\left\{x \in F: x \geq \frac{1}{n}\right\}$ and $S_{1}:=\left\{x \in S: x \geq \frac{1}{n}\right\}$. Then, we have

$$
\begin{aligned}
K\left(f_{i, n}(t, Q)\right) & =K\left(f_{i, n}(t, F, S)\right)=K\left(f_{i}\left(t, \chi_{n}(F), \chi_{n}(S)\right)\right) \leq K\left(\chi_{n}(F), \chi_{n}(S)\right) \\
& =K\left(F_{1} \cup\left\{\frac{1}{n}\right\}, S_{1} \cup\left\{\frac{1}{n}\right\}\right)=K\left(\left(F_{1}, S_{1}\right) \cup\left(\frac{1}{n}, S_{1}\right) \cup\left(F_{1}, \frac{1}{n}\right)\right) \\
& =\max \left\{K\left(F_{1}, S_{1}\right), K\left(S_{1}, \frac{1}{n}\right), K\left(F_{1}, \frac{1}{n}\right)\right\}
\end{aligned}
$$

If $K\left(S_{1}\right)=\rho$, then there exist $W_{i} \subset C[0,1]$ and $m \in \mathbb{N}$ such that $S_{1} \subset \bigcup_{i=1}^{m} W_{i}$ and $\operatorname{diam}\left(W_{i}\right)<\rho$. Hence, $\left(\frac{1}{n}, S_{1}\right) \subset \bigcup_{i=1}^{m}\left(\frac{1}{n}, W_{i}\right)$,

$$
\operatorname{diam}\left(a, W_{i}\right)=\sup _{\xi, \eta \in W_{i}}\left\|\left(\frac{1}{n}, \xi\right)-\left(\frac{1}{n}, \eta\right)\right\|_{*}=\sup _{\xi, \eta \in E_{i}}|\xi-\eta|=\operatorname{diam}\left(W_{i}\right)
$$

and $K\left(\frac{1}{n}, S_{1}\right) \leq K\left(S_{1}\right)$. By using a similar method, we conclude that $K\left(S_{1}\right) \leq K\left(\frac{1}{n}, S_{1}\right)$. Thus, $K\left(S_{1}\right)=$ $K\left(\frac{1}{n}, S_{1}\right)$ and $K\left(F_{1}\right)=K\left(F_{1}, \frac{1}{n}\right)$. Thus, there exist $m_{0} \in \mathbb{N}$ and $\left(E_{i}, H_{i}\right) \subset C[0,1] \times C[0,1]$ such that $\left(F_{1}, S_{1}\right) \subset \bigcup_{i=1}^{m_{0}}\left(E_{i}, H_{i}\right)$ and $\operatorname{diam}\left(E_{i}, H_{i}\right) \leq \rho_{0}$ whenever $K\left(F_{1}, S_{1}\right)=\rho_{0}$. This implies that

$$
\sup \left\{\left\|(e, h)-\left(e^{\prime}, h^{\prime}\right)\right\|_{*}:(e, h),\left(e^{\prime}, h^{\prime}\right) \in\left(E_{i}, H_{i}\right)\right\} \leq \rho_{0}
$$

and so

$$
\sup \left\{\max \left\{\left|e-e^{\prime}\right|,\left|h-h^{\prime}\right|\right\}: e, e^{\prime} \in E_{i}, h, h^{\prime} \in H_{i}\right\} \leq \rho_{0}
$$

Hence, $\sup _{e, e^{\prime} \in E_{i}}\left|e-e^{\prime}\right| \leq \rho_{0}$ and $\sup _{h, h^{\prime} \in H_{i}}\left|h-h^{\prime}\right| \leq \rho_{0}$. Thus, $F_{1} \subset \bigcup_{i=1}^{m_{0}} E_{i}$ with $\operatorname{diam}\left(E_{i}\right) \leq \rho_{0}$ and $S_{1} \subset \bigcup_{i=1}^{m_{0}} H_{i}$ with $\operatorname{diam}\left(H_{i}\right) \leq \rho_{0}$ for all i. This implies that $K\left(F_{1}\right) \leq K\left(F_{1}, S_{1}\right)$ and $K\left(S_{1}\right) \leq K\left(F_{1}, S_{1}\right)$. Hence, $\max \left\{K\left(F_{1}, S_{1}\right), K\left(\frac{1}{n}, S_{1}\right), K\left(F_{1}, \frac{1}{n}\right)\right\}=K\left(F_{1}, S_{1}\right)$ and so

$$
K\left(f_{i, n}(t, Q)\right) \leq g_{i}(t) K\left(F_{1}, S_{1}\right) \leq g_{i}(t) K(Q)
$$

for all i. Also, we have $K\left(T_{n}(Q)\right)=K\left(\int_{0}^{1} G_{\alpha_{1}}(t, s) f_{1, n}(s, Q) d s, \int_{0}^{1} G_{\alpha_{2}}(t, s) f_{2, n}(s, Q) d s\right)$. For each $s \in[0,1]$, $n \in \mathbb{N}$ and $i=1,2$, put $\rho_{i}(s):=K\left(f_{i, n}(s, Q)\right) \leq g_{i}(s) K(Q)$. Choose a natural number k_{0} and bounded sets $U_{i, j} \subset C[0,1] \times C[0,1](i=1,2)$ such that $f_{i, n}(s, Q) \subseteq \bigcup_{j=1}^{k_{0}} U_{i, j}$. Then, we have $\operatorname{diam}\left(U_{i, j}\right) \leq \rho_{i}(s) \leq$ $g_{i}(s) K(Q)$ and

$$
G_{\alpha_{i}}(t, s) f_{i, n}(s, Q) \subseteq \int_{0}^{1} \bigcup_{j=1}^{k_{0}} \theta_{i}(s) U_{i, j} d s=\bigcup_{j=1}^{k_{0}} \int_{0}^{1} \theta_{i}(s) U_{i, j} d s
$$

for $i=1,2$, where $\theta_{i}(s)=\frac{(1-s)^{\alpha}}{\Gamma\left(\alpha_{i}-1\right)}\left(1+\Lambda_{i}\right)$ and $\int_{0}^{1} \theta_{i}(s) U_{i, j} d s=\left\{\int_{0}^{1} \theta_{i}(s) u(s) d s: u \in U_{i, j}\right\}$. Thus,

$$
\begin{aligned}
\operatorname{diam}\left(\int_{0}^{1} \theta_{i}(s) U_{i, j} d s\right) & =\sup _{u, u^{\prime} \in U_{i, j}}\left|\int_{0}^{1} \theta_{i}(s) u(s) d s-\int_{0}^{1} \theta_{i}(s) u^{\prime}(s) d s\right| \\
& =\sup _{u, u^{\prime} \in U_{i, j}}\left|\int_{0}^{1} \theta_{i}(s)\right| u(s)-u^{\prime}(s) \mid d s \leq \int_{0}^{1} \theta_{i}(s) \operatorname{diam}\left(U_{i, j}\right) d s \leq \int_{0}^{1} \theta_{i}(s) \rho_{i}(s) d s
\end{aligned}
$$

and so

$$
\begin{aligned}
K\left(\int_{0}^{1} G_{\alpha_{i}}(t, s) f_{i, n}(s, Q) d s\right) & \leq \int_{0}^{1} \theta_{i}(s) K\left(f_{i, n}(s, Q)\right) d s \leq \int_{0}^{1} \theta_{i}(s) g_{i}(s) K(Q) d s \\
& \leq K(Q)\left\|\theta_{i}\right\|_{\infty}\left\|g_{i}\right\|_{1} \leq k_{i} K(Q)
\end{aligned}
$$

where $k_{i}=\left\|\theta_{i}\right\|_{\infty}\left\|g_{i}\right\|_{1}$. It is easy to check that $k_{i} \in[0,1)$ for all $i=1,2$. By using last inequality, we get $\max _{i=1,2}\left\{K\left(\int_{0}^{1} G_{\alpha_{i}}(t, s) f_{i, n}(s, Q) d s\right)\right\} \leq k K(Q)$, where $k=\max \left\{k_{1}, k_{2}\right\}$.
Now, we show that $K(A, B)=\max \{K(A), K(B)\}$. As it proved in first part, $K(A) \leq K(A, B)$ and $K(B) \leq K(A, B)$, where $A, B \subset X:=C[0,1] \times C[0,1]$ are bounded sets and $\|(., .)\|_{* *}$ defined on X^{2} by $\left\|\left(e_{1}, e_{2}\right)\right\|_{* *}=\max \left\{\left\|e_{1}\right\|_{*},\left\|e_{2}\right\|_{*}\right\}$. It is known that $\left(X^{2},\|(., .)\|_{* *}\right)$ is a Banach space. Let $K(A):=r_{1}$, $K(B):=r_{2}$ and $r:=\max \left\{r_{1}, r_{2}\right\}$. Choose natural numbers n_{1} and n_{2} such that $A \subset \bigcup_{i=1}^{n_{1}} Z_{i}$ and $B \subset$ $\bigcup_{j=1}^{n_{2}} V_{j}$, where $Z_{i}, V_{j} \subset X, \operatorname{diam}\left(Z_{i}\right)<r_{1}$ and $\operatorname{diam}\left(V_{j}\right)<r_{2}$ for $i=1, \ldots, n_{1}$ and $j=1, \ldots, n_{2}$. Without less of generality suppose that $n_{1} \geq n_{2}$ (in other case the proof is similar). Put $V_{n_{2}+1}=V_{n_{2}+2}=\ldots=$ $V_{n_{1}}:=V_{n_{2}}$. Then, $(A, B) \subset \bigcup_{i=1}^{n_{1}}\left(Z_{i}, V_{i}\right)$ and for each $i=1, \ldots, n_{1}$, we have

$$
\begin{aligned}
\operatorname{diam}\left(Z_{i}, V_{i}\right) & =\sup _{z, z^{\prime} \in Z_{i}, v v^{\prime} \in V_{i}}\left\|(z, v)-\left(z^{\prime}, v^{\prime}\right)\right\|_{* *}=\sup _{z, z^{\prime} \in Z_{i}, v, v^{\prime} \in V_{i}}\left\|\left(z-z^{\prime}, v-v^{\prime}\right)\right\|_{* *} \\
& =\sup _{z, z^{\prime} \in Z_{i}, v v^{\prime} \in V_{i}}\left\{\max \left\{\left\|\left(z-z^{\prime}\right)\right\|_{*},\left\|\left(v-v^{\prime}\right)\right\|_{*}\right\}\right\} \leq \max \left\{r_{1}, r_{2}\right\}=r .
\end{aligned}
$$

Hence, $K(A, B) \leq \max \{K(A), K(B)\}$ and so $K(A, B)=\max \{K(A), K(B)\}$. Thus,

$$
\begin{aligned}
K\left(T_{n}(Q)\right) & =K\left(\int_{0}^{1} G_{\alpha_{1}}(t, s) f_{1, n}(s, Q) d s, \int_{0}^{1} G_{\alpha_{2}}(t, s) f_{2, n}(s, Q) d s\right) \\
& =\max _{i=1,2}\left\{\int_{0}^{1} G_{\alpha_{i}}(t, s) f_{i, n}(s, Q) d s\right\} \leq k K(Q) .
\end{aligned}
$$

By using the Darbo's fixed point theorem, T_{n} has a fixed point in C for all n. This implies that the system has a solution $\left(x_{n}, y_{n}\right) \in C$, that is,

$$
x_{n}(t)=\int_{0}^{1} G_{\alpha_{1}}(t, s) f_{1, n}\left(s, x_{n}(s), y_{n}(s)\right) d s
$$

and

$$
y_{n}(t)=\int_{0}^{1} G_{\alpha_{2}}(t, s) f_{2, n}\left(s, x_{n}(s), y_{n}(s)\right) d s
$$

Now, we provide our main result.
Theorem 2.2. Let $n \geq 3, f_{1}, f_{2} \in \operatorname{Car}\left([0,1] \times(0, \infty)^{2}\right), \alpha_{1}, \alpha_{2} \in(n, n+1], p_{1}, p_{2} \geq 1$ and $h_{1}, h_{2} \in L^{1}[0,1]$ be non-negative functions with $\left[I^{p_{1}}\left(h_{1}(t)\right)\right]_{t=1},\left[I^{p_{1}}\left(h_{1}(t)\right)\right]_{t=1} \in\left[0, \frac{1}{2}\right)$. Suppose that there exist $g_{1}, g_{2} \in L^{1}([0,1])$ such that $\left\|g_{i}\right\|_{1}<\frac{\Gamma\left(\alpha_{i}-1\right)}{2}$ and $K\left(f_{i}(t, Q)\right) \leq g_{i}(t) K(Q)$ for $i=1,2$, where $K(Q)$ is the Kuratowski measure of non-compactness of a bounded set Q. Then the singular system

$$
\left\{\begin{array}{l}
D^{\alpha_{1}} x+f_{1}(t, x, y)=0, \\
D^{\alpha_{2}} y+f_{2}(t, x, y)=0,
\end{array}\right.
$$

with boundary conditions $x(0)=y(0)=0, x^{(i)}(0)=y^{(i)}(0)=0$ for $i=2, \ldots, n-1, x(1)=\left[I^{p_{1}}\left(h_{1}(t) x(t)\right)\right]_{t=1}$ and $y(1)=\left[I^{p_{2}}\left(h_{2}(t) y(t)\right)\right]_{t=1}$ has a solution in C.

Proof. By using Theorem 2.1, the problem (1.2) has a solution $\left(x_{n}, y_{n}\right) \in C$ for all n. Since C is closed, there is $(x, y) \in C$ such that $\lim _{n \rightarrow \infty}\left(x_{n}, y_{n}\right)=(x, y)$. It is easy to check that (x, y) satisfies the boundary condition of the problem (1.1). Also, one can check that $\lim _{n \rightarrow \infty} f_{i, n}\left(t, x_{n}(t), y_{n}(t)\right)=f_{i}(t, x(t), y(t))$ for almost all $t \in[0,1]$ and $i=1,2$. On the other hand, we have $G_{\alpha_{i}}(t, s) f_{i, n}\left(s, x_{n}(s), y_{n}(s)\right) \leq \frac{1+\Lambda_{i}\left(p_{i}\right)}{\Gamma\left(\alpha_{i}-1\right)} \varphi_{i}(s)$ for all $n, i=1,2$ and almost all $(t, s) \in[0,1] \times[0,1]$. Now by using the Lebesgue dominated convergence theorem, we obtain $x(t)=\int_{0}^{1} G_{\alpha_{1}}(t, s) f_{1, n}(s, x(s), y(s)) d s$ and $y(t)=\int_{0}^{1} G_{\alpha_{2}}(t, s) f_{2, n}(s, x(s), y(s)) d s$. This implies that, (x, y) is a solution for the problem (1.1).

Here, we provide an example to illustrate our main result.
Example 2.3. Consider the singular fractional system

$$
\left\{\begin{array}{l}
D^{\frac{7}{2}} x(t)+\frac{0.3}{t^{\frac{1}{2}}}\left(\frac{1}{2} x(t)+\frac{1}{3} y(t)\right)=0 \tag{2.1}\\
D^{\frac{10}{3}} x(t)+\frac{0.2}{t^{\frac{1}{3}}}\left(\frac{1}{4} x(t)+\frac{3}{5} y(t)\right)=0
\end{array}\right.
$$

with boundary conditions $x(0)=y(0)=x^{\prime}(0)=y^{\prime}(0)=x^{\prime \prime}(0)=y^{\prime \prime}(0)=0, x(1)=\left[I^{\frac{3}{2}}(t x(t))\right]_{t=1}$ and $y(1)=\left[I^{\frac{5}{2}}\left(t^{\frac{1}{2}} y(t)\right)\right]_{t=1}$. Now, consider the maps $f_{1}(t, x, y)=\frac{0.3}{t^{\frac{1}{2}}}\left(\frac{1}{2} x+\frac{1}{3} y\right), f_{2}(t, x, y)=\frac{0.2}{t^{\frac{1}{3}}}\left(\frac{1}{4} x+\frac{3}{5} y\right)$, $g_{1}(t)=\frac{0.3}{t^{\frac{1}{2}}}, g_{2}(t)=\frac{0.2}{t^{\frac{1}{3}}}, u(x, y)=\frac{1}{2} x+\frac{1}{3} y$ and $v(x, y)=\frac{1}{4} x+\frac{3}{5} y$. Put $\alpha_{1}=\frac{7}{2}, \alpha_{2}=\frac{10}{3}, p_{1}=\frac{3}{2}, p_{2}=\frac{5}{2}$, $h_{1}(t)=t, h_{2}(t)=t^{\frac{1}{2}}$. It is easy to check that $f_{1}, f_{2} \in \operatorname{Car}\left([0,1] \times(0, \infty)^{2}\right), g_{1}, g_{2} \in L^{1}[0,1]$ are non-negative and $h_{1}, h_{2} \in L^{1}[0,1]$. Also, we have

$$
\begin{gathered}
{\left[I^{p_{1}}\left(h_{1}(t)\right]_{t=1}=\left[I^{\frac{3}{2}}(t)\right]_{t=1}=\frac{1}{\Gamma\left(\frac{3}{2}\right)} \int_{0}^{1}(1-s)^{\frac{1}{2}} s d s=\frac{1}{\Gamma\left(\frac{3}{2}\right)} \frac{\Gamma(2) \Gamma\left(\frac{3}{2}\right)}{\Gamma\left(2+\frac{3}{2}\right)}=\frac{2}{\sqrt{\pi}} \frac{4}{15} \in\left[0, \frac{1}{2}\right)\right.} \\
{\left[I^{p_{2}}\left(h_{2}(t)\right]_{t=1}=\left[I^{\frac{5}{2}}\left(t^{\frac{1}{2}}\right)\right]_{t=1}=\frac{1}{\Gamma\left(\frac{5}{2}\right)} \int_{0}^{1}(1-s)^{\frac{3}{2}} s^{\frac{1}{2}} d s=\frac{1}{\Gamma\left(\frac{5}{2}\right)} \frac{\Gamma\left(\frac{3}{2}\right) \Gamma\left(\frac{5}{2}\right)}{\Gamma(4)}=\frac{1}{\frac{3 \sqrt{\pi}}{4}} \frac{\frac{\sqrt{\pi}}{2} \frac{3 \sqrt{\pi}}{4}}{6}=\frac{\sqrt{\pi}}{12} \in\left[0, \frac{1}{2}\right),\right.} \\
\left\|g_{1}\right\|_{1}=\int_{0}^{1} \frac{0.3}{t^{\frac{1}{2}}} d t=0.6<\frac{3 \sqrt{\pi}}{8}=\frac{\Gamma\left(\frac{7}{2}-1\right)}{2}=\frac{\Gamma\left(\alpha_{1}-1\right)}{2}
\end{gathered}
$$

and $\left\|g_{2}\right\|_{1}=\int_{0}^{1} \frac{0.2}{t^{\frac{1}{3}}} d t=0.3<\frac{\Gamma\left(\frac{10}{3}-1\right)}{2}=\frac{\Gamma\left(\alpha_{2}-1\right)}{2}$. On the other hand, we have

$$
\begin{aligned}
K(u(Q)) & =K(u((A, B)))=K\left(\frac{1}{2} A+\frac{1}{3} B\right) \\
& =\max \{K(A), K(B)\}\left(\frac{1}{2}+\frac{1}{3}\right)=K(Q)\left(\frac{1}{2}+\frac{1}{3}\right) \leq K(Q)
\end{aligned}
$$

for all $Q=(A, B) \subset C[0,1] \times C[0,1]$. Since $f_{1}(t, x, y)=g(t) u(x, y)$, we get

$$
K(f(t, Q))=K\left(g_{1}(t) u(Q)\right)=g_{1}(t) K(u(Q)) \leq g_{1}(t) K(Q)
$$

By using a similar method, we get $K(f(t, Q))=K\left(g_{1}(t) u(Q)\right)=g_{1}(t) K(u(Q)) \leq g_{1}(t) K(Q)$. Now by using Theorem 2.2, the system (2.1) has a solution.

References

[1] Z. Bai, T. Qui, Existence of positive solution for singular fractional differential equation, Appl. Math. Comput., 215 (2009), 2761-2767. 1
[2] G. Darbo, Punti uniti in transformazioni a condominio non compatto, Rend. Sem. Math. Univ. Padova., 24 (1955), 84-92. 1.5
[3] Y. Liu, H. Shi, Existence of unbounded positive solutions for BVPs of singular fractional differential equations, J. Nonlinear Sci. App., 5 (2012), 281-293. 1
[4] E. Malkowsky, V. Rakocevi, An introduction into the theory of sequence spaces and measure of non-compactness, Zb. rad. Beogr., 17 (2000), 143-234. 1.3, 1
[5] I. Podlubny, Fractional differential equations, Academic Press, (1999). 1.1, 1.2
[6] Sh. Rezapour, M. Shabibi, A singular fractional differential equation with Riemann-Liouville integral boundary condition, J. Adv. Math. Stud., 8 (2015), 80-88. 1
[7] M. Shabibi, Sh. Rezapour, S. M. Vaezpour, A singular fractional integro-differential equation, to appear in Univ. Politech. Buch. Sci. Bull. Ser. A. 1
[8] S. Stanek, The existence of positive solutions of singular fractional boundary value problems, Comput. Math. Appl., 62 (2011), 1379-1388.
[9] N. E. Tatar, An impulsive nonlinear singular version of the Gronwall-Bihari inequality, J. Inequal. Appl., 2006 (2006), 12 pages. 1, 1, 1.4
[10] Y. Wang, Positive solution for a system of fractional integral boundary value problem, Bound. Value probl., 2013 (2013), 2013, 14 pages. 1
[11] R. Yan, Sh. Sun, H. Lu, Y. Zhao, Existence of solutions for fractional differential equations with integral boundary conditions, Adv. Difference Equ., 2014 (2014), 13 pages.

[^0]: *Corresponding author
 Email addresses: sh.rezapour@azaruniv.edu (Shahram Rezapour), mehdi_math1983@yahoo.com (Mehdi Shabibi)

