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Abstract

The purpose of this paper is to discuss the existence and uniqueness of fixed points for new classes of
mappings defined on a 0−complete partial ordered metric space. The obtained results generalize some
recent theorems in the literature. Several applications and interesting consequences of our theorems are also
given. c⃝2017 All rights reserved.
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1. Introduction

Matthews [9] introduced the notion of a partial metric space as a part of the study of denotational
semantics of dataflow networks. He showed that the Banach contraction mapping theorem can be generalized
to the partial metric context for applications in program verification. Subsequently, several authors [2, 3, 6,
7, 10, 11, 12, 14] derived fixed point theorems in partial metric spaces. See also the presentation by Bukatin
et al. [1] where the motivation for introducing non-zero distance (i.e., the ”distance” p where p(x, x) ̸= 0)
is explained, which is also leading to interesting research in foundations of topology.

In view of the above considerations, the principal motivation of this paper is to relate some results in the
literature by discussing the existence and uniqueness of fixed points for new classes of mappings defined on a
complete metric space. In particular, we use our results to obtain fixed points for some new classes of cyclic
mappings and cyclic ordered mappings. We conclude the paper by giving an application of proved results
in solving functional equations. The following definitions and details can be seen, e.g., in [1, 5, 9, 10, 13].
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Definition 1.1. A partial metric on a nonempty set X is a function p : X × X → R+ such that for all
x, y, z ∈ X :

(p1) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y),

(p2) p(x, x) ≤ p(x, y),

(p3) p(x, y) = p(y, x),

(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

The pair (X, p) is called a partial metric on X.

It is clear that, if p(x, y) = 0, then from (p1) and (p2) x = y. But if x = y, p(x, y) may not be 0.
Each partial metric p on X generates a T 0 topology τp on X which has a base, the family of open p-balls
{Bp(x, ϵ) : x ∈ X, ϵ > 0}, where Bp(x, ϵ) = {y ∈ X : p(x, y) < p(x, x) + ϵ} for all x ∈ X and ϵ > 0. A
sequence {xn} in (X, p) converges to a point x ∈ X (in the sense of τp) if limn→∞ p(x, xn) = p(x, x). This
will be denoted as xn → x as n→ ∞ or limn→∞ xn = x. If f : X → X is continuous at x ∈ X (with respect
to τp), then for each sequence {xn} in X, we have

xn → x0 as fxn → fx0.

If p is a partial metric on X, then the function ps : X ×X → R+ given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y) (1.1)

is a metric on X. Furthermore, limn→∞ ps(xn, x) = 0 if and only if

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm).

Example 1.2. A paradigmatic example of a partial metric space is the pair (R+, p), where p(x, y) =
max{x, y} for all x, y ∈ R+. The corresponding metric is

ps(x, y) = 2max{x, y} − x− y = |x− y|.

Example 1.3. If (X, d) is a metric space and c ≥ 0 is arbitrary, then

p(x, y) = d(x, y) + c

defines a partial metric on X and the corresponding metric is ps(x, y) = 2d(x, y).

Other examples of partial metric spaces which are interesting from a computational point of view may
be found in [4, 9].

Definition 1.4. Let (X, p) be a partial metric space. Then:

(1) a sequence {xn} in (X, p) is called a Cauchy sequence if limn,m→∞ p(xn, xm) exists (and is finite).

(2) the space (X, p) is said to be complete if every Cauchy sequence {xn} in X converges, with respect to
τp, to a point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm).

(3) a sequence {xn} in (X, p) is called 0−Cauchy if limn,m→∞ p(xn, xm) = 0.

(4) the space (X, p) is said to be 0−complete if every 0−Cauchy sequence in X converges (in τp) to a
point x ∈ X such that p(x, x) = 0.

Lemma 1.5. Let (X, p) be a partial metric space. Then:

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space (X, ps).

(b) the space (X, p) is complete if and only if the metric space (X, ps) is complete.
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(c) every 0−Cauchy sequence in (X, p) is Cauchy in (X, ps).

(d) if (X, p) is complete, then it is 0−complete.

The converse assertions of (c) and (d) do not hold as the following easy example shows:

Example 1.6. The space X = [0,∞) ∩ Q with the partial metric p(x, y) = max{x, y} is 0−complete, but
is not complete ( since ps(x, y) = |x − y| and (X, ps) is not complete). Moreover, the sequence {xn} with
xn = 1 for each n ∈ N is a Cauchy sequence in (X, p), but it is not a 0−Cauchy sequence.

Denote with Ψ the family of nondecreasing functions Ψ : [0,+∞) → [0,+∞) such that Σ∞
n=1ψ

n(t) < +∞
for all t > 0, where ψn is the nth iterate of ψ. The next lemma is obvious.

Lemma 1.7. If ψ ∈ Ψ, then ψ(0) = 0 and ψ(t) < t for all t > 0.

The following definitions play a key role in our paper.

Definition 1.8. Let f : X → X and α : X ×X → [0,+∞). We say that f is an α−admissible mapping if
for all x, y ∈ X,

α(x, y) ≥ 1 =⇒ α(fx, fy) ≥ 1.

Definition 1.9. Let f : X → X and α, β : X×X → [0,+∞). We say that f is a twisted (α, β)− admissible
mapping if for all x, y ∈ X,

α(x, y) ≥ 1 =⇒ α(fy, fx) ≥ 1,

β(x, y) ≥ 1 =⇒ β(fy, fx) ≥ 1.

Definition 1.10. Let (X, p) be a partial ordered metric space and f : X → X be a twisted (α, β)−admissible
mapping. Then f is said to be a

(a) twisted (α, β)− ψ−contractive mapping of type (I), if

α(x, y)β(x, y)p(fx, fy) ≤ ψ(p(x, y)) (1.2)

holds for all x, y ∈ X, where ψ ∈ Ψ.

(b) twisted (α, β)− ψ−contractive mapping of type (II), if there is 0 < l ≤ 1 such that

(α(x, y)β(x, y) + l)p(fx,fy) ≤ (1 + l)ψ(p(x,y)) (1.3)

holds for all x, y ∈ X, where ψ ∈ Ψ.

(c) twisted (α, β)− ψ−contractive mapping of type (III), if there is l ≥ 1 such that

(p(fx, fy) + l)α(x,y)β(x,y) ≤ ψ(p(x, y)) + l (1.4)

holds for all x, y ∈ X, where ψ ∈ Ψ.

2. Main Results

In this section, we give some theorems linking the above concepts.

Theorem 2.1. Let (X, p) be a 0−complete partial ordered metric space and let f : X → X be a contin-
uous twisted (α, β) − ψ−contractive mapping of type (I) or (II) or (III). If there exists x0 ∈ X such that
α(x0, fx0) ≥ 1 and β(x0, fx0) ≥ 1, then f has a fixed point in X.
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Proof. Let x0 ∈ X such that α(x0, fx0) ≥ 1 and β(x0, fx0) ≥ 1. Define a sequence {xn} by xn = fnx0 =
fxn−1 for all n ∈ N. Since f is a twisted (α, β)−admissible mapping and

β(x0, x1) = β(x0, fx0) ≥ 1,

then
β(x2, x1) = β(fx1, fx0) ≥ 1

which implies
β(x2, x3) = β(fx1, fx2) ≥ 1.

By continuing this process, we get β(x2n, x2n+1) ≥ 1 and β(x2n, x2n−1) ≥ 1 for all n ∈ N. Similarly, we have
α(x2n, x2n+1) ≥ 1 and α(x2n, x2n−1) ≥ 1 for all n ∈ N.

Now, we distinguish the following cases:

Case-(a) Let f be a twisted (α, β)−ψ−contractive mapping of type (I). Then by 1.2 with x = x2n and
y = x2n+1 we have

p(x2n+1, x2n+2) ≤ α(x2n, x2n+1)β(x2n, x2n+1)p(x2n+1, x2n+2)

≤ ψ(p(x2n, x2n+1)).

Then p(x2n+1, x2n+2) ≤ ψ(p(x2n, x2n+1)). Similarly, by 1.2 with x = x2n and y = x2n−1 we have p(x2n+1, x2n) ≤
ψ(p(x2n, x2n−1)). In view of these inequalities, for all n ∈ N we can deduce that p(xn, xn+1) ≤ ψn(p(x0, x1)).

Case-(b) Let f be a twisted (α, β)−ψ-contractive mapping of type (II). Then by 1.3 with x = x2n and
y = x2n+1 we have

(1 + l)p(x2n+1,x2n+2) ≤ (α(x2n, x2n+1)β(x2n, x2n+1) + l)p(x2n+1,x2n+2)

≤ (1 + l)ψ(p(x2n,x2n+1)).

Then
p(x2n+1, x2n+2) ≤ ψ(p(x2n, x2n+1)).

Similarly, by 1.3 with x = x2n and y = x2n−1 we have

p(x2n+1, x2n) ≤ ψ(p(x2n, x2n−1)).

Again, for all n ∈ N we can deduce that

p(xn, xn+1) ≤ ψn(p(x0, x1)).

Case-(c) Let f be a twisted (α, β)−ψ-contractive mapping of type (III). Then by 1.4 with x = x2n and
y = x2n+1 we have

p(x2n+1, x2n+2) + l ≤ (p(x2n+1, x2n+2) + l)α(x2n,x2n+1)β(x2n,x2n+1)

≤ ψ(p(x2n, x2n+1)) + l.

Then
p(x2n+1, x2n+2) ≤ ψ(p(x2n, x2n+1)).

Similarly, by 1.4 with x = x2n and y = x2n−1 we have

p(x2n+1, x2n) ≤ ψ(p(x2n, x2n−1)).
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Thus, in all cases, for all n ∈ N we can deduce easily that

p(xn, xn+1) ≤ ψn(p(x0, x1)).

Fix ϵ > 0, there exists N ∈ N such that

Σn≥Nψ
n(p(x0, x1)) < ϵ.

Let m,n ∈ N with m > n ≥ N . Then, by using the triangular inequality, we get

p(xn, xm) ≤ Σm−1
k=n p(xk, xk+1) ≤ Σn≥Nψ

n(p(x0, x1)) < ϵ

and consequently limm,n→+∞ p(xn, xm) = 0. Hence {xn} is a 0−Cauchy sequence. Since X is 0−complete,
then there is z ∈ X such that xn → z as n→ +∞. Finally, since f is continuous then we have

fz = lim
n→+∞

fxn = lim
n→+∞

xn+1 = z

and so z is a fixed point of f .

Similarly, one can obtain the same conclusion under an alternative assumption. Precisely, in the following
theorem we omit the continuity condition on f but use an adjunctive condition on X.

Theorem 2.2. Let (X, p) be a 0−complete partial ordered metric space and let f : X → X be a twisted
(α, β)− ψ-contractive mapping of type (I) or (II) or (III). Also suppose that the following conditions hold:

(i) there exists x0 ∈ X such that α(x0, fx0) ≥ 1 and β(x0, fx0) ≥ 1,

(ii) if {xn} is a sequence in X such that α(x2n, x2n+1) ≥ 1 and β(x2n, x2n+1) ≥ 1 for all n ∈ N ∪ {0} and
xn → x as n→ +∞, then α(x2n, x) ≥ 1 and β(x2n, x) ≥ 1 for all n ∈ N ∪ {0}.

Then f has a fixed point.

Proof. Let x0 ∈ X such that α(x0, fx0) ≥ 1 and β(x0, fx0) ≥ 1. Proceeding as in the proof of Theorem
2.1, we know that there is z ∈ X such that xn → z as n → +∞ , α(x2n, x2n+1) ≥ 1 and β(x2n, x2n+1) ≥ 1.
We shall prove that z = fz. Assume to the contrary that z ̸= fz. From (ii) we have α(x2n, z) ≥ 1 and
β(x2n, z) ≥ 1 for all n ∈ N ∪ {0}. Now, we distinguish the following cases:

Case-(a) Let f be a twisted (α, β) − ψ−contractive mapping of type (I). Then by 1.3 with x = x2n
and y = z we have

p(fx2n, fz) ≤ α(x2n, z)β(x2n, z)p(fx2n, fz)

≤ ψ(p(x2n, z)).

Case-(b) Let f be a twisted (α, β) − ψ−contractive mapping of type (II). Then by 1.3 with x = x2n and
y = z we have

(1 + l)p(fx2n,fz) ≤ (α(x2n, z)β(x2n, z) + l)p(fx2n,fz)

≤ (1 + l)ψ(p(x2n,z)),

that implies
p(fx2n, fz) ≤ ψ(p(x2n, z)).

Case-(c) Let f be a twisted (α, β) − ψ−contractive mapping of type (III). Then by 1.3 with x = x2n and
y = z we have

p(fx2n, fz) + l ≤ (p(fx2n, fz) + l)α(x2n,z)β(x2n,z)

≤ ψ(p(x2n, z)) + l,
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that implies

p(fx2n, fz) ≤ ψ(p(x2n, z)).

Therefore, in all cases, by using the triangular inequality, we can write

p(z, fz) ≤ p(z, fx2n) + p(fx2n, fz)− p(fx2n, fx2n)

= p(z, x2n+1) + p(fx2n, fz)− p(x2n+1, x2n+1)

≤ p(z, x2n+1) + ψ(p(x2n, z))− p(x2n+1, x2n+1).

By taking the limit as n→ +∞ in the above inequality, since ψ is continuous in t = 0, we have p(z, fz) = 0,
that is, z = fz.

Example 2.3. Let X = R be endowed with the partial ordered metric p(x, y) = max{x, y} for all x, y ∈ X
and f : X → X be defined by

fx =

{ −1
4 x, if x ∈ [−1, 1],

3

√
x+1
x2+1

, if x ∈ R \ [−1, 1].

Define also α, β : X ×X → [0,+∞) by

α(x, y) = β(x, y) =

{
1, if x ∈ [0, 1] and y ∈ [−1, 0],

0 otherwise,

and ψ : [0,+∞) → [0,+∞) by ψ(t) = 1
2 t for all t ≥ 0. We prove that Theorem 2.2 can be applied to f .

Proof. Let α(x, y) ≥ 1 for x, y ∈ X. Then x ∈ [0, 1] and y ∈ [−1, 0], and so fy ∈ [0, 1] and fx ∈ [−1, 0], that
is, α(fy, fx) ≥ 1. Also, assume β(x, y) ≥ 1 for x, y ∈ X. Therefore x ∈ [0, 1] and y ∈ [−1, 0], and hence
fy ∈ [0, 1] and fx ∈ [−1, 0], that is, β(fy, fx) ≥ 1. Clearly, α(0, f0) ≥ 1 and β(0, f0) ≥ 1. Now, let {xn}
be a sequence in X such that α(x2n, x2n+1) ≥ 1 and β(x2n, x2n+1) ≥ 1 for all n ∈ N ∪ {0} and xn → x as
n → +∞. This implies that {x2n+1} ⊂ [−1, 0] and {x2n} ⊂ [0, 1]. Thus, x = 0 and so α(x2n, x) ≥ 1 and
β(x2n, x) ≥ 1 for all n ∈ N ∪ {0}. Moreover, for x ∈ [0, 1] and y ∈ [−1, 0] we have

α(x, y)β(x, y)p(fx, fy) = max{fx, fy}

=
1

4
max{x, y}

≤ 1

2
max{x, y} = ψ(p(x, y)).

Otherwise, α(x, y)β(x, y) = 0 and 1.2 trivially holds. Then f is a twisted (α, β) − ψ−contractive mapping
of type (I) and, by Theorem 2.2, f has a fixed point.

Now, we give examples to prove validity of Theorem 2.2.

Example 2.4. Let X, d, α and β be as in Example 2.3 and f : X → X be defined by

fx =

{
−1
4π (x), if x ∈ [−1, 1],
x2−cos(x5)
x+sinx , if x ∈ R \ [−1, 1].

Define ψ : [0,+∞) → [0,+∞) by ψ(t) = 1
4 t for all t ≥ 0. We prove that Theorem 2.2 can be applied to f .
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Proof. Proceeding as in the proof of Example 2.3, we deduce that f is a twisted (α−β)−admissible mapping
and that the conditions (i) and (ii) of Theorem 2.2 hold. Moreover, if x ∈ [0, 1], y ∈ [−1, 0] and 0 < l ≤ 1
we have

(α(x, y)β(x, y) + l)p(fx,fy) = (1 + l)p(fx,fy)

= (1 + l)
1
4π

max{x,y}

≤ (1 + l)
3
4π

max{x,y}

≤ (1 + l)
1
4
max{x,y}

= (1 + l)ψ(p(x,y)).

Otherwise, α(x, y)β(x, y) = 0 and 1.3 trivially holds. Hence, f is a twisted (α, β)−ψ−contractive mapping
of type (II) and by Theorem 2.2, f has a fixed point.

Example 2.5. Let X = R be endowed with the usual metric d(x, y) = |x−y| for all x, y ∈ X and f : X → X
be defined by

fx =

{
1
8x, if x ∈ [0, 1],
1
x − 1

1+x , if x ∈ (1,∞).

Define also α, β : X ×X → [0,+∞) by

α(x, y) = β(x, y) =

{
1, if x, y ∈ [0, 1],

0 otherwise,

and ψ : [0,+∞) → [0,+∞) by ψ(t) = 1
2 t for all t ≥ 0. We prove that Theorem 2.2 can be applied to f .

Proof. Proceeding as in the proof of Example 2.3, we deduce that f is a twisted (α, β)−admissible mapping
and that the conditions (i) and (ii) of Theorem 2.2 hold. Moreover, if x, y ∈ [0, 1] and l ≥ 1, we have

(p(fx, fy) + l)α(x, y)β(x, y) =
1

8
max{x, y}+ l

=
1

8
max{x, y}+ l

≤ 1

2
max{x, y}+ l = ψ(p(x, y)) + l.

Otherwise, α(x, y)β(x, y) = 0 and 1.4 trivially holds. Hence, f is a twisted (α, β)−ψ−contractive mapping
of type (III) and, by Theorem 2.2, f has a fixed point.

In the next result, we consider a hypothesis useful to obtain the uniqueness of the fixed point.

Theorem 2.6. Assume that all the hypothesis of Theorem 2.1 (respectively Theorem 2.2) hold. Adding the
following condition:

(A) for all x, y ∈ X with x, y there exists v ∈ X such that α(x, v) ≥ 1, α(y, v) ≥ 1 and β(x, v) ≥ 1,
β(y, v) ≥ 1,

we obtain the uniqueness of the fixed point of f .

Proof. Suppose that z and z∗ are two fixed points of f such that z, z∗. By condition (A), there exists v such
that α(z, v) ≥ 1 and α(z∗, v) ≥ 1. Therefore, since f is a twisted (α, β)−admissible mapping, we deduce
that α(f2nz, f2nv) ≥ 1, α(f2n−1v, f2n−1z) ≥ 1 and α(f2nz∗, f2nv) ≥ 1, α(f2n−1v, f2n−1z∗) ≥ 1. Similarly,
we get β(f2nz, f2nv) ≥ 1, β(f2n−1v, f2n−1z) ≥ 1 and β(f2nz∗, f2nv) ≥ 1, β(f2n−1v, f2n−1z∗) ≥ 1.
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Now, if f is a twisted (α, β) − ψ−contractive mapping of type (I), then by 1.2 with x = f2nz and
y = f2nv we have

p(ff2nz, ff2nv) ≤ α(f2nz, f2nv)β(f2nz, f2nv)p(ff2nz, ff2nv)

≤ ψ(p(f2nz, f2nv)).

Similarly by 1.2 with x = f2n−1v and y = f2n−1z we get

p(ff2n−1z, ff2n−1v) ≤ ψ(p(f2n−1z, f2n−1v)).

Hence for all n ∈ N we have
p(ffnz, ffnv) ≤ ψ(p(fnz, fnv)),

or equivalently,
p(z, fn+1v) ≤ ψn(p(z, v)).

Of course, we get the same conclusion if we suppose that f is a twisted (α, β)− ψ−contractive mapping of
type (II) or (III) and so we omit the details. By taking the limit as n → +∞ in the above inequality we
obtain

lim
n→+∞

p(z, fn+1v) = 0.

Using a similar argument we also get
lim

n→+∞
p(z∗, fn+1v) = 0.

From the last two limits and the triangular inequality we have

p(z, z∗) ≤ lim
n→+∞

[p(z, fn+1v) + p(z∗, fn+1v)− p(fn+1v, fn+1v)] = 0,

that is, z = z∗.

The following result is a consequence of Theorem 2.1.

Corollary 2.7. Let (X, p) be a 0−complete partial ordered metric space and let f : X → X be a continuous
mapping. If there exists ψ ∈ Ψ such that

p(fx, fy) ≤ ψ(p(x, y)), (2.1)

holds for all x, y ∈ X, then f has a unique fixed point in X.

Proof. By taking α(x, y) = β(x, y) = 1 for all x, y ∈ X in Theorem 2.1, we deduce that f has a fixed point
in X. The uniqueness of the fixed point follows easily from 2.1 and so we omit the details.

3. Cyclic Results

In this section, we prove some analogous fixed point results involving a cyclic mapping. First, for our
further use, we adapt Definition 1.10 as follows:

Definition 3.1. Let (X, p) be a partial metric space and A,B be two nonempty and closed subsets of X.
Let α : X ×X → [0,+∞) and f : A ∪ B → A ∪ B, with fA ⊆ B and fB ⊆ A, such that α(fy, fx) ≥ 1 if
α(x, y) ≥ 1, where x ∈ A and y ∈ B. Thus f is said to be a

(a) cyclic α− ψ−contractive mapping of type (I), if

α(x, y)p(fx, fy) ≤ ψ(p(x, y)), (3.1)

holds for all x ∈ A and y ∈ B, where ψ ∈ Ψ.
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(b) cyclic α− ψ−contractive mapping of type (II), if there is 0 < l ≤ 1 such that

(α(x, y) + l)p(fx,fy) ≤ (1 + l)ψ(p(x,y)) (3.2)

holds for all x ∈ A and y ∈ B, where ψ ∈ Ψ.

(c) cyclic α− ψ−contractive mapping of type (III), if there is l ≥ 1 such that

(p(fx, fy) + l)α(x,y) ≤ ψ(p(x, y)) + l (3.3)

holds for all x ∈ A and y ∈ B, where ψ ∈ Ψ .

Now, we prove the following result for a continuous cyclic mapping:

Theorem 3.2. Let (X, p) be a 0−complete partial metric space and A,B be two nonempty and closed subsets
of X such that f : A ∪B → A ∪ B is a continuous cyclic α− ψ−contractive mapping of type (I) or (II) or
(III). If there exists x0 ∈ A such that α(x0, fx0) ≥ 1, then f has a fixed point in A ∩B.

Proof. Let Y = A ∪B and β : Y × Y → [0,+∞) be the function defined by

β(x, y) =

{
1 if x ∈ A and y ∈ B,

0 otherwise.

Then (Y, p) is a 0−complete partial metric space and f is a twisted (α, β)−admissible mapping. Now, if
x0 ∈ A is such that α(x0, fx0) ≥ 1, then also β(x0, fx0) ≥ 1 and hence all the hypothesis of Theorem 2.1
hold with X = Y. Consequently, f has a fixed point in A ∪ B, say z. Since z ∈ A implies z = fz ∈ B and
z ∈ B implies z = fz ∈ A, then z ∈ A ∩B.

Next we prove result by elimination continuity condition on cyclic α− ψ−contractive mappings.

Theorem 3.3. Let (X, p) be a 0−complete partial metric space and A,B be two nonempty and closed subsets
of X such that f : A ∪ B → A ∪ B is a cyclic α− ψ−contractive mapping of type (I) or (II) or (III). Also
suppose that the following conditions hold:

(i) there exists x0 ∈ A such that α(x0, fx0) ≥ 1;

(ii) if {xn} is a sequence in X such that α(x2n, x2n+1) ≥ 1 for all n ∈ N ∪ {0} and xn → x as n → +∞,
then α(x2n, x) ≥ 1 for all n ∈ N ∪ {0}.

Then f has a fixed point in A ∩B.

Proof. Let Y = A ∪ B and define the function β : Y × Y → [0,+∞) as in the proof of Theorem 3.2. Let
{xn} be a sequence in Y such that α(x2n, x2n+1) ≥ 1 and β(x2n, x2n+1) ≥ 1 for all n ∈ N ∪ {0} and xn → x
as n → +∞. Then x2n ∈ A and x2n+1 ∈ B. Now, since B is closed, then x ∈ B and hence α(x2n, x) ≥ 1
and β(x2n, x) ≥ 1. We deduce that all the hypothesis of Theorem 2.2 are satisfied with X = Y and hence
f has a fixed point.

Corollary 3.4. Let (X, p) be a 0−complete partial metric space and A,B be two nonempty and closed
subsets of X such that f : A ∪B → A ∪B is continuous, fA ⊆ B and fB ⊆ A. If there exists ψ ∈ Ψ such
that

p(fx, fy) ≤ ψ(p(x, y)), (3.4)

holds for all x ∈ A and y ∈ B, then f has a unique fixed point in A ∩B.

Proof. By taking α(x, y) = 1 for all x ∈ A and y ∈ B in Theorem 3.2, we deduce that f has a fixed point
in A ∩ B. The uniqueness of the fixed point follows easily from 3.4 and so we omit the details. Clearly, if
ψ(t) = ct for all t > 0 where c ∈ (0, 1), then Corollary 3.4 reduces to Theorem 1.1 of [8].
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4. Cyclic ordered results

By using the similar arguments to those presented in the previous section, we are able to obtain results
in the setting of partial ordered complete metric spaces.

Definition 4.1. Let (X, p,⪯) be a partial ordered metric space and A,B be two nonempty and closed
subsets of X. Let α : X × X → [0,+∞) and f : A ∪ B → A ∪ B, with fA ⊆ B and fB ⊆ A, such that
α(fy, fx) ≥ 1 if α(x, y) ≥ 1, where x ∈ A and y ∈ B. Then f is said to be a

(a) cyclic ordered α− ψ−contractive mapping of type (I), if

α(x, y)p(fx, fy) ≤ ψ(p(x, y)) (4.1)

holds for all x ∈ A and y ∈ B with x ⪯ y, where ψ ∈ Ψ.
(b) cyclic ordered α− ψ−contractive mapping of type (II), if there is 0 < l ≤ 1 such that

(α(x, y) + l)p(fx,fy) ≤ (1 + l)ψ(p(x,y)) (4.2)

holds for all x ∈ A and y ∈ B with x ⪯ y, where ψ ∈ Ψ.
(c) cyclic ordered α− ψ−contractive mapping of type (III), if there is l ≥ 1 such that

(p(fx, fy) + l)α(x,y) ≤ ψ(p(x, y)) + l (4.3)

holds for all x ∈ A and y ∈ B with x ⪯ y, where ψ ∈ Ψ .

Theorem 4.2. Let (X, p,⪯) be a partial ordered complete metric space and A,B be two nonempty and
closed subsets of X such that f : A∪B → A∪B is a decreasing continuous cyclic ordered α−ψ-contractive
mapping of type (I) or (II) or (III). If there exists x0 ∈ A such that α(x0, fx0) ≥ 1 and x0 ⪯ fx0, then f
has a fixed point in A ∩B.
Proof. Consider the 0−complete partial metric space (Y, p) where Y = A ∪ B and define the function
β : Y × Y → [0,+∞) by

β(x, y) =

{
1 if x ∈ A and y ∈ B with x ⪯ y,

0 otherwise.
(4.4)

Clearly, 1.2 (respectively, 1.3 or 1.4) holds for all x, y ∈ Y. Let β(x, y) ≥ 1 for x, y ∈ X, then x ∈ A and
y ∈ B with x ⪯ y. It follows that fx ∈ B and fy ∈ A with fy ⪯ fx, since f is decreasing. Therefore
β(fy, fx) ≥ 1, that is, f is a twisted (α, β)−admissible mapping. Now, let α(x0, fx0) ≥ 1 with x0 ∈ A and
x0 ⪯ fx0. From x0 ∈ A we have fx0 ∈ B with x0 ⪯ fx0 , that is, β(x0, fx0) ≥ 1. Then all the hypothesis
of Theorem 2.1 hold with X = Y and f has a fixed point in A ∪B, say z. Since z ∈ A implies z = fz ∈ B
and z ∈ B implies z = fz ∈ A, then z ∈ A ∩B.

Theorem 4.3. Let (X, p,⪯) be a 0−complete partial metric space and A,B be two nonempty and closed
subsets of X such that f : A∪B → A∪B is a cyclic ordered α− ψ−contractive mapping of type (I) or (II)
or (III). Also suppose that the following conditions hold:

(i) there exists x0 ∈ A such that α(x0, fx0) ≥ 1 and x0 ⪯ fx0;
(ii) if {xn} is a sequence in X such that α(x2n, x2n+1) ≥ 1 for all n ∈ N ∪ {0} and xn → x as n → +∞,

then α(x2n, x) ≥ 1 for all n ∈ N ∪ {0};
(iii) if {xn} is a sequence in X such that x2n ⪯ x2n+1 for all n ∈ N ∪ {0} and xn → x as n → +∞ , then

x2n ⪯ x for all n ∈ N ∪ {0}.
Then f has a fixed point in A ∩B.

Proof. Consider the 0−complete partial metric space (Y, p) where Y = A ∪ B and define the function
β : Y ×Y → [0,+∞) as in the proof of Theorem 4.2. Let {xn} be a sequence inX such that α(x2n, x2n+1) ≥ 1
and β(x2n, x2n+1) ≥ 1 for all n ∈ N ∪ {0} and xn → x as n → +∞ , then x2n ∈ A and x2n+1 ∈ B with
x2n ⪯ x2n+1. Since B is closed and by (iii), we deduce that x ∈ B and x2n ⪯ x, that is, β(x2n, x) ≥ 1. Since
α(x2n, x) ≥ 1 for all n ∈ N ∪ {0}, then all the hypothesis of Theorem 2.2 are satisfied and hence f has a
fixed point.
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5. Application to functional equations

In this section, we denote by B(W ) the space of all bounded real-valued functions defined on the set
W. Clearly, B(W ) endowed with the sup metric p(h, k) = supx∈W {h(x), k(x)} for all h, k ∈ B(W ), is a
0−complete partial metric space.
In this setting, we discuss the problem of dynamic programming related to multistage process [6]. Indeed,
this problem reduces to the problem of solving the functional equation

Q(x) = sup
y∈D

{f(x, y) +K(x, y,Q(τ(x, y)))}, x ∈W, (5.1)

where τ : W × D → W , f : W × D → R, K : W × D × R → R. Specifically, we will prove the following
theorem:

Theorem 5.1. Let K :W ×D×R → R and f :W ×D → R be two bounded functions and let A : B(W ) →
B(W ) be defined by

A(h)(x) = sup
y∈D

{f(x, y) +K(x, y, h(τ(x, y)))}, (5.2)

for all h ∈ B(W ) and x ∈W . Assume that there exists θ : B(W )×B(W ) → R such that

(i) θ(h, k) ≥ 0 =⇒ θ(A(k), A(h)) ≥ 0, where h, k ∈ B(W ),

(ii) max{K(x, y, h(x)),K(x, y, k(x))} ≤ ψ(max{h(x), k(x)}), where ψ ∈ Ψ , h, k ∈ B(W ), θ(h, k) ≥ 0, x ∈
W and y ∈ D,

(iii) if {hn} is a sequence in B(W ) such that θ(h2n, h2n+1) ≥ 0 for all n ∈ N ∪ {0} and hn → h∗ as
n→ +∞ , then θ(h2n, h

∗) ≥ 0 for all n ∈ N ∪ {0},
(iv) there exists h0 ∈ B(W ) such that θ(h0, A(h0)) ≥ 0.

Then the functional equation 5.1 has a bounded solution.

Proof. Note that (B(W ), p) is a 0-complete metric space. Let ϵ be an arbitrary positive number and
h1, h2 ∈ B(W ) such that θ(h1, h2) ≥ 0, then there exist y1, y2 ∈ D such that

A(h1)(x) < f(x, y1) +K(x, y1, h1(τ(x, y1))) + ϵ, (5.3)

A(h2)(x) < f(x, y2) +K(x, y2, h2(τ(x, y2))) + ϵ, (5.4)

A(h1)(x) ≥ f(x, y2) +K(x, y2, h1(τ(x, y2))), (5.5)

A(h2)(x) ≥ f(x, y1) +K(x, y1, h2(τ(x, y1))). (5.6)

Now, from 5.3 and 5.6, it follows easily that

max{A(h1)(x), A(h2)(x)} < max{K(x, y1, h1(τ(x, y1))),K(x, y1, h2(τ(x, y1)))}+ ϵ

≤ max{K(x, y1, h1(τ(x, y1))),K(x, y1, h2(τ(x, y1)))}+ ϵ

≤ ψ(max{h1(x), h2(x)}) + ϵ.

Hence we get

max{A(h1)(x), A(h2)(x)} < ψ(max{h1(x), h2(x)}) + ϵ. (5.7)
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This gives,

p(A(h1), A(h2)) ≤ ψ(p(h1, h2)) + ϵ. (5.8)

Since ϵ > 0 is arbitrary, then
p(A(h1), A(h2)) ≤ ψ(p(h1, h2)).

Define

α(h, k) = β(h, k) =

{
1 if θ(h, k) ≥ 0, where h, k ∈ B(W ),

0 otherwise.

Consequently, we have
α(h1, h2)β(h1, h2)p(A(h1), A(h2)) ≤ ψ(p(h1, h2)),

that is, A is a twisted (α, β) − ψ−contractive mapping of type (I) with α(h, k) = 1 for all h, k ∈ B(W ).
Thus, by Theorem 2.2, A has a fixed point, that is, the functional equation 5.1 has a bounded solution.
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