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Abstract

In this short note, we point out and rectify an error in a recently published paper “C Zhu, X Mu, Z Wu,
Common coupled fixed point results for probabilistic φ-contractions in Menger PGM-spaces, J. Nonlinear
Sci. Appl., 8 (2015), 1166–1175”. c⃝2016 All rights reserved.
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In [1], the authors showed the existence and uniqueness of common coupled fixed points for probabilistic
φ-contractions in the setup of Menger PGM-spaces. The reader should consult [1] for terms not specifically
defined in this note.

Remark 1. The authors in [1] claimed that Example 3.1 supports Theorem 2.1. In Theorem 2.1, the t-norm
∆ is considered to be a t-norm of H-type such that ∆ ≥ ∆p but in Example 3.1, the t-norm considered is
∆p, which is actually not a t-norm of H-type. So, Example 3.1 is not correct.

In order to rectify this mistake, we reconstruct the illustration given as Example 3.1 in [1] as follows:

Example 2. Let X = [0,+∞) and ∆ = ∆m, then ∆ is a t-norm of H-type such that ∆ ≥ ∆p. Define
G∗ : X ×X ×X → D+ by

G∗
x,y,z(t) =

{
0, t ≤ 0,

e−max{|x−y|,|y−z|,|z−x|}/t, t > 0
(1)
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for all x, y, z ∈ X. Then (X,G∗,∆m) is a complete Menger PGM-space (see, [2]). We define the mappings
T : X ×X → X and A : X → X by T (x, y) = 1 and A(x) = (2+ x)/3 for all x, y ∈ X, respectively. Clearly
T (X × X) ⊂ A(X) and A is continuous. Also, A is commutative with T , since for all x, y ∈ X, we have
A(T (x, y)) = A(1) = 1 = T (A(x), A(y)) and A(T (y, x)) = A(1) = 1 = T (A(y), A(x)). Let φ : R+ → R+

be a gauge function such that φ−1({0}) = {0} and
∑∞

n=1 φ
n(t) < +∞ for any t > 0. We verify that for all

x, y, z, p, q, l ∈ X and t > 0, the functions A and T satisfy the following inequality (2.1) of [1]:

G∗
T (x,y),T (p,q),T (h,l)(φ(t)) ≥ [∆(G∗

Ax,Ap,Ah(t), G
∗
Ay,Aq,Al(t))]

1/2. (2)

For each x, y, z, p, q, l ∈ X and t > 0, we have G∗
T (x,y),T (p,q),T (h,l)(φ(t)) = G∗

1,1,1(φ(t)) = 1. Then, clearly the

inequality (2) holds. Thus all the conditions of Theorem 2.1 of [1] are satisfied. Therefore, by Theorem 2.1
of [1], the mappings A and T have a unique common coupled fixed point in X, which is indeed 1 in the
present illustration.

We next give another example in support of Theorem 2.1 in [1].

Example 3. Let X = [0,+∞) and ∆ = ∆m, then ∆ is a t-norm of H-type such that ∆ ≥ ∆p. Define the
mappings H : [0,+∞) → [0,+∞) and G∗ : X ×X ×X → D+ respectively by

H(t) =

{
0, t = 0,

1, t > 0
(3)

and

G∗
x,y,z(t) =

{
H(t), x = y = z,

αt
αt+|x−y|+|y−z|+|z−x| , otherwise

(4)

for all x, y, z ∈ X, where α > 0. Then (X,G∗,∆m) is a complete Menger PGM-space (see, [3]). We define the

mappings T : X ×X → X and A : X → X by T (x, y) = β and A(x) = 3β2+βx
2β+2x , for all x, y ∈ X respectively

and β is a fixed positive real number. Clearly T (X ×X) ⊂ A(X), A is continuous and A is commutative
with T . Let φ : R+ → R+ be a gauge function such that φ−1({0}) = {0} and

∑∞
n=1 φ

n(t) < +∞ for any
t > 0. We verify that for all x, y, z, p, q, l ∈ X and t > 0, the functions A and T satisfy the inequality
(2.1) of [1] stated as inequality (2) in the present paper. For each x, y, z, p, q, l ∈ X and t > 0, we have
G∗

T (x,y),T (p,q),T (h,l)(φ(t)) = G∗
β,β,β(φ(t)) = 1. Then, clearly the inequality (2) holds. Thus all the conditions

of Theorem 2.1 of [1] are satisfied. Therefore, by applying Theorem 2.1 of [1], β is the unique common
coupled fixed point of T and A.
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