

Proximal pairs and P-KKM mappings

Abdolrahman Razani^{a,*}, Nasrin Karamikabir^b

^aDepartment of Mathematics, Faculty of Science, Imam Khomeini International University, P. O. Box 34149-16818, Qazvin, Iran.

^bDepartment of Mathematics, College of Basic Science, Hamedan Branch, Islamic Azad University, Hamedan, Iran.

Abstract

We introduced a new class of multi-valued mappings, called P-KKM mappings, which generalized the notation of R-KKM maps of Raj and Somasundaram [KKM-type theorem for best proximity points, Applied Mathematics Letters, 25 (2012), 496-499] and appropriate to best proximity theory. An analog version of KKM property and a common fixed point theorem is also proved. ©2016 All rights reserved.

Keywords: P-KKM mapping, proximal pair, normed linear space. 2010 MSC: 47H10, 49J35.

1. Introduction

Let X, Y be nonempty subsets of a metric space (M,d) and $d(X,Y) = \inf\{d(x,y) : x \in X, y \in Y\}$. Let $G: X \multimap X$ and $F: X \multimap Y$ be multi-valued maps. $(G(x_0), F(x_0))$ is called a best proximity pair for F with respect to G [3], if

$$d(G(x_0), F(x_0)) = d(X, Y).$$

Since $d(G(x), F(x)) \ge d(X, Y)$, the optimal solution to the problem of minimizing the real-valued function $X \to d(G(x), F(x))$ will be one for which valued d(X, Y) is attained. The best proximity pair theorems in normed linear spaces, has been studied by many authors; see for example([1, 2, 3, 6, 7]).

In 2012, Raj and Somasudaram introduced R-KKM mappings which fit into best proximity point theory [5].

Definition 1.1 ([5]). Let X, Y be nonempty subsets of a metric space (M, d). The pair (X, Y) is said to be proximal pair, if for each $(x, y) \in (X, Y)$, there exists $(\tilde{x}, \tilde{y}) \in (X, Y)$ such that $d(x, \tilde{y}) = d(\tilde{x}, y) = d(X, Y)$.

^{*}Corresponding author

Email addresses: razani@ipm.ir (Abdolrahman Razani), n.karamikabir@iauh.ac.ir (Nasrin Karamikabir)

Let

$$X_0 = \{x \in X : d(x, y) = d(X, Y) \text{ for some } y \in Y\}, Y_0 = \{y \in Y : d(x, y) = d(X, Y) \text{ for some } x \in X\}.$$

The pair (X, Y) is a proximal pair if and only if $X = X_0$ and $Y = Y_0$. If X and Y are nonempty subset of a normed linear space E such that d(X, Y) > 0, then $X_0 \subseteq bd(X)$ and $Y_0 \subseteq bd(Y)$, where bd(X) denotes the boundary of X for any $X \subseteq E$ [7, Proposition 3.1].

Definition 1.2 ([5]). Let (X, Y) is nonempty proximal pair of a normed linear space E. A multi-valued mapping $T: X \multimap Y$ is said to be a R-KKM map, if for any $\{x_1, ..., x_n\}$ of X, there exists $\{y_1, ..., y_n\}$ of Y with $||x_i - y_i|| = d(X, Y)$ for all i = 1, ..., n, such that $co(\{y_1, ..., y_n\}) \subseteq \bigcup_{i=1}^n T(x_i)$.

A subset C of a normed linear space E is said to be finitely closed, if $C \cap L$ is closed for every finite dimensional subspace L of E.

Theorem 1.3 ([5]). Let (X, Y) be a nonempty proximal pair in a normed linear space E and $F : X \multimap Y$ be an R-KKM map such that F(x) is finitely closed, for all $x \in X$. Then the family $\{F(x) : x \in X\}$ has the finite intersection property.

Theorem 1.4 ([5]). Let (X, Y) be a nonempty proximal pair in a normed linear space E and $F : X \multimap Y$ be an R-KKM map. If for each $x \in X$, F(x) is closed in E and there exists at least one $x_0 \in X$ such that $F(x_0)$ is compact in E, then $\cap \{F(x) : x \in X\}$ is nonempty.

We recall some definitions and theorems which are used in this paper. Let X be a vector space and $D \subseteq X$. A multi-valued mapping $F: D \multimap X$ is said to be a KKM map, if $co(\{x_1, ..., x_n\}) \subseteq \bigcup_{i=1}^n F(x_i)$ for each finite subset $\{x_1, ..., x_n\} \subseteq D$, where $co(\{x_1, ..., x_n\})$ denotes the convex hull of $\{x_1, ..., x_n\}$. Let X and Y are nonempty subsets of a topological vector space. Let $F: X \multimap Y$ and $G: Y \multimap Y$ be

multi-valued mappings such that for each nonempty finite set $\{x_1, ..., x_n\} \subseteq X$, there exists a set $\{y_1, ..., y_n\}$ of points of Y, not necessarily all different, such that for each subset $\{y_{i_1}, ..., y_{i_k}\}$ of $\{y_1, ..., y_n\}$, we have

$$G(co(\{y_{i_1}, ..., y_{i_k}\})) \subseteq \bigcup_{j=1}^k F(x_{i_j}).$$

Then F is called a generalized KKM mapping with respect to G. If the multi-valued mapping $G: Y \to Y$ satisfies the requirement that for any generalized KKM mapping $F: X \to Y$ with respect to G the family $\{\overline{F(x)}: x \in X\}$ has the finite intersection property, then G is said to have the KKM property. We denote

$$KKM(X) = \{G : X \multimap X : G \text{ has the KKM Property } \}.$$

We say that the multi-valued map $F: X \multimap Y$ has a continuous selection, if there exist a continuous function $f: X \to Y$ such that $f(x) \in F(x)$ for each $x \in X$. We denote

 $\mathcal{S}(X,Y) = \{F : X \multimap Y : F \text{ has a continuous selection } \}.$

The continuous functions have the KKM property. Thus if a multi-valued mapping G has a continuous selection, then G has trivially KKM property [3].

In this paper, we introduced a generalization of R-KKM mappings (we called P-KKM mappings) which is suitable for best proximity theory and proved an analog version of KKM property. Then we find a best proximity pair for F with respect to G. Finally we give a common fixed point theorem for P-KKM mappings.

2. P-KKM mappings

This section is devoted to formulate a new generalized version of KKM mappings.

Definition 2.1. Let (X, Y) be a nonempty proximal pair of a normed linear space E. A multi-valued mapping $F : X \multimap Y$ is said to be a P-KKM map with respect to $G : X \multimap X$, if for any finite subset $\{x_1, ..., x_n\}$ of X, there exists a finite subset $\{y_1, ..., y_n\}$ of Y with $co(\{y_1, ..., y_n\}) \subseteq Y$ and $||x_i - y_i|| = d(X, Y)$ and there exists a bijective continuous map $r : Y \to X$ by $r(y_i) = x_i$ for all i = 1, ..., n such that,

$$r^{-1} \circ G \circ r(co\{y_i : i \in I\}) \subseteq \bigcup_{i \in I} F(x_i),$$

for each nonempty subset I of $\{1, ..., n\}$.

Remark 2.2. Note that F is a generalized KKM map with respect to $r^{-1} \circ G \circ r$. If $G = I_X$, then F is an R-KKM map. When X = Y and r is identity map then F is a KKM map with respect to G. If F is a P-KKM map with respect to G, then $r^{-1} \circ G \circ r(y_i) \subseteq F(x_i)$ for each i = 1, ..., n. In this case, when $y_i \in r^{-1}(G(x_i))$ we have,

$$d(G(x), F(x)) = d(X, Y),$$

for each $x \in X$.

Proposition 2.3. Let (X, Y) be a nonempty proximal pair in a normed linear space E and let $F : X \multimap Y$ be a *P*-KKM map with respect to $G : X \multimap X$. If $G \in S(X, X)$, then the family $\{F(x) : x \in X\}$ has the finite intersection property.

Proof. Since $G \in \mathcal{S}(X, X)$ and r is a bijective continuous map, then $r^{-1} \circ G \circ r \in \mathcal{S}(Y, Y)$ and so $\{r^{-1} \circ G \circ r(y) : y \in Y\}$ has the KKM property. \Box

3. Main results

Here, we proved KKM property using Brouwer's fixed point theorem which states that, every continuous function on a closed, bounded and convex subset K of \mathbb{R}^n , has at least one fixed point in K.

Theorem 3.1. Let (X, Y) be a nonempty proximal pair in a normed linear space E and let $F : X \multimap Y$ be a *P*-KKM map with respect to $G : X \multimap X$ such that F(x) is finitely closed, for all $x \in X$. Then the family $\{F(x) : x \in X\}$ has the finite intersection property.

Proof. Suppose there exists a finite subset $\{x_1, ..., x_n\}$ of X such that $\bigcap_{i=1}^n F(x_i) = \emptyset$. Since F is a P-KKM map with respect to G, for this finite subset $\{x_1, ..., x_n\}$, there exists a finite subset $\{y_1, ..., y_n\}$ of Y with $co(\{y_1, ..., y_n\}) \subseteq Y$ and $||x_i - y_i|| = d(X, Y)$ and there exists a bijective continuous map $r: Y \to X$ by $r(y_i) = x_i$ for all i = 1, ..., n, such that,

$$r^{-1} \circ G \circ r(co(\{y_i : i \in I\})) \subseteq \bigcup_{i \in I} F(x_i),$$

for each nonempty subset I of $\{1, ..., n\}$. Let $L = span\{y_1, ..., y_n\}$ of E and fix $K = co(\{y_1, ..., y_n\}) \subseteq L$. Suppose $y \in K$. For each $z \in r^{-1} \circ G \circ r(y) \cap L$, since $L \cap (\bigcap_{i=1}^{i=n} F(x_i)) = \emptyset$, there exists i_0 such that $z \notin F(x_{i_0}) \cap L$. But $F(x_i) \cap L$ is closed for each $i \in \{1, ..., n\}$, thus $d(z, F(x_{i_0})) > 0$. Let

$$s_i(y) = \{ z \in r^{-1} \circ G \circ r(y) \cap L : d(z, F(x_i) \cap L) > 0 \}.$$

Clearly, $s_i(y) \neq \emptyset$ for some $i \in \{1, 2, ..., n\}$, $s_i(y) \subset r^{-1} \circ G \circ r(y)$ and $s_i(y) \cap (F(x_i) \cap L) = \emptyset$ for each $i \in \{1, 2, ..., n\}$. When $s_i(y) \neq \emptyset$, we define $\alpha_i(y) = z_y$ where $z_y \in s_i(y)$ and $d(z_y, F(x_i) \cap L) \ge d(z, F(x_i) \cap L)$ for each $z \in s_i(y)$. Therefore $d(\alpha_i(y), F(x_i) \cap L) > 0$, for some $i \in \{1, ..., n\}$. We use the function $\Gamma : K \to \mathbb{R}$ by

$$\Gamma(y) = \sum_{i=1}^{n} d(\alpha_i(y), F(x_i) \cap L),$$

to define the map $f: K \to K$ by

$$f(y) = \frac{1}{\Gamma(y)} \sum_{i=1}^{n} d(\alpha_i(y), F(x_i) \cap L) \cdot y_i.$$

Clearly, f is well-defined and continuous map on closed bounded convex subset of finite dimensional space L. So by Brouwer's fixed point theorem, there exists $\tilde{y} \in K$ such that $f(\tilde{y}) = \tilde{y}$. Let $I_K = \{i \in \{1, ..., n\} : d(\alpha_i(\tilde{y}), F(x_i) \cap L) > 0\}$. Then $\alpha_i(\tilde{y}) \notin \bigcup_{i \in I_K} F(x_i)$ and $\alpha_i(\tilde{y}) \in r^{-1} \circ G \circ r(co(\{y_i : i \in I_K\}))$. But $\tilde{y} = f(\tilde{y}) \in co(\{y_i : i \in I_K\})$ and so,

$$\alpha_i(\tilde{y}) \in r^{-1} \circ G \circ r(\tilde{y}) \subseteq r^{-1} \circ G \circ r(co(\{y_i : i \in I_K\})) \subseteq \bigcup_{i \in I_K} F(x_i),$$

which is a contradiction.

Theorem 3.2. Let (X, Y) be a nonempty proximal pair of a normed linear space E and let $F : X \multimap Y$ be a P-KKM map with respect to $G : X \multimap X$. If for each $x \in X$, F(x) is closed in E and there exists a nonempty finite subset D of X such that $\bigcap_{x \in D} F(x)$ is a compact set, then $\bigcap_{x \in X} F(x) \neq \emptyset$.

Proof. Let $T: X \to Y$ be defined by $T(x) = F(x) \cap (\bigcap_{z \in D} F(z))$ for each $x \in X$. By Theorem 3.1 the family $\{F(x): x \in X\}$ has the finite intersection property. So T has nonempty compact values and $\{T(x): x \in X\}$ has the finite intersection property. Hence $\bigcap_{x \in X} T(x) \neq \emptyset$ and this implies that $\bigcap_{x \in X} F(x) \neq \emptyset$. \Box

Remark 3.3. If $G = I_X$, Theorem 3.1 reduces to Theorem 1.3 and Theorem 1.4 is a special case of Theorem 3.2.

Theorem 3.4. Let (X, Y) be a nonempty proximal pair of a normed linear space E and let $F : X \multimap Y$ be a *P*-KKM map with respect to $G : X \multimap X$. If there exists $x_0 \in X$ such that $x_0 \in G(x_0)$, then,

$$d(G(x_0), F(x_0)) = d(X, Y).$$

Proof. Since $x_0 \in X$ and (X, Y) is a nonempty proximal pair, there exists $y \in Y$ such that $||x_0 - y|| = d(X, Y)$. By the hypothesis there exists a bijective map $r : Y \to X$ such that $r(y) = x_0$ and $r^{-1} \circ G \circ r(y) \subseteq F(x_0)$. But $x_0 \in G(x_0) = G \circ r(y)$ and so $y = r^{-1}(x_0) \in r^{-1} \circ G \circ r(y)$. Hence $y \in F(x_0)$. Then,

$$d(X,Y) \le d(G(x_0), F(x_0)) \le ||x_0 - y|| = d(X,Y).$$

By the above theorem when X = Y, we have the following coincidence theorem.

Theorem 3.5. Let X be a nonempty subset of a normed linear space E and $F : X \multimap X$ be a KKM map with respect to $G : X \multimap X$. If there exists $x_0 \in X$ such that $x_0 \in G(x_0)$, $G(x_0)$ is compact and $F(x_0)$ is closed, then,

$$G(x_0) \cap F(x_0) \neq \emptyset.$$

Example 3.6. Consider the space \mathbb{R}^2 with Euclidean norm. Each two parallel lines is a proximal pair. Let $X = \{(1, x) : 0 \le x \le 1\}$ and $Y = \{(-1, x) : 0 \le x \le 1\}$. Clearly (X, Y) is a proximal pair in \mathbb{R}^2 . Define a multi-valued map $F : X \multimap Y$ by $F(1, x) = \{(-1, y) : 0 \le y \le 1 - x\}$.

We have F(1,0) = Y, $F(1,\frac{1}{2}) = \{(-1,x) : 0 \le x \le \frac{1}{2}\}$ and $F(1,1) = \{(-1,0)\}$. If $G: X \to X$ defined by $G(1,x) = \{(1,y) : 0 \le y \le \frac{x}{2}\}$, then F is a P-KKM map with respect to G. We can assume $r: Y \to X$ by r(-1,x) = (1,x). Hence $\bigcap_{x \in X} F(x) = \{(-1,0)\}$ and Theorems 3.1 and Theorems 3.2 are hold. The pair (F(1,0), G(1,0)) is a best proximity pair for F with respect to G.

4. A Common fixed point theorem

The following theorem is a generalization of [4, Theorem 4.3].

Theorem 4.1. Let (X, Y) be a nonempty proximal pair of a normed linear space E and let $F : Y \times X \multimap Y$, $G : X \multimap X$ be multi-valued mappings with nonempty values. Assume that:

- (i) for each $x \in X$, $\{y \in Y : y \in F(y, x)\}$ is closed in Y,
- (ii) F(y, .) is a P-KKM map with respect to G on X, for each $y \in Y$,
- (iii) there exists $y_0 \in Y$ such that $F(y_0, X)$ is contained in a compact subset of Y.

Then there exists $\bar{y} \in Y$ such that $\bar{y} \in F(\bar{y}, x)$ for each $x \in X$.

Proof. For each $x \in X$, let $T: X \multimap Y$ by $T(x) = \{y \in Y : y \notin F(y, x)\}$. By (i), T(x) is an open subset of Y. Suppose that for each $y \in Y$, there exists $x = x(y) \in X$ such that $y \notin F(y, x)$. Then $Y = \bigcup_{x \in X} T(x)$. By (ii) $\overline{F(y_0, X)}$ is a compact set, so there exists $\{x_1, ..., x_n\}$ such that $F(y_0, X) \subseteq \bigcup_{i=1}^n T(x_i)$. For this finite subset, by (ii) there exists a finite subset $\{z_1, ..., z_n\}$ of Y with $co(\{z_1, ..., z_n\}) \subseteq Y$ and $||z_i - x_i|| = d(X, Y)$ and there exists a bijective continuous map $r: Y \to X$ by $r(z_i) = x_i$ for all $i \in \{1, ..., n\}$, such that $r^{-1} \circ G \circ r(co(\{z_i : i \in I\})) \subseteq \bigcup_{i \in I} F(y, x_i)$ for each nonempty subset I of $\{1, ..., n\}$ and each $y \in Y$. Set $L = span\{z_1, ..., z_n\}$ of E. If $A = co(\{z_1, ..., z_n\}) \subseteq L$, then,

$$r^{-1} \circ G \circ r(A) \subseteq \bigcup_{i \in I} F(y_0, x_i) \subseteq F(y_0, X) \subseteq \bigcup_{i \in I} T(x_i)$$

The rest of the proof is similar to the proof of Theorem 3.1.

References

- M. A. Al-Thaghafii, N. Shahzad, Best proximity sets and equilibrium pairs for a finite family of multimaps, Fixed Point Theory Appl., 2008 (2008), 10 pages. 1
- M. A. Al-Thaghafii, N. Shahzad, Best proximity pairs and equilibrium pairs for Kukutani multimaps, Nonlinear Anal., 70 (2009), 1209–1216.
- [3] A. Amini-Harandi, A. P. Farajzadeh, D. O'Regan, R. P. Agarwal, Best proximity pairs theorems for continuous set-valued maps, Fixed Point Theory Appl., 2008 (2008), 9 pages. 1, 1
- [4] L. J. Lin, C. SH. Chuang and Z. T. Yu, Generalized KKM theorems and common fixed point theorems, Nonlinear Anal., 74 (2011), 5591–5599.
- [5] V. S. Raj, S. Somasundaram, KKM-type theorems for best proximity points, Appl. Math. Lett., 25 (2012), 496–499. 1, 1.1, 1.2, 1.3, 1.4
- [6] S. Sadiq Basha, Best proximity point theorems, J. Approx. Theory, 163 (2011), 1777–1781. 1
- [7] S. Sadiq Basha, P. Veermani, Theorems for multifunctions with open fiber, J. Approx. Theory, 103 (2000), 119– 129. 1, 1