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Abstract

We introduce the notion of multivalued θ-contractions on closed ball and we obtain some new fixed point
results for such contractions. An example is given here to illustrate the usability of the obtained results.
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1. Introduction and preliminaries

We recollect some essential notations, required definitions, and primary results coherent with the liter-
ature. For a nonempty set X, we denote by N(X) the class of all nonempty subsets of X. Let (X, d) be a
metric space. For x ∈ X and ε > 0, B(x, ε) = {y ∈ X : dl(x, y) ≤ ε} is a closed ball in (X, dl). For x ∈ X
and A ⊆ X, we denote D(x,A) = inf {d(x, y) : y ∈ A}. We denote by CL(X) the class of all nonempty
closed subsets of X, by CB(X) the class of all nonempty closed and bounded subsets of X and by CO(X)
the class of all compact subsets of X, Let H be the Hausdorff metric induced by the metric d on X, that is

H(A,B) = max

{
sup
x∈A

D(x,B), sup
y∈B

D(y,A)

}
,

for every A,B ∈ CB(X). If T : X → CB(X) be a multi-valued. A point q ∈ X is said to be a fixed point
of T if q ∈ Tq.

In 1969, Nadler [6] extended the famous Banach contraction principle to multivalued mappings and
afterwards proved the following result:
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Theorem 1.1 ([6]). Let (X, d) be a complete metric space and T : X → CB(X) be a multi-valued mapping
such that for all x, y ∈ X

H(T (x), T (y)) ≤ λd(x, y),

where 0 < λ < 1. Then T has a fixed point.
Reich [7] proved the following result for multivalued nonlinear contractions.

Theorem 1.2 ([7]). Let (X, d) be a complete metric space and T : X → CO(X) be a multivalued mapping.
If there exists a function α : (0,∞) → [0, 1) such that

lim
t→s+

supα(t) < 1, for all s ∈ (0,∞) ,

satisfying
H(T (x), T (y)) ≤ α(d(x, y))d(x, y),

for all x, y ∈ X with x ̸= y. Then T has a fixed point.

In 1989, Mizoguchi and Takahashi [4] generalized Nadler’s result by establishing the following theorem:

Theorem 1.3 ([4]). Let (X, d) be a complete metric space and T : X → CB(X) be a multivalued mapping.
If there exists a function α : (0,∞) → [0, 1) such that

lim
t→s+

supα(t) < 1, for all s ∈ (0,∞) ,

satisfying
H(T (x), T (y)) ≤ α(d(x, y))d(x, y),

for all x, y ∈ X with x ̸= y. Then T has a fixed point.

We denote by Θ the set of functions θ : (0,∞) → (1,∞) satisfying conditions (Θ1)-(Θ3) and by Ξ the
set of functions θ : (0,∞) → (1,∞) satisfying conditions (Θ1)-(Θ4),

(Θ1) θ is non-decreasing,

(Θ2) for each sequence {tn} ⊂ (0,∞),

lim
n→∞

θ(tn) = 1 if and only if lim
n→∞

tn = 0+,

(Θ3) there exists r ∈ (0, 1) and ℓ ∈ (0,∞] such that lim
t→0+

θ(t)−1
tr = ℓ.

(Θ4) θ (inf A) = inf θ (A) for all A ⊂ (0,∞) with inf A > 0.

In 2014 Jleli and Samet [2] introduced attractive generalization of the Banach contraction principle, which
throughout this paper, we will call θ-contraction.

Let (X, d) be a metric space and θ ∈ Θ. A mapping T : X → X is said to be a θ-contraction, if there
exists a constant k ∈ (0, 1) such that,

x, y ∈ X, d (Tx, Ty) ̸= 0 → θ (d (Tx, Ty)) ≤ [θ (d (x, y))]k .

Jleli and Samet [2] established the following fixed point theorem as follows:

Theorem 1.4 (Corollary 2.1, [2]). Let (X, d) be a complete metric space and T : X → X be a given
mapping. If T is an θ-contraction, then T has a unique fixed point.
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Example 1.5 ([2]). The following functions θ : (0,∞) → (1,∞) are elements of Θ :

(1) θ (t) = e
√
t,

(2) θ (t) = e
√
tet ,

(3) θ (t) = 2− 2
π arctan

(
1
tγ

)
, 0 < γ < 1, t > 0.

HanÇer et al. [1] ( see also [8]) extended the concept of θ-contraction to multivalued mappings as follows.

Definition 1.6 ([1]). Let (X, d) be a metric space, T : X → CB (X) and θ ∈ Θ. Then T is said to be a
multivalued θ- contraction if there exists a function k ∈ [0, 1) such that

θ (H (Tx, Ty)) ≤ [θ (d (x, y))]k , (1.1)

for all x, y ∈ X, with H (Tx, Ty) > 0.

Recently, Miknak and Altun [5] introduced the notion of multivalued nonlinear θ-contraction in this way,

Definition 1.7 ([5]). Let(X, d) be a metric space, T : X → CB (X) and θ ∈ Θ. Then T is said to be a
multivalued nonlinear θ- contraction if there exists a function k : (0,∞) → [0, 1) such that

θ (H (Tx, Ty)) ≤ [θ (d (x, y))]k(d(x,y)) , (1.2)

for all x, y ∈ X, with H (Tx, Ty) > 0.

Theorem 1.8 ([5]). Let (X, d) be a complete metric space, T : X → CO (X) be a multivalued nonlinear θ-
contraction mapping. Then T has a fixed point provided that lim

t→s+
sup k(t) < 1, for all s ∈ [0,∞) holds.

Lemma 1.9 ([5]). Let (X, d) be a metric space and A be compact subset of X. Then, for x ∈ X, there
exists a ∈ A such that d (x, a) = d (x,A) .

Theorem 1.10 (Theorem 5.1.4, [3]). Let (X, d) be a complete metric space, T : X → X be a mapping,
r > 0 and x0 be an arbitrary point in X. Suppose there exists k ∈ [0, 1) with

d(T (x), T (y)) ≤ kd(x, y), for all x, y ∈ Y = B(x0, r) (1.3)

and d(x0, T (x0)) < (1− k)r. Then there exists a unique point x∗ in B(x0, r) such that x∗ = T (x∗).

In this paper, we introduce a new concept of multivalued θ-contraction closed ball in a metric space which
is more general than the multivalued nonlinear θ-contraction for multivalued mappings. We establish some
fixed point theorems for this type of mappings and give example illustrating our main results. Throughout
the article we denote by R the set of all real numbers, by R+ the set of all positive real numbers and by N
the set of all positive integers.

2. Main Results

We first introduce a concept of multivalued θ-contraction on closed ball in a metric space.

Definition 2.1. Let (X, d) be a metric space. The mapping T : X → CB (X) is said to be multivalued θ-
contraction on closed ball, if there exists a function θ ∈ Θ such that

θ (H (Tx, Ty)) ≤ [θ (λd (x, y))]k , (2.1)

for all x, y ∈ B (x0, r) ⊆ X, whaere λ, k ∈ [0, 1) .
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We now state and prove our main result.

Theorem 2.2. Let (X, d) be a complete metric space, T : X → CO (X) be a continuous multivalued
θ-contraction on closed ball B (x0, r). Moreover

d(x0, Tx0) ≤ (1− λ)r, where λ ∈ [0, 1) and r > 0. (2.2)

Then T has a fixed point x∗ in B (x0, r).

Proof. Choose a point x1 in X such that x1 ∈ Tx0. continuing in this way, so we get xn+1 ∈ Txn, for all
n ≥ 0 and this implies that {xn} is a nonincreasing sequence. Now we will prove that xn ∈ B(x0, r) for all
n ∈ N, by using mathematical induction. Since from (2.2), we have

d(x0, Tx0) ≤ (1− λ)r < r,

since Tx0 is compact, so there exists x1 ∈ Tx0 such that d(x0, x1) ≤ (1 − λ)r < r, thus, x1 ∈ B(x0, r).
Suppose x2....xj ∈ B(x0, r) for some j ∈ N. Thus from (2.1), we obtain

θ (d (x1, Tx1)) ≤ θ (H (Tx0, Tx1)) ≤ [θ (λd (x0, x1))]
k

< θ (λd (x0, x1)) .

Which implies,
θ (d (x1, Tx1)) < θ (λd (x0, x1)) . (2.3)

similar, there exists x2 ∈ Tx1 such that

θ (d (x1, x2)) < θ (λd (x0, x1)) .

From condition (Θ1), we get,
d (x1, x2) < λd (x0, x1) .

Repeating these steps for x2, x3, ..., xj , we obtain , xj+1 ∈ Txj ,

d (xj , xj+1) < λd (xj−1, xj) . (2.4)

Now, using triangular inequality and (2.4), we have

d (x0, xj+1) ≤ d (x0, x1) + d (x1, x2) + d (x2, x3) + ...+ d (xj , xj+1)

< d (x0, x1)
[
1 + λ+ λ2 + ...+ λj

]
< (1− λ) r

(
1− λj+1

)
1− λ

< r. (2.5)

This implies that xj+1 ∈ B (x0, r). Hence xn ∈ B (x0, r) for all n ∈ N and

θ (d (xn, xn+1)) ≤ θ (H (Txn−1, Txn)) .

From the above inequality, we get,

θ (d (xn, xn+1)) ≤ θ (H (Txn−1, Txn)) ≤ [θ (λd (xn−1, xn))]
k < θ (λd (xn−1, xn)) , for all n ∈ N.

Thus, by taking into account (θ1), the sequence {d (xn, xn+1)} is decreasing and hence convergent, we get

1 < θ (d (xn, xn+1))

≤ [θ (λd (xn−1, xn))]
k ≤ [θ (d (xn−1, xn))]

k

≤ [θ (λd (xn−2, xn−1))]
k2 ≤ [θ (d (xn−2, xn−1))]

k2

.

.

≤ [θ (d (x0, x1))]
kn .



E. Ameer, M. Arshad, Commun. Nonlinear Anal. 3 (2016), 44–51 48

Thus, we obtain,
1 < θ (d (xn, xn+1)) ≤ [θ (d (x0, x1))]

kn , for all n ∈ N. (2.6)

Letting n → ∞, we obtain
lim
n→∞

θ (d (xn, xn+1)) = 1, (2.7)

that together with (Θ2) gives as
lim
n→∞

d (xn, xn+1) = 0.

From condition (Θ3), there exist r ∈ (0, 1) and ℓ ∈ (0,∞] such that

lim
n→∞

θ (d (xn, xn+1))− 1

[θ (d (xn, xn+1))]
r = ℓ.

Suppose that ℓ < ∞. In this case, let B = ℓ
2 > 0. From the definition of the limit, there exists n0 ≥ 1 such

that ∣∣∣∣θ (d (xn, xn+1))− 1

[d (xn, xn+1)]
r − ℓ

∣∣∣∣ ≤ B for all n ≥ n0.

This implies
θ (d (xn, xn+1))− 1

[d (xn, xn+1)]
r ≥ ℓ−B = B for all n ≥ n0.

Then
k [d (xn, xn+1)]

r ≤ Ak [θ (d (xn, xn+1))− 1] for all n ≥ n0,

where A = 1
B . Suppose now that ℓ = ∞. Let B > 0 be an arbitrary positive number. From the definition of

the limit, there exists n0 ∈ N such that

θ (d (xn, xn+1))− 1

[d (xn, xn+1)]
r ≥ B for all n ≥ n0,

which implies
k [d (xn, xn+1)]

r ≤ Ak [θ (d (xn, xn+1))− 1] for all n ≥ n0,

where A = 1
B . Thus, in all cases, there exist A > 0 and n0 ∈ N such that

k [d (xn, xn+1)]
r ≤ Ak [θ (d (xn, xn+1))− 1] for all n ≥ n0.

By using (2.6), we get

k [d (xn, xn+1)]
r ≤ Ak

(
[θ (d(x0, x1))]

kn − 1
)

for all n ≥ n0. (2.8)

Letting n → ∞ in the inequality (2.8), we obtain

lim
n→∞

k [d (xn, xn+1)]
r = 0.

Thus, there exists n1 ∈ N such that

d (xn, xn+1) ≤
1

n
1
r

for all n ≥ n1. (2.9)

Now, we will prove that {xn} is a Cauchy sequence, m,n ∈ N such that m > n ≥ n1. Using the triangular
inequality for the metric and from (2.9), we get

d (xn, xm) ≤ d (xn, xn+1) + d (xn+1, xn+2) + ...+ d (xm−1, xm)

=
m−1∑
i=n

d (xi, xi+1) ≤
∞∑
i=n

d (xi, xi+1)

≤
∞∑
i=n

1

i
1
r

.
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Since the series
∑∞

i=n
1

i
1
r

is convergent (since 1
r > 1), we deduce that {xn} is a Cauchy sequence. Hence

{xn} is a Cauchy sequence in (B (x0, r), d). Since (B (x0, r), d) is a complete metric space, so there exists
x∗ ∈ B (x0, r) such that xn → x∗ as n → ∞. Since T is a continuous, then xn+1 ∈ Txn → Tx∗ as n → ∞.
That is, x∗ ∈ Tx∗. Hence x∗ is a fixed point of T in B (x0, r).

Definition 2.3. Let K be a nonempty subset of metric space X and let x ∈ X. An element y0 ∈ K is called
a best approximation in K if

d(x,K) = d(x, y0), where d(x,K) = inf
y∈K

d(x, y).

If each x ∈ X has at least one best approximation in K, then K is called a proximinal set. We denote
P (X) be the set of all proximinal subsets of X. We cannot take P (X) instead of CO (X) in Theorem 2.2.
However, by adding the condition (Θ4) on Θ, we can introduce the following Theorem:

Theorem 2.4. Let (X, d) be a complete metric space, T : X → P (X) be a continuous multivalued θ-
contraction on closed ball B (x0, r). Moreover, θ ∈ Ξ and

d(x0, Tx0) ≤ (1− λ)r, where λ ∈ [0, 1) and r > 0. (2.10)

Then T has a fixed point x∗ in B (x0, r).

Proof. Choose a point x1 in X such that x1 ∈ Tx0. continuing in this way, so we get xn+1 ∈ Txn, for all
n ≥ 0 and this implies that {xn} is a nonincreasing sequence. Now we will prove that xn ∈ B(x0, r) for all
n ∈ N, by using mathematical induction. Since from (2.10), we have

d(x0, Tx0) ≤ (1− λ)r < r.

There exists x1 ∈ Tx0 such that d(x0, x1) ≤ (1 − λ)r < r, thus, x1 ∈ B(x0, r). Suppose x2....xj ∈ B(x0, r)
for some j ∈ N. Thus from (2.1), we obtain

θ (d (x1, Tx1)) ≤ θ (H (Tx0, Tx1)) ≤ [θ (λd (x0, x1))]
k (2.11)

< θ (λd (x0, x1)) .

Which implies,

θ (d (x1, Tx1)) < θ (λd (x0, x1)) .

From condition (Θ4), we can write,

θ (d (x1, Tx1)) = inf
y∈Tx1

θ (d (x1, y))

Hence from (2.11) we get,

inf
y∈Tx1

θ (d (x1, y)) ≤ [θ (λd (x0, x1))]
k (2.12)

< [θ (λd (x0, x1))]
√

k
.

Then, from (2.12) there exists x2 ∈ Tx1 such that

θ (d (x1, x2)) ≤ [θ (λd (x0, x1))]
√

k
< θ (λd (x0, x1)) .

From condition (Θ1), we get

d (x1, x2) < λd (x0, x1) .
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Repeating these steps for x2, x3, ..., xj , we obtain, xj+1 ∈ Txj ,

d (xj , xj+1) < λd (xj−1, xj) . (2.13)

Now, using triangular inequality and (2.13), we have

d (x0, xj+1) ≤ d (x0, x1) + d (x1, x2) + d (x2, x3) + ...+ d (xj , xj+1)

< d (x0, x1)
[
1 + λ+ λ2 + ...+ λj

]
< (1− λ) r

(
1− λj+1

)
1− λ

< r. (2.14)

This implies that xj+1 ∈ B (x0, r). Hence xn ∈ B (x0, r) for all n ∈ N,

θ (d (xn, xn+1)) ≤ [θ (λd (xn−1, xn))]
√

k
< θ (λd (xn−1, xn)) ,

for all n ∈ N. The rest of the proof can be completed as in the proof of Theorem 2.2.

In case of single valued mapping T : X → X, we have the following result:

Corollary 2.5. Let (X, d) be a complete metric space, T : X → X be a continuous θ-contraction on closed
ball B (x0, r). That is, if there exists a function θ ∈ Θ such that

θ (d (Tx, Ty)) ≤ [θ (λd (x, y))]k , (2.15)

for all x, y ∈ B (x0, r) ⊆ X, where λ, k ∈ [0, 1) . Moreover,

d(x0, Tx0) ≤ (1− λ)r < r, where r > 0. (2.16)

Then T has a unique fixed point x∗ in B (x0, r).

Example 2.6. Let X = [0,∞). Define T : X → P (X), and θ ∈ Ξ by

Tx =

{ [
0, x

100

]
, if x ∈ [0, 1] ,

{2x} otherwise,

and θ (t) = e
√
t, with t > 0. Also, x0 =

1
4 , r = 1, B (x0, r) = [0, 1], then

d

(
1

4
, T

(
1

4

))
=

∣∣∣∣14 − 1

400

∣∣∣∣ = 99

400
≤ (1− λ) r =

1

3
< 1 = r.

If x, y ∈ B (x0, r), then

θ (H (Tx, Ty)) = θ
(∣∣∣ x

100
− y

100

∣∣∣)
≤

[
θ

(
2

3
|x− y|

)] 2
3

= [θ (λd (x, y))]k , where, k = λ =
2

3
,

which implies that
θ (H (Tx, Ty)) ≤ [θ (λd (x, y))]k , for all x, y ∈ B (x0, r).

Hence, the hypotheses of Theorem 2.4 hold on closed ball and x = 0 is a fixed point of T in B (x0, r). If
x /∈ B (x0, r) or y /∈ B (x0, r), then

θ (2 |x− y|) > [θ (|x− y|)]
2
3 ,

θ (|2x− 2y|) > [θ (|x− y|)]
2
3 ,

θ (H (Tx, Ty)) > [θ (d (x, y))]k .

Hence the multivalued θ- contraction condition (1.1) does not hold on X
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