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Abstract
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1. Introduction

The idea of rough convergence was introduced by Phu [11], who also introduced the concepts of rough
limit points and roughness degree. The idea of rough convergence occurs very naturally in numerical analysis
and has interesting applications. Aytar [1] extended the idea of rough convergence into rough statistical
convergence using the notion of natural density just as usual convergence was extended to statistical con-
vergence. Pal et al. [10] extended the notion of rough convergence using the concept of ideals which
automatically extends the earlier notions of rough convergence and rough statistical convergence.

A triple sequence (real or complex) can be defined as a function x : N×N×N → R (C) , where N,R and
C denote the set of natural numbers, real numbers and complex numbers respectively. The different types
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of notions of triple sequence was introduced and investigated at the initial by Sahiner et al. [12, 13], Esi et
al. [2–4], Datta et al. [5], Subramanian et al. [14], Debnath et al. [6] and many others.

A triple sequence x = (xmnk) is said to be triple analytic if

supm,n,k |xmnk|
1

m+n+k < ∞.

The space of all triple analytic sequences are usually denoted by Λ3. A triple sequence x = (xmnk) is called
triple gai sequence if

((m+ n+ k)! |xmnk|)
1

m+n+k → 0 as m,n, k → ∞.

The space of all triple gai sequences are usually denoted by χ3.
In this paper we denote (γ, η) as a sliding window pair provided:

(i) γ and η are both nondecreasing nonnegative real valued measurable functions defined on [0,∞) ,

(ii) γ (α) < η (α) for every positive real number α, and η (α) → ∞ as α → ∞,

(iii) lim infabc (η (α)− γ (α)) > 0.

(iv) (0,∞] =
∪

{(γ (s)− η (s)] : s ≤ α} for all α > 0.

Suppose Iabc = (γ (α) , η (α)] and η (α)− γ (α) = µ (Iabc) , where µ (A) denotes the Lebesgue measure of the
set A.

2. Definitions and Preliminaries

A triple sequence x = (xmnk) has limit 0 (denoted by P−limx = 0) (i.e) ((m+ n+ k)! |xmnk|)1/m+n+k →
0 as m,n, k → ∞. We shall write more briefly as P − convergent to 0.

Definition 2.1. An Orlicz function ([see[7]) is a function M : [0,∞) → [0,∞) which is continuous, non-
decreasing and convex with M (0) = 0, M (x) > 0, for x > 0 and M (x) → ∞ as x → ∞. If convexity of
Orlicz function M is replaced by M (x+ y) ≤ M (x)+M (y) , then this function is called modulus function.

Lindenstrauss and Tzafriri ([8]) used the idea of Orlicz function to construct Orlicz sequence space.
A sequence g = (gmn) defined by

gmn (v) = sup {|v|u− (fmnk) (u) : u ≥ 0} ,m, n, k = 1, 2, · · ·

is called the complementary function of a Musielak-Orlicz function f . For a given Musielak-Orlicz function
f, (see[9]) the Musielak-Orlicz sequence space tf is defined as follows

tf =
{
x ∈ w3 : If (|xmnk|)1/m+n+k → 0asm, n, k → ∞

}
,

where If is a convex modular defined by

If (x) =
∑∞

m=1

∑∞
n=1

∑∞
k=1 fmnk (|xmnk|)1/m+n+k , x = (xmnk) ∈ tf .

We consider tf equipped with the Luxemburg metric

d (x, y) =
∑∞

m=1

∑∞
n=1

∑∞
k=1 fmnk

(
|xmnk|1/m+n+k

mnk

)
,

is an exteneded real number.
Let f be a Orlicz function; q be positive real number then we define the following definitions:

Let (γ, η) as a sliding window pair and g : [0,∞) → R3 a measurable function. Then;
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Definition 2.2. The function g is N (γ, η, f, q) summable to 0̄ and write

N (γ, η, f, q)− limg = 0̄ (or g → 0̄ N (γ, η, f, q))

if and only if, limabc→∞
1

µ(Iabc)

∫
Iabc

f (|g (t) , ō|q) dt = 0.

Definition 2.3. Let (qrst) , (qrst) ,
(
qrst
)
be sequences of positive numbers and

Qr =



q11 q12 ... q1s 0...
q21 q22 ... q2s 0...
.
.
.
qr1 qr2 ... qrs 0...
0 0 ...0 0 0...


= q11 + q12 + . . .+ qrs ̸= 0,

Qs =



q11 q12 ... q1s 0...
q21 q22 ... q2s 0...
.
.
.

qr1 qr2 ... qrs 0...
0 0 ...0 0 0...


= q11 + q12 + . . .+ qrs ̸= 0,

Qt =



q11 q12 ... q1s 0...
q21 q22 ... q2s 0...
.
.
.

qr1 qr2 ... qrs 0...
0 0 ...0 0 0...


= q11 + q12 + . . .+ qrs ̸= 0.

Then the transformation is given by
Trst = 1

λiµℓγj
1

QrQsQt

∑r
m=1

∑s
n=1

∑t
k=1 qmqnqk ((m+ n+ k)! |xmnk|)1/m+n+k is called the Riesz mean of

triple sequence x = (xmnk) . If P − limrstTrst (x) = 0, 0 ∈ R, then the sequence x = (xmnk) is said to be
Riesz convergent to 0. If x = (xmnk) is Riesz convergent to 0, then we write PR − limx = 0.

Definition 2.4. Let λ = (λmi) , µ = (µnℓ
) and γ =

(
γkj
)
be three non-decreasing sequences of positive real

numbers such that each tending to ∞ and

λmi+1 ≤ λmi + 1, λ1 = 1, µnℓ+1 ≤ µnℓ
+ 1, µ1 = 1 γkj+1 ≤ γkj + 1, γ1 = 1.

Let Imi = [mi − λmi + 1,mi] , Inℓ
= [nℓ − µnℓ

+ 1, nℓ] and Ikj =
[
kj − γkj + 1, kj

]
. For any set K ⊆ N×N×

N, the number

δλ,µ,γ (K) = limm,n,k→∞
1

λmiµnℓ
γkj

∣∣{(i, j) : i ∈ Imi , j ∈ Inℓ
, k ∈ Ikj , (i, ℓ, j, ) ∈ K

}∣∣ ,
is called the (λ, µ, γ)− density of the set K provided the limit exists.

Definition 2.5. The function g is N (γ, η, f, p) summable to 0. A triple sequence x = (xmnk) of numbers
is said to be (λ, µ, γ)− sliding window rough statistical convergent to a number ξ of measurable function
provided that for each ϵ > 0,

limm,n,k→∞
1

λmiµnℓ
γkj

1

QiQℓQj

µ
(∣∣{(t) ∈ Iminℓkj : f

(
qmqnqk |xmnk (t)− ξ|p

)
≥ r + ϵ

}∣∣) = 0,
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(i.e) the set

K (ϵ) =
1

λmiµnℓ
γkj

1

QiQℓQj

µ
(∣∣{(t) ∈ Iminℓkj : f

(
qmqnqk |xmnk (t)− ξ|p

)
≥ r + ϵ

}∣∣)
has (λ, µ, γ)− density zero. In this case the number ξ is called the (λ, µ, γ)− sliding window rough statistical
measurable function of limit of the sequence and we write str(λ,µ,γ)limm,n,k→∞ = ξ.

Definition 2.6. The triple sequence θi,ℓ,j = {(mi, nℓ, kj)} is called triple lacunary if there exist three
increasing sequences of integers such that

m0 = 0, hi = mi −mr−1 → ∞ as i → ∞.

n0 = 0, hℓ = nℓ − nℓ−1 → ∞ as ℓ → ∞.

k0 = 0, hj = kj − kj−1 → ∞ as j → ∞.

Let mi,ℓ,j = minℓkj , hi,ℓ,j = hihℓhj , and θi,ℓ,j is determine by

Ii,ℓ,j = {(m,n, k) : mi−1 < m < mi, nℓ−1 < n ≤ nℓ, kj−1 < k ≤ kj} , qk =
mk

mk−1
, qℓ =

nℓ

nℓ−1
, qj =

kj
kj−1

.

Using the notations of lacunary sequence and Riesz mean for triple sequences. θi,ℓ,j = {(mi, nℓ, kj)} be a
triple lacunary sequence and qmqnqk be sequences of positive real numbers such that

Qmi =
∑

m∈(0,mi]

pmi , Qnℓ
=

∑
n∈(0,nℓ]

pnℓ
, Qnj =

∑
k∈(0,kj ]

pkj

and
Hi =

∑
m∈(0,mi]

pmi , H =
∑

n∈(0,nℓ]

pnℓ
, H =

∑
k∈(0,kj ]

pkj .

Clearly, Hi = Qmi − Qmi−1 , Hℓ = Qnℓ
− Qnℓ−1

, Hj = Qkj − Qkj−1
. If the Riesz transformation of triple

sequences is RH-regular, and Hi = Qmi − Qmi−1 → ∞ as i → ∞, H =
∑

n∈(0,nℓ]
pnℓ

→ ∞ as ℓ → ∞, H =∑
k∈(0,kj ] pkj → ∞ as j → ∞, then θ

′
i,ℓ,j = {(mi, nℓ, kj)} =

{(
QmiQnjQkk

)}
is a triple lacunary sequence.

If the assumptions Qr → ∞ as r → ∞, Qs → ∞ as s → ∞ and Qt → ∞ as t → ∞ may be not enough to

obtain the conditions Hi → ∞ as i → ∞, Hℓ → ∞ as ℓ → ∞ and Hj → ∞ as j → ∞ respectively. For any
lacunary sequences (mi) , (nℓ) and (kj) are integers.
Throughout the paper, we assume that

Qr = q11 + q12 + . . .+ qrs → ∞ (r → ∞) , Qs = q11 + q12 + . . .+ qrs → ∞ (s → ∞) ,

Qt = q11 + q12 + . . .+ qrs → ∞ (t → ∞) ,

such that
Hi = Qmi −Qmi−1 → ∞ (i → ∞), Hℓ = Qnℓ

−Qnℓ−1
→ ∞ (ℓ → ∞),

Hj = Qkj −Qkj−1
→ ∞ (j → ∞).

Let Qmi,nℓ,kj = QmiQnℓ
Qkj ,Hiℓj = HiHℓHj ,

I
′
iℓj =

{
(m,n, k) : Qmi−1 < m < Qmi , Qnℓ−1

< n < Qnℓ
, Qkj−1

< k < Qkj

}
,
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Vi =
Qmi

Qmi−1

, V ℓ =
Qnℓ

Qnℓ−1

, V j =
Qkj

Qkj−1

, Viℓj = ViV ℓV j .

If we take qm = 1, qn = 1 and qk = 1 for all m,n and k then Hiℓj , Qiℓj , Viℓj and I
′
iℓj reduce to hiℓj , qiℓj , viℓj

and Iiℓj .
Let f be a Musielak Orlicz function; p be any factorable triple sequence of strictly positive real number then
we define the following definitions:
Let (γ, η) as a sliding window pair and g : [0,∞) → R3 a measurable function, we define the following
sequence spaces:[

χ3
Rλmiµnℓ

γkj

, θiℓj , q, f, p

]
=µ
(
P − limi,ℓ,j→∞

1

λmiµnℓ
γkj

1

Hi,ℓj

∑
i∈Iiℓj

∑
ℓ∈Iiℓj

∑
j∈Iiℓj

qmqnqk

[f ((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)pmnk ]
)
= 0,

uniformly in i, ℓ and j.[
Λ3
Rλmiµnℓ

γkj

, θiℓj , q, f, p

]
=µ
(
P − supi,ℓ,j

1

λmiµnℓ
γkj

1

Hi,ℓj

∑
i∈Iiℓj

∑
ℓ∈Iiℓj

∑
j∈Iiℓj

qmqnqk

[f |xm+i,n+ℓ,k+j (t)|pmnk ]
)
< ∞

)
,

uniformly in i, ℓ and j.

Consider Qr = q11 + · · · qrs, Qs = q11 · · · qrs and Qt = q11 · · · qrs. If we choose qm = 1, qn = 1 and qk = 1 for
all m,n and k, then we obtain the following sequence spaces.[

χ3
Rλmiµnℓ

γkj

, q, f, p

]
=µ
(
P − limi,ℓ,j→∞

1

λiµℓγj

1

QiQℓQj

i∑
m=1

ℓ∑
n=1

j∑
k=1

qmqnqk

[f ((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)pmnk ]
)
= 0,

uniformly in i, ℓ and j.[
Λ3
Rλmiµnℓ

γkj

, q, f, p

]
=µ
(
P − supi,ℓ,j

1

λiµℓγj

1

QiQℓQj

i∑
m=1

ℓ∑
n=1

j∑
k=1

qmqnqk

[f ((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)pmnk ]
)
< ∞,

uniformly in i, ℓ and j.

3. Main Result

Theorem 3.1. If f be any Orlicz function and a bounded factorable positive sliding window rough measurable

function of triple sequence, then

[
χ3
Rλmiµnℓ

γkj

, θiℓj , q, f, p

]
is linear space.

Proof. The proof is easy. Theorefore, we omit the proof.

Theorem 3.2. For any Orlicz function f and a bounded factorable positive sliding window rough measurable
function of triple sequence we have[

χ3
Rλmiµnℓ

γkj

, θiℓj , q, f, p

]
⊂
[
χ3
Rλmiµnℓ

γkj

, θiℓj , q, p

]
.



A. Esi and N. Subramanian, Commun. Nonlinear Anal. 3 (2017), 91–103 96

Proof. Let x ∈
[
χ3
Rλmiµnℓ

γkj

, θiℓj , q, p

]
so that for each i, ℓ and j

[
χ3
Rλmiµnℓ

γkj

, θiℓj , q, f, p

]
=µ
(
P − limi,ℓ,j→∞

1

λiµℓγj

1

Hi,ℓj

∑
i∈Iiℓj

∑
ℓ∈Iiℓj

∑
j∈Iiℓj

qmqnqk

[((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)pmnk ]
)
= 0,

uniformly in i, ℓ and j. Since f is continuous at zero, for ε > 0 and choose δ with 0 < δ < 1 such that
f (t) < ϵ for every t with 0 ≤ t ≤ δ. We obtain the following:

1

λiµℓγj

1

hiℓj
(hiℓjϵ)+

1

λiµℓγj

1

hiℓj

∑
m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j ,|xm+i,n+ℓ,k+j−0|>δ

f
[
((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k

]
1

hiℓj
(hiℓjϵ) +

1

λiµℓγj

1

hiℓj
Kδ−1f (2)hiℓj

[
χ3
Rλmi

µnℓ
γkj

, θiℓj , q, p

]
.

Hence i, ℓ and j goes to infinity, we are granted x ∈
[
χ3
Rλmiµnℓ

γkj

, θiℓj , q, f, p

]
.

Theorem 3.3. Let θi,ℓ,j = {mi, nℓ, kj} be a sliding window rough measurable function of triple lacunary
sequence and qi, qℓqj with lim infi Vi > 1, lim infℓ Vℓ > 1 and lim infj Vj > 1, then for any Orlicz function f ,[

χ3
Rλmiµnℓ

γkj

, f, q, p

]
⊆
[
χ3
Rλmiµnℓ

γkj

, θiℓj , q, p

]
.

Proof. Suppose lim infi Vi > 1, lim infℓ Vℓ > 1 and lim infj V j > 1, then there exists δ > 0 such that

Vi > 1 + δ, Vℓ > 1 + δ and V j > 1 + δ. This implies Hi
Qmi

≥ δ
1+δ ,

Hℓ

Qnℓ

≥ δ
1+δ and

Hj

Qkj

≥ δ
1+δ . Then for

x (t) ∈
[
χ3
Rλmiµnℓ

γkj

, f, q, p

]
, we can write for each i, ℓ and j,

Ai,ℓ,j =
1

λiµℓγj

1

Hiℓj

∑
m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j

qmqnqk

[
f ((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k

]pmnk

=
1

λiµℓγj

1

Hiℓj

mi∑
m=1

nℓ∑
n=1

kj∑
k=1

qmqnqk

[
f ((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k

]pmnk

− 1

λiµℓγj

1

Hiℓj

mi−1∑
m=1

nℓ−1∑
n=1

ki−1∑
k=1

qmqnqk

[
f ((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k

]pmnk

− 1

λiµℓγj

1

Hiℓj

mi∑
m=mi−1+1

nℓ−1∑
n=1

kj−1∑
k=1

qmqnqk

[
f ((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k

]pmnk

− 1

λiµℓγj

1

Hiℓj

kj∑
k=kj+1

nℓ∑
n=nℓ−1+1

mk−1∑
m=1

qmqnqk

[
f ((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k

]pmnk

=
1

λiµℓγj

QmiQnℓ
Qkj

Hhiℓj 1

QmiQnℓ
Qkj

mi∑
m=1

nℓ∑
n=1

kj∑
k=1

qmqnqk

[
f ((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k

]pmnk
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− 1

λiµℓγj

Qmk−1
Qnℓ−1

Qkj−1

Hiℓj 1

Qmi−1Qnℓ−1
Qkj−1

mi−1∑
m=1

nℓ−1∑
n=1

kj−1∑
k=1

f
[
((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k

]pmnk


− 1

λiµℓγj

Qkj−1

Hiℓj

 1

Qkj−1

mi∑
m=mi−1+1

nℓ−1∑
n=1

kj∑
k=1

f
[
((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k

]pmnk


− 1

λiµℓγj

Qnℓ−1

Hiℓj

 1

Qnℓ−1

mk∑
m=mk−1+1

nℓ−1∑
n=1

kj∑
k=1

f
[
((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k

]pmnk


− 1

λiµℓγj

Qmk−1

Hiℓj

 1

Qmk−1

kj∑
k=1

nℓ∑
n=nℓ−1+1

mk−1∑
m=1

f
[
((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k

]pmnk

 .

Since x ∈
[
χ3
Rλmiµnℓ

γkj

, f, q, p

]
, the last three terms tend to zero uniformly in m,n, k in the sense, thus, for

each i, ℓ and j

Ai,ℓ,j =
1

λiµℓγj

QmiQnℓ
Qkj

Hiℓj 1

QmiQnℓ
Qkj

mi∑
m=1

nℓ∑
n=1

kj∑
k=1

qmqnqk

[
f ((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k

]pmnk


− 1

λiµℓγj

Qmi−1Qnℓ−1
Qkj−1

Hiℓj 1

Qmi−1Qnℓ−1
Qkj−1

mi−1∑
m=1

nℓ−1∑
n=1

kj−1∑
k=1

qmqnqk

[
f ((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k

]pmnk

+O (1) .

Since 1
λiµℓγj

Hiℓj =
1

λiµℓγj
QmiQnℓ

Qkj−
1

λiµℓγj
Qmi−1Qnℓ−1

Qkj−1
we are granted for each i, ℓ and j the following

1

λiµℓγj

QmiQnℓ
Qkj

Hiℓj
≤ 1 + δ

δ
,

1

λiµℓγj

Qmi−1Qnℓ−1
Qkj−1

Hiℓj
≤ 1

δ
.

The terms 1

λiµℓγj

1

QmiQnℓ
Qkj

mi∑
m=1

nℓ∑
n=1

kj∑
k=1

qmqnqk

[
f ((m+ n+ k)! |xm+r,n+s,k+u (t)|)1/m+n+k

]pmnk


and  1

λiµℓγj

1

Qmi−1Qnℓ−1
Qkj−1

mi−1∑
m=1

nℓ−1∑
n=1

kj−1∑
k=1

qmqnqk

[
f ((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k

]pmnk


are both gai sequences for all r, s and u. Thus Aiℓj is a gai sequence for each i, ℓ and j. Hence

x ∈
[
χ3
Rλmiµnℓ

γkj

, θiℓj , q, p

]
.
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Theorem 3.4. Let θi,ℓ,j = {mi, nℓ, kj} be a sliding window rough measurable function of triple lacunary

sequence and qmqnqk with lim supi Vi < ∞, lim supℓ V ℓ < ∞ and lim supj V j < ∞, then for any Orlicz
function f, [

χ3
Rλmiµnℓ

γkj

, θiℓj , q, f, p

]
⊆
[
χ3
Rλmiµnℓ

γkj

, q, f, p

]
.

Proof. Since lim supi Vi < ∞, lim supℓ V ℓ < ∞ and lim supj V j < ∞, there exists H > 0 such that

Vi < H, Vℓ < H and V j < H for all i, ℓ and j. Let x ∈
[
χ3
Rλiµℓγj

, θiℓj , q, f, p
]
and ϵ > 0. Then, there exist

i0 > 0, ℓ0 > 0 and j0 > 0, such that for every a ≥ i0, b ≥ ℓ0 and c ≥ j0 and for all i, ℓ and j,

A
′
abc =

1

λiµℓγjHabc

∑
m∈Ia,b,c

∑
n∈Ia,b,c

∑
k∈Ia,b,c

qmqnqk

[
f ((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k

]pmnk

→ 0 as m, n, k → ∞.

Let G
′
= max

{
A

′
a,b,c : 1 ≤ a ≤ i0, 1 ≤ b ≤ ℓ0 and 1 ≤ c ≤ j0

}
and p, r and t be such that mi−1 < p ≤

mi, nℓ−1 < r ≤ nℓ and kj−1 < t ≤ kj . Thus, we obtain the following:

1

λiµℓγjQpQrQt

p∑
m=1

r∑
n=1

t∑
k=1

qmqnqk

[
f ((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k

]pmnk

≤ 1

λiµℓγjQmi−1Qnℓ−1
Qkj−1

mi∑
m=1

nℓ∑
n=1

kj∑
k=1

[
((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k

]pmnk

≤ 1

λiµℓγjQmi−1Qnℓ−1
Qkj−1

i∑
a=1

ℓ∑
b=1

j∑
c=1 ∑

m∈Ia,b,c

∑
n∈Ia,b,c

∑
k∈Ia,b,c

qmqnqk

[
f ((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k

]pmnk


=

1

λiµℓγjQmi−1Qnℓ−1
Qkj−1

i0∑
a=1

ℓ0∑
b=1

j0∑
c=1

Ha,b,cA
′
a,b,c

+
1

λiµℓγjQmk−1
Qnℓ−1

Qkj−1

∑
(i0<a≤i)

∪
(ℓ0<b≤ℓ)

∪
(j0<c≤j)

Ha,b,cA
′
a,b,c

≤
G

′
Qmi0

Qni0
Qki0

λiµℓγjQmi−1Qnℓ−1
Qkj−1

+
1

λiµℓγjQmi−1Qnℓ−1
Qkj−1

∑
(i0<a≤i)

∪
(ℓ0<b≤ℓ)

∪
(j0<c≤ȷ)

Ha,b,cA
′
a,b,c

≤
G

′
Qmi0

Qnℓ0
Qkj0

λiµℓγjmi−1nℓ−1kj−1
+

1

λiµℓγjQmi−1Qnℓ−1
Qjj−1

∑
(i0<a≤i)

∪
(ℓ0<b≤ℓ)

∪
(j0<c≤j)

Ha,b,cA
′
a,b,c

≤
G

′
Qmi0

Q
nℓ0

Qkj0

λiµℓγjQmi−1Qnℓ−1
Qkj−1

+
(
supa≥i0

∪
b≥ℓ0

∪
c≥j0A

′
a,b,c

) 1

λiµℓγjQmi−1Qnℓ−1
Qkj−1

∑
(i0<a≤i)

∪
(ℓ0<b≤ℓ)

∪
(j0<c≤j)

Ha,b,c

≤
G

′
Qmi0

Q
nℓ0

Qkj0

λiµℓγjQmi−1Qnℓ−1
Qkj−1

+
ϵ

λiµℓγjQmi−1Qnℓ−1
Qkj−1

∑
(i0<a≤i)

∪
(ℓ0<b≤ℓ)

∪
(j0<c≤j)

Ha,b,c
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=

G
′
Qmi0

Q
nℓ0

Qkj0

λiµℓγjQmi−1Qnℓ−1
Qkj−1

+ ViV ℓV jϵ

≤
G

′
Qmi0

Q
nℓ0

Qkj0

λiµℓγjQmi−1Qnℓ−1
Qkj−1

+ ϵH3.

Since Qmi−1 Qnℓ−1
Qkj−1

→ ∞ as i, ℓ, j → ∞ approaches infinity, it follows that

1

λiµℓγjQpQrQt

p∑
m=1

q∑
n=1

t∑
k=1

qmqnqk

[
f ((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k

]pmnk

= 0,

uniformly in i,ℓ and j. Hence x ∈
[
χ3
Rλmiµnℓ

γkj

, q, f, p

]
.

Corollary 3.5. Let θi,ℓ,j = {mi, nℓ, kj} be a sliding window rough measurable function of Orlicz function on
triple lacunary sequence and qmqnqk be sequences of positive numbers. If 1 < limiℓjViℓj ≤ limiℓjsupViℓj < ∞,
then for any Orlicz function f ,[

χ3
Rλmiµnℓ

γkj

, θiℓj , q, f, p

]
=

[
χ3
Rλmiµnℓ

γkj

, q, f, p

]
.

Definition 3.6. Let θi,ℓ,j = {mi, nℓ, kj} be a sliding window rough measurable function of Orlicz function
on triple lacunary sequence. The triple number sequence x (t) is said to be sr[

χ3
Rλmiµnℓ

γkj

,θiℓj

]−P convergent

to 0 provided that for every ϵ > 0,

µ
(
P − limiℓJ

1

λiµℓγjHiℓj
supiℓj

∣∣∣{ (m,n, k) ∈ I
′
iℓj : qmqnqk

f
[
((m+ n+ k)! |xmnk (t)|)1/m+n+k , 0̄

]}
≥ r + ϵ

∣∣∣) = 0.

In this case we write sr[
χ3
Rλmiµnℓ

γkj

,θiℓj

] − P − limx = 0.

Theorem 3.7. Let θi,ℓ,j = {mi, nℓ, kj} be a sliding window rough measurable function of Orlicz function

on triple lacunary sequence. If I
′
i,ℓ,j ⊆ Ii,ℓ,j , then the inclusion

[
χ3
Rλmiµnℓ

γkj

, θiℓj , q

]
⊂ sr[

χ3
Rλmiµnℓ

γkj

,θiℓj

] is

strict and

[
χ3
Rλmiµnℓ

γkj

, θiℓj , q

]
− µ (P − limx) = sr[

χ3
Rλmiµnℓ

γkj

,θiℓj

] − µ (P − limx) = 0.

Proof. Let

KQiℓj
(ϵ) =

∣∣∣{(m,n, k) ∈ I
′
iℓj : qmqnqkf

[
((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k , 0̄

]}
≥ r + ϵ

∣∣∣ (3.1)

Suppose that x ∈
[
χ3
Rλmiµnℓ

γkj

, θiℓj , q

]
. Then for each i, ℓ and j,

µ

P − limiℓj
1

λiµℓγjHiℓj

∑
m∈Iiℓj

∑
n∈Iiℓj

∑
k∈Iiℓj

qmqnqkf
[
((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k , 0̄

] = 0.
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Since

1

λiµℓγjHiℓj

∑
m∈Iiℓj

∑
n∈Iiℓj

∑
k∈Iiℓj

qmqnqkf
[
((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k , 0̄

]
≥ 1

λiµℓγjHiℓj

∑
m∈Iiℓj

∑
n∈Iiℓj

∑
k∈Iiℓj

qmqnqkf
[
((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k , 0̄

]

=

∣∣KQiℓj
(ϵ)
∣∣

λiµℓγjHiℓj
,

for all i, ℓ and j, we get µ

(
P − limi,ℓ,j

∣∣∣KQiℓj
(ϵ)

∣∣∣
λiµℓγjHiℓj

)
= 0 for each i, ℓ and j.

This implies that x ∈ sr[
χ3
Rλmiµnℓ

γkj

,θiℓj

].
To show that this inclusion is strict, let x = (xmnk) be defined as

(xmnk (t)) =



1 2 3 ...f

λiµℓγj

[
4
√

Hi,ℓ,j

]m+n+k
−1

(m+n+k)!

 0 . . .

1 2 3 ...f

λiµℓγj

[
4
√

Hi,ℓ,j

]m+n+k
−1

(m+n+k)!

 0 . . .

.

.

.

f

λiµℓγj

[
4
√

Hi,ℓ,j

]m+n+k
−1

(m+n+k)!

 2 3 ...f

λiµℓγj

[
4
√

Hi,ℓ,j

]m+n+k
−1

(m+n+k)!

 0 . . .

.

f

λiµℓγj

[
4
√

Hi,ℓ,j

]m+n+k

(m+n+k)!

 f

λiµℓγj

[
4
√

Hi,ℓ,j

]m+n+k

(m+n+k)!

 f

λiµℓγj

[
4
√

Hi,ℓ,j

]m+n+k

(m+n+k)!

 0 . . .

.

.

.
0 0 0 ...0 0 . . .
.
.
.



;

and qm = 1; qn = 1; qk = 1 for all m,n and k. Clearly, x is unbounded sequence. For ϵ > 0 and for all i, ℓ
and j we have∣∣∣{(m,n, k) ∈ I

′
iℓj : qmqnqkf

[
((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k , 0̄

]}
≥ r + ϵ

∣∣∣
= µ

P − limiℓj f

(
λiµℓγj (m+ n+ k)!

[
4
√

Hi,ℓ,j

]m+n+k [
4
√

Hi,ℓ,j

]m+n+k [
4
√

Hi,ℓ,j

]m+n+k[
4
√

Hi,ℓ,j

]m+n+k
(m+ n+ k)!

)1/m+n+k


= 0.

Therefore, x ∈ sr[
χ3
Rλminℓkj

,θiℓj

] with the µ (P − lim) = 0. Also note that

µ

P − limiℓj
1

λiµℓγjHiℓj

∑
m∈Iiℓj

∑
n∈Iiℓj

∑
k∈Iiℓj

qmqnqkf
[
((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k

, 0̄
]

= µ

P − 1

2

limiℓj f

(
λiµℓγj (m+ n+ k)!

[
4
√
Hi,ℓ,j

]m+n+k [
4
√
Hi,ℓ,j

]m+n+k [
4
√
Hi,ℓ,j

]m+n+k[
4
√

Hi,ℓ,j

]m+n+k
(m+ n+ k)!

)1/m+n+k

+ 1
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=
1

2
.

Hence x /∈
[
χ3
Rλmiµnℓ

γkj

, θiℓj , q

]
.

Theorem 3.8. A sliding window rough triple sequence of Orlicz function of f , let I
′
iℓj ⊆ Iiℓj . If the following

conditions hold:

(1) 0 < µ < 1 and 0 ≤ f
[
((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k , 0̄

]
< 1.

(2) 1 < µ < ∞ and 1 ≤ f
[
((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k , 0̄

]
< ∞.

Then [
χ3
Rλmiµnℓ

γkj

, θiℓj , q

]
µ

⊂ sr[
χ3
Rλmiµnℓ

γkj

,θiℓj

]

and [
χ3
Rλmiµnℓ

γkj

, θiℓj , q

]
µ

− µ (P − limx) = sr[
χ3
Rλiµℓγj

,θiℓj

] − µ (P − limx) = 0.

Proof. Let x = (xmnk) be strongly

[
χ3
Rλmiµnℓ

γnj

, θiℓj , q

]
µ

-almost P -convergent to the limit 0. Since

qmqnqkf
[
((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k , 0̄

]µ
≥ qmqnqkf

[
((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k , 0̄

]
for (1) and (2), for all i, ℓ and j, we have

1

λiµℓγjHiℓj

∑
m∈Iiℓj

∑
n∈Iiℓj

∑
k∈Iiℓj

qmqnqkf
[
((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k , 0̄

]µ
≥ 1

λiµℓγjHiℓj

∑
m∈Iiℓj

∑
n∈Iiℓj

∑
k∈Iiℓj

qmqnqkf
[
((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k , 0̄

]
≥

ϵ
∣∣KQiℓj

(ϵ)
∣∣

λiµℓγjHiℓj
,

where KQiℓj
(ϵ) is as in (3.1). Taking limit i, ℓ, j → ∞ in both sides of the above inequality, we conclude

that sr[
χ3
Rλmiµnℓ

γkj

,θiℓj

] − µ (P − limx) = 0.

Definition 3.9. A sliding window rough measurable function of Orlicz function on triple sequence of

x = (xmnk) is said to be Riesz lacunary of χ almost P -convergent 0 if µ
(
P − limi,ℓ,jw

iℓj
mnk (x (t))

)
= 0,

uniformly in i, ℓ and j, where

wiℓj
mnk (x (t)) = wiℓj

mnk =
1

λiµℓγjHiℓj

∑
m∈Iiℓj

∑
n∈Iiℓj

∑
k∈Iiℓj

qmqnqkf
[
((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k , 0̄

]
.

Definition 3.10. A sliding window rough measurable function of Orlicz function on triple sequence (xmnk)
is said to be Riesz lacunary χ almost statistically summable to 0, if for every ϵ > 0 the set
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Kϵ =
{
(i, ℓ, j) ∈ N3 : f

(∣∣∣wiℓj
mnk, 0̄

∣∣∣) ≥ r + ϵ
}

has triple natural density zero, (i.e) δ3 (Kϵ) = 0. In this we

write [
χ3
Rλmiµnℓ

γkj

, θiℓj

]
st2

− µ (P − limx) = 0.

That is, for every ϵ > 0,

µ

(
P − limrst

1

rst

∣∣∣{i ≤ r, ℓ ≤ s, j ≤ t : f
(∣∣∣wiℓj

mnk, 0̄
∣∣∣) ≥ r + ϵ

}∣∣∣) = 0,

uniformly in i, ℓ and j.

Theorem 3.11. A sliding window rough measurable function of Orlicz function on triple sequence of I
′
iℓj ⊆

Iiℓj and qmqnqk f
[
((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k , 0̄

]
≤ M for all m,n, k ∈ N3 and for each i, ℓ

and j. Let x = (xmnk) be sr[
χ3
Rλmiµnℓ

γkj

,θiℓj

] − µ (P − limx) = 0.

Let

KQiℓj
(ϵ) =

∣∣∣{(m,n, k) ∈ I
′
iℓj : qmqnqkf

[
((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k , 0̄

]}
≥ r + ϵ

∣∣∣ .
Then

f
(∣∣∣wiℓj

mnk, 0̄
∣∣∣) =

∣∣∣∣∣∣ 1

λiµℓγjHiℓj

∑
m∈Iiℓj

∑
n∈Iiℓj

∑
k∈Iiℓj

qmqnqkf
[
((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k , 0̄

]∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
1

λiµℓγjHiℓj

∑
m∈I′iℓj

∑
n∈I′iℓj

∑
k∈I′iℓj

qmqnqkf
[
((m+ n+ k)! |xm+i,n+ℓ,k+j (t)|)1/m+n+k , 0̄

]∣∣∣∣∣∣∣
≤

M
∣∣KQiℓj

(ϵ)
∣∣

λiµℓγjHiℓj
+ (r + ϵ) ,

for each i, ℓ and j, which implies that µ
(
P − limi,ℓ,jw

iℓj
mnk (x (t))

)
= 0, uniformly i, ℓ and j. Hence, str2 −

µ
(
P − limiℓjw

iℓj
mnk

)
= 0 uniformly in i, ℓ, j. Therefore,

[
χ3
Rλiµℓγj

, θiℓj

]
str2

− µ (P − limx) = 0.

To see that the converse is not true, consider the sliding window rough measurable function of Orlicz function
on triple lacunary sequence θiℓj

{(
2i−13ℓ−14j−1

)}
, qm = 1, qn = 1, qk = 1 for all m,n and k, and the

sliding window rough measurable of Orlicz function on triple sequence x = (xmnk) defined by xmnk (t) =

f
(
(−1)m+n+k

(m+n+k)!

)
for all m,n and k.
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