A Note on "Common Coupled Fixed Point Results for Probabilistic φ-Contractions in Menger PGM-Spaces"

Manish Jain ${ }^{\text {a,b,* }}$, Neetu Gupta ${ }^{\text {b }}$, Sanjay Kumar ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, Ahir College, Rewari 123401, India.
${ }^{b}$ Department of Mathematics, YMCAUST, Faridabad, India.
${ }^{c}$ Department of Mathematics, DCRUST, Murthal, Sonepat, India.

Abstract

In this short note, we point out and rectify an error in a recently published paper "C $\mathrm{Zhu}, \mathrm{X} \mathrm{Mu}, \mathrm{Z} \mathrm{Wu}$, Common coupled fixed point results for probabilistic φ-contractions in Menger PGM-spaces, J. Nonlinear Sci. Appl., 8 (2015), 1166-1175". ©2016 All rights reserved.

Keywords: Common coupled fixed point, t-norm of H-type, Menger PGM-spaces. 2010 MSC: Primary 47H10, Secondary 54H25.

In [1], the authors showed the existence and uniqueness of common coupled fixed points for probabilistic φ-contractions in the setup of Menger PGM-spaces. The reader should consult [1] for terms not specifically defined in this note.

Remark 1. The authors in [1] claimed that Example 3.1 supports Theorem 2.1. In Theorem 2.1, the t-norm Δ is considered to be a t-norm of H -type such that $\Delta \geq \Delta_{p}$ but in Example 3.1, the t -norm considered is Δ_{p}, which is actually not a t-norm of H-type. So, Example 3.1 is not correct.

In order to rectify this mistake, we reconstruct the illustration given as Example 3.1 in [1] as follows:
Example 2. Let $X=[0,+\infty)$ and $\Delta=\Delta_{m}$, then Δ is a t-norm of H-type such that $\Delta \geq \Delta_{p}$. Define $G^{*}: X \times X \times X \rightarrow D^{+}$by

$$
G_{x, y, z}^{*}(t)= \begin{cases}0, & t \leq 0, \tag{1}\\ e^{-\max \{|x-y|,|y-z|,|z-x|\} / t}, & t>0\end{cases}
$$

[^0]for all $x, y, z \in X$. Then $\left(X, G^{*}, \Delta_{m}\right)$ is a complete Menger PGM-space (see, [2]). We define the mappings $T: X \times X \rightarrow X$ and $A: X \rightarrow X$ by $T(x, y)=1$ and $A(x)=(2+x) / 3$ for all $x, y \in X$, respectively. Clearly $T(X \times X) \subset A(X)$ and A is continuous. Also, A is commutative with T, since for all $x, y \in X$, we have $A(T(x, y))=A(1)=1=T(A(x), A(y))$ and $A(T(y, x))=A(1)=1=T(A(y), A(x))$. Let $\varphi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ be a gauge function such that $\varphi^{-1}(\{0\})=\{0\}$ and $\sum_{n=1}^{\infty} \varphi^{n}(t)<+\infty$ for any $t>0$. We verify that for all $x, y, z, p, q, l \in X$ and $t>0$, the functions A and T satisfy the following inequality (2.1) of [1]:
\[

$$
\begin{equation*}
G_{T(x, y), T(p, q), T(h, l)}^{*}(\varphi(t)) \geq\left[\Delta\left(G_{A x, A p, A h}^{*}(t), G_{A y, A q, A l}^{*}(t)\right)\right]^{1 / 2} . \tag{2}
\end{equation*}
$$

\]

For each $x, y, z, p, q, l \in X$ and $t>0$, we have $G_{T(x, y), T(p, q), T(h, l)}^{*}(\varphi(t))=G_{1,1,1}^{*}(\varphi(t))=1$. Then, clearly the inequality (2) holds. Thus all the conditions of Theorem 2.1 of [1] are satisfied. Therefore, by Theorem 2.1 of [1], the mappings A and T have a unique common coupled fixed point in X, which is indeed 1 in the present illustration.

We next give another example in support of Theorem 2.1 in [1].
Example 3. Let $X=[0,+\infty)$ and $\Delta=\Delta_{m}$, then Δ is a t-norm of H-type such that $\Delta \geq \Delta_{p}$. Define the mappings $H:[0,+\infty) \rightarrow[0,+\infty)$ and $G^{*}: X \times X \times X \rightarrow D^{+}$respectively by

$$
H(t)= \begin{cases}0, & t=0, \tag{3}\\ 1, & t>0\end{cases}
$$

and

$$
G_{x, y, z}^{*}(t)= \begin{cases}H(t), & x=y=z, \tag{4}\\ \frac{\alpha t}{\alpha t+|x-y|+|y-z|+|z-x|}, & \text { otherwise }\end{cases}
$$

for all $x, y, z \in X$, where $\alpha>0$. Then $\left(X, G^{*}, \Delta_{m}\right)$ is a complete Menger PGM-space (see, [3]). We define the mappings $T: X \times X \rightarrow X$ and $A: X \rightarrow X$ by $T(x, y)=\beta$ and $A(x)=\frac{3 \beta^{2}+\beta x}{2 \beta+2 x}$, for all $x, y \in X$ respectively and β is a fixed positive real number. Clearly $T(X \times X) \subset A(X), A$ is continuous and A is commutative with T. Let $\varphi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a gauge function such that $\varphi^{-1}(\{0\})=\{0\}$ and $\sum_{n=1}^{\infty} \varphi^{n}(t)<+\infty$ for any $t>0$. We verify that for all $x, y, z, p, q, l \in X$ and $t>0$, the functions A and T satisfy the inequality (2.1) of [1] stated as inequality (2) in the present paper. For each $x, y, z, p, q, l \in X$ and $t>0$, we have $G_{T(x, y), T(p, q), T(h, l)}^{*}(\varphi(t))=G_{\beta, \beta, \beta}^{*}(\varphi(t))=1$. Then, clearly the inequality (2) holds. Thus all the conditions of Theorem 2.1 of [1] are satisfied. Therefore, by applying Theorem 2.1 of [1], β is the unique common coupled fixed point of T and A.

References

[1] C. Zhu, X. Mu, Z. Wu, Common coupled fixed point results for probabilistic φ-contractions in Menger PGM-spaces, J. Nonlinear Sci. Appl., 8 (2015), 1166-1175. c, 1, c, 2, 2, 3
[2] C. Zhu, W. Xu, Z. Wu, Some Fixed Point Theorems in Generalized Probabilistic Metric Spaces, Abst. Appl. Anal., 2014 (2014), 8 pages. 2
[3] J. F. Tian, X. M. Hu, G. Zhang, Fixed point results for probabilistic φ-contractions in generalized probabilistic metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 1150-1165. 3

[^0]: *Corresponding author
 Email addresses: manish_261283@rediffmail.com (Manish Jain), neetuymca@yahoo.co.in (Neetu Gupta), sanjuciet@rediffmail.com (Sanjay Kumar)

