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Abstract

We introduce the notion of multivalued #-contractions on closed ball and we obtain some new fixed point
results for such contractions. An example is given here to illustrate the usability of the obtained results.
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1. Introduction and preliminaries

We recollect some essential notations, required definitions, and primary results coherent with the liter-
ature. For a nonempty set X, we denote by N(X) the class of all nonempty subsets of X. Let (X,d) be a
metric space. For z € X and ¢ > 0, B(z,¢e) = {y € X : dj(x,y) < e} is a closed ball in (X, d;). For z € X
and A C X, we denote D(z,A) = inf {d(z,y) : y € A}. We denote by C'L(X) the class of all nonempty
closed subsets of X, by CB(X) the class of all nonempty closed and bounded subsets of X and by CO(X)
the class of all compact subsets of X, Let H be the Hausdorff metric induced by the metric d on X, that is

H(A, B) = max {supD(x, B), supD(y, A)} ,
€A yeB
for every A,B € CB(X). f T: X — CB(X) be a multi-valued. A point ¢ € X is said to be a fixed point
of T'if g € Tq.
In 1969, Nadler [6] extended the famous Banach contraction principle to multivalued mappings and
afterwards proved the following result:
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Theorem 1.1 ([6]). Let (X, d) be a complete metric space and T : X — CB(X) be a multi-valued mapping
such that for all z,y € X

H(T(z),T(y)) < Ad(x,y),

where 0 < A < 1. Then T has a fixed point.
Reich [7] proved the following result for multivalued nonlinear contractions.

Theorem 1.2 ([7]). Let (X,d) be a complete metric space and T : X — CO(X) be a multivalued mapping.
If there exists a function o : (0,00) — [0,1) such that

lim sup a(t) < 1, for all s € (0,00),
t—st

satisfying
H(T(z),T(y)) < a(d(z,y))d(z,y),
for all x,y € X with x #y. Then T has a fized point.

In 1989, Mizoguchi and Takahashi [4] generalized Nadler’s result by establishing the following theorem:

Theorem 1.3 ([4]). Let (X,d) be a complete metric space and T : X — CB(X) be a multivalued mapping.
If there exists a function « : (0,00) — [0,1) such that

lim supa(t) < 1, for all s € (0,00),

t—st

satisfying
H(T(x), T(y)) < a(d(z,y))d(z,y),
for all xz,y € X with x #y. Then T has a fized point.

We denote by © the set of functions 6 : (0,00) — (1, 00) satisfying conditions (©1)-(©3) and by = the
set of functions € : (0,00) — (1, 00) satisfying conditions (©1)-(©4),

(©1) 6 is non-decreasing,
(©2) for each sequence {t,} C (0,00),

lim 0(t,) = 1 if and only if lim ¢, =07,
n—oo n—o0

(03) there exists r € (0,1) and ¢ € (0, 00] such that liﬂﬁ% = /.
t—0
(©4) 60 (inf A) =inf6 (A) for all A C (0,00) with inf A > 0.
In 2014 Jleli and Samet [2] introduced attractive generalization of the Banach contraction principle, which
throughout this paper, we will call #-contraction.

Let (X,d) be a metric space and # € ©. A mapping 7' : X — X is said to be a f-contraction, if there
exists a constant k € (0, 1) such that,

7,y € X, d(Tw,Ty) #0 0 (d(Te, Ty)) < [0(d(,y))]".
Jleli and Samet [2] established the following fixed point theorem as follows:

Theorem 1.4 (Corollary 2.1, [2]). Let (X,d) be a complete metric space and T : X — X be a given
mapping. If T is an 0-contraction, then T has a unique fized point.
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Example 1.5 ([2]). The following functions 6 : (0,00) — (1,00) are elements of © :

(2) 0(t) = eV'e',
(3) 0(t) =2— 2arctan (%), 0<y<1,¢t>0.
HanCer et al. [1] ( see also [8]) extended the concept of #-contraction to multivalued mappings as follows.
Definition 1.6 ([1]). Let (X,d) be a metric space, T : X — CB(X) and 6 € ©. Then T is said to be a
multivalued 6- contraction if there exists a function &k € [0,1) such that
6 (H (Tz,Ty)) < [6(d(z,))]", (1.1)
for all z,y € X, with H (T'z,Ty) > 0.

Recently, Miknak and Altun [5] introduced the notion of multivalued nonlinear §-contraction in this way,
Definition 1.7 ([5]). Let(X,d) be a metric space, T : X — CB(X) and # € ©. Then T is said to be a
multivalued nonlinear #- contraction if there exists a function k : (0,00) — [0, 1) such that

0 (H (T, Ty)) < [0 (d (2, y)]" ", (1.2)
for all z,y € X, with H (Tz,Ty) > 0.

Theorem 1.8 ([5]). Let (X,d) be a complete metric space, T : X — CO (X)) be a multivalued nonlinear 6-
contraction mapping. Then T has a fixed point provided that lim+ sup k(t) < 1, for all s € [0,00) holds.
t—s

Lemma 1.9 ([5]). Let (X,d) be a metric space and A be compact subset of X. Then, for x € X, there
exists a € A such that d(z,a) =d(x, A).

Theorem 1.10 (Theorem 5.1.4, [3]). Let (X,d) be a complete metric space, T : X — X be a mapping,
r >0 and zo be an arbitrary point in X. Suppose there exists k € [0,1) with

d(T (), T(y)) < kd(z,y), for all 3,y € Y = Blao,7) (1.3)
and d(xo,T(x0)) < (1 — k)r. Then there exists a unique point x* in B(xo,r) such that x* =T (z*).

In this paper, we introduce a new concept of multivalued #-contraction closed ball in a metric space which
is more general than the multivalued nonlinear #-contraction for multivalued mappings. We establish some
fixed point theorems for this type of mappings and give example illustrating our main results. Throughout
the article we denote by R the set of all real numbers, by R the set of all positive real numbers and by N
the set of all positive integers.

2. Main Results
We first introduce a concept of multivalued #-contraction on closed ball in a metric space.

Definition 2.1. Let (X, d) be a metric space. The mapping T': X — CB (X) is said to be multivalued 6-
contraction on closed ball, if there exists a function # € © such that

0 (H (T, Ty)) < [0 (\d (2, y))]", (2.1)
for all z,y € B (xg,r) C X, whaere A\, k € [0,1).
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We now state and prove our main result.

Theorem 2.2. Let (X,d) be a complete metric space, T : X — CO(X) be a continuous multivalued
0-contraction on closed ball B (xg, 7). Moreover

d(xo,Txo) < (1 — X)r, where A € [0,1) and r > 0. (2.2)
Then T has a fized point =* in B (xg,r).

Proof. Choose a point x1 in X such that z; € Tzg. continuing in this way, so we get x,4+1 € Tx,, for all
n > 0 and this implies that {z,} is a nonincreasing sequence. Now we will prove that x,, € B(zg,r) for all
n € N, by using mathematical induction. Since from (2.2), we have

d(zo, Tzg) < (1= N)r <,

since Tz is compact, so there exists x1 € Txg such that d(zg,z1) < (1 — \)r < r, thus, 1 € B(zo,r).
Suppose zs....x; € B(zg,r) for some j € N. Thus from (2.1), we obtain

0 (d(x1,Tx1)) <0 (H (Txy, Tx1)) < [0 (M (0, 21))]*
<40 ()\d (Io, xl)) .
Which implies,
H(d (a;l,Txl)) < H(Ad (xo,l’l)) . (23)
similar, there exists x9 € Tz such that
0 (d (331, .’Eg)) <40 ()\d (.’Eo, 131)) .
From condition (©1), we get,
d(x1,22) < Ad(x0,271) .
Repeating these steps for xa, 3, ..., z;, we obtain , x;11 € Tzj,
d(:):j,xj+1) < )\d(:cj_l,xj). (2.4)
Now, using triangular inequality and (2.4), we have
d (IL‘(), :Zij+1) <d (:L'o, l’l) +d (l‘l, IL‘Q) +d (132, {L‘3) + ... +d (l‘j, l’j+1)
<d(mo, 1) [L+ A+ A2+ ...+ N]
(1— N
1-— T w— . 2.
<(1=XNr T <7 (2.5)
This implies that zj41 € B (zo,7). Hence x,, € B (xo,r) for all n € N and
0(d(zn,zps1)) <O (H (Txp—1,Txy)).
From the above inequality, we get,

0 (d (2, Tni1)) < 0 (H (Tzp_1, Txn)) < [0 (Ad (@01, 20))]F < 0 (Ad (2n_1,2,)), for all n € N.

Thus, by taking into account (61), the sequence {d (xy, zn+1)} is decreasing and hence convergent, we get
1 <0 (d(xn,Tni1))
< [0 (M (@01, 20))]" < 10 (d (w01, 70))]"
< [0 (M (a2, 201 < [0(d (@2, 70-0))])

2

n

< [0(d (o, 21)))"
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Thus, we obtain,

1< 0(d(xn, Tni1)) < [0 (d(zo,21))]"", for all n € N. (2.6)
Letting n — oo, we obtain
lim 6 (d (25, ¥n41)) = 1, (2.7)

that together with (©2) gives as

nh—>Holod (Tp, Tpt1) = 0.

From condition (0©3), there exist r € (0,1) and ¢ € (0, oo] such that

0 (d (l‘n,$n+1)) -1 — /.

A [0 (d (xn, ny1))]"

Suppose that ¢ < oco. In this case, let B = % > 0. From the definition of the limit, there exists ng > 1 such

that
0 (d (:Ena anrl)) -1
[d (2, Tnt1)]"

— /4| < B for all n > ny.

This implies
8 (d (n, 7ns1)) — 1

>/{—-—B=B f 11 n> .
[ @ tne)]| = orati=mro

Then
kld(xn, 2ni1)]” < Ak [0 (d (2, znt1)) — 1] for all n > nyg,

where A = %. Suppose now that £ = co. Let B > 0 be an arbitrary positive number. From the definition of
the limit, there exists ng € N such that

0(d(xpn,znt1)) —1
[d (xnwx'n—i-l)]r

> B for all n > nyg,
which implies

kld(zn, Tni1)]” < Ak [0 (d (2, Tpe1)) — 1] for all n > nyg,
where A = %. Thus, in all cases, there exist A > 0 and ng € N such that

kld(xn, 2ni1)]” < Ak [0 (d (2, 2ns1)) — 1] for all n > nyg.
By using (2.6), we get

ke [d (2, 2nst)]” < Ak ([9 (d(zo,21))]"" — 1) for all n > no. (2.8)
Letting n — oo in the inequality (2.8), we obtain

nh_)n(}ok [d(zn, 2n+1)]" = 0.

Thus, there exists n1 € N such that

1
d(xp,xpy1) < — for all n > ny. (2.9)
nr
Now, we will prove that {x,} is a Cauchy sequence, m,n € N such that m > n > n;. Using the triangular
inequality for the metric and from (2.9), we get

d(xnaxm) < d($n7xn+1) + d(xn—l—la xn+2) + ...+ d($m_17$m)

m—1 o
= Z d($i,xi+1) < Zd(xia$i+1)

<3
1=

T
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. . 1 - . 1 .
Since the series ) 2 T s convergent (since - > 1), we deduce that {z,} is a Cauchy sequence. Hence

{z,} is a Cauchy sequence in (B (zg,r),d). Since (B (xg,r),d) is a complete metric space, so there exists
Zx € B(xg,r) such that z,, — x, as n — oo. Since T is a continuous, then x,11 € Tz, — Tx, as n — 0.
That is, x, € Tx,. Hence z, is a fixed point of T in B (zg,r). O

Definition 2.3. Let K be a nonempty subset of metric space X and let € X. An element yy € K is called
a best approximation in K if

d(z, K) = d(z,y), where d(z, K) = in}f{d(x,y).
ye

If each x € X has at least one best approximation in K, then K is called a proximinal set. We denote
P(X) be the set of all proximinal subsets of X. We cannot take P (X) instead of CO (X) in Theorem 2.2.
However, by adding the condition (©4) on ©, we can introduce the following Theorem:

Theorem 2.4. Let (X,d) be a complete metric space, T : X — P (X) be a continuous multivalued 6-
contraction on closed ball B (xq,r). Moreover, 8 € Z and

d(zo, Txzo) < (1 — N7, where A € [0,1) and r > 0. (2.10)

Then T has a fized point =* in B (x9,r).

Proof. Choose a point x1 in X such that z; € Tzg. continuing in this way, so we get x,+1 € Tx,, for all
n > 0 and this implies that {z,} is a nonincreasing sequence. Now we will prove that x,, € B(xg,r) for all
n € N, by using mathematical induction. Since from (2.10), we have

d(xo, Txo) < (1= XN)r <.

There exists 1 € T'xg such that d(xg,z1) < (1 — X\)r < r, thus, 1 € B(xg,7). Suppose z3....x; € B(zo,r)
for some j € N. Thus from (2.1), we obtain

0 (d (.Tl,TiL’l)) S 0 (H (Tx(),Tl’l)) S [9 ()\d (:z:g,xl))]k (2.11)
<6 (/\d (Z'(),:L'l)) .

Which implies,
0 (d (fL‘l, T$1)) <40 ()\d ($0, 1‘1)) .

From condition (©4), we can write,

0 (d(x1,Tx1)) = yg%fxle (d(x1,9))

Hence from (2.11) we get,

inf 0 (d(z1,y)) < [0 (A (o, 21))]* (2.12)

Then, from (2.12) there exists zo € Tx; such that

0 (d(z1,22)) < [0(N\d (xo,xl))]ﬁ < 0 (M (zo,x1)) -

From condition (©1), we get
d (.%'1, xg) < (iL'o, 1'1) .
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Repeating these steps for x2,z3,...,xj, we obtain, x;41 € Tr;,
d({Bj,.%'j_H) < )\d(xj_l,xj). (2.13)
Now, using triangular inequality and (2.13), we have
d(zo,zj+1) < d(zo,x1)+d(x1,22) +d(x2,23) + ... +d(zj,j4+1)
< d(zo,x1) [+ A+ N+ ..+ V]
(1—NH1)
1-— - . 2.14
< (1=XNr T <r (2.14)
This implies that z;11 € B (x¢,r). Hence z,, € B (x¢,r) for all n € N,
0(d (zn, 2ns1)) < [0 M (@1, 20)]Y" < 0 (A (201, 20)) ,
for all n € N. The rest of the proof can be completed as in the proof of Theorem 2.2. O

In case of single valued mapping T : X — X, we have the following result:

Corollary 2.5. Let (X,d) be a complete metric space, T : X — X be a continuous 0-contraction on closed
ball B (xg,r). That is, if there ezists a function 0 € © such that

0 (d(Tx,Ty)) < [0 (\d(z,y))]", (2.15)
for all x,y € B (xg,r) C X, where A\, k € [0,1). Moreover,
d(xo,Txo) < (1 —XN)r <r, wherer > 0. (2.16)

Then T has a unique fized point z* in B (zq, 7).
Example 2.6. Let X = [0,00). Define T': X — P (X), and 0 € = by

T — [0,3%5] . ifze[0,1],
{2z} otherwise,

and 0 (t) = e‘/i, with ¢ > 0. Also, zg = i, r =1, B(xg,r) =10,1], then

1 /1 1 1| 99 1
d<4’T<4>>_‘4_400 a0 S Mr=g<i=r

0 (H (Tz, Ty)) 29(‘% - %D

<o)

2
= [0 (\d (z,y))]*, where, k =\ = 3

If 2,y € B(xp,7), then

which implies that
6 (H (T, Ty)) < [0 (\d (z,y))]*, for all 2, & B (zo,7).

Hence, the hypotheses of Theorem 2.4 hold on closed ball and x = 0 is a fixed point of T in B (x¢,r). If
x ¢ B(xg,r) ory ¢ B(xg,r), then

[MIN]

0 2]z —yl) > [0(z—yl)]=,
0 (122 —2y|) > [0 (|]= —y])]3,
0 (H (Tx,Ty)) > [0(d (z,9))]".
d

Hence the multivalued - contraction condition (1.1) does not hold on X

wIiN



E. Ameer, M. Arshad, Commun. Nonlinear Anal. 3 (2016), 44-51 51

Acknowledgement
The authors thank the worthy editor and the referees for their valuable comments and suggestions which
improved greatly the quality of this paper.

References

[1] H. A. HanCer, G. Minak, I. Altun, On a broad category of multivalued weakly Picard operators, Fixed Point
Theory. 18 (2017), 229-236. 1, 1.6

[2] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 8
pages. 1, 1.4, 1.5

[3] E. Kryeyszig, Introductory functional analysis with applications, John Wiley & Sons, New York, (1989). 1.10

[4] N. Mizoguchi, W. Takahashi, Fized point theorems for multivalued mappings on complete metric spaces, J. Math.
Anal. Appl., 141 (1989), 177-188. 1, 1.3

[5] G. Minak, I. Altun, Overall approach to Mizoguchi-Takahashi type fixed point results, Turk. J. Math., 40 (2016),
895-904. 1, 1.7, 1.8, 1.9

[6] J. Nadler, Multivalued contraction mappings, pacific J. Math., 30 (1969), 475-478. 1, 1.1

[7] S. Reich, Fized points of contractive functions, Eoll. Un. Mat. Ital., 4 (1972), 26-42. 1, 1.2

[8] F. Vetro, A generalization of Nadler fixed point theorem, Carpathian J. Math., 31 (2015), 403—410. 1



	1 Introduction and preliminaries
	2 Main Results

