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1. Introduction

Global structure of solutions for a boundary value problem (BVP in short), which arises naturally from
some physical and control problems, attracts the attention of many researchers. Various methods have
been investigated by researchers for the existence of solutions to the BVPs. One of them is evaluating
the topological degree of an integral operator whose fixed point set coincides with the set of solutions.
M. A. Krasnoselskii et.al. [8], evaluated this quantity through the evaluating the topological index of the
especial ”guiding function” of the equation under consideration. The method of guiding functions was also
applied to study the global bifurcation problem for differential inclusions in various research papers (see e.g.
[9, 10, 14, 13]).
In this paper by applying the method of guiding functions we obtain the global structure of the solution set
of the following feedback control system, whose first equation describes the dynamics of the system and the
second inclusion represents the feedback,

Dβ
0+
x(t)− aµx(t) = f(t, x(t), u(t), µ) t ∈ I,

Dα
0+u(t) ∈ G(t, x(t), u(t), µ),

x(0) = x(T ), u(0) = 0.

(1.1)
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where I = [0, T ], f : I × Rn × Rn × R → Rn is a continuous map, G : I × Rn × Rm × R → Kv(Rm) is a
multivalued map, Kv(Rm) denotes the collection of all nonempty, compact convex subsets of Rm, Dα

0+u(t)

and Dβ
0+

are standard Caputo derivatives for n − 1 < α ≤ n and 1
2 < β ≤ 1, x : I → Rn is a trajectory of

the system and u : I → Rm, is a control function.
The existence of solutions for a class of feedback control systems of second order differential equation in
Hilbert spaces is studied by Loi et.al. [12] and also the global bifurcation problem for such systems is
investigated by Loi [11], but there is no paper studying such problems with fractional-order (FO) controller,
so the purpose of present paper is to fill this gap.
To the best of our knowledge, this is probably the first effort to investigate the existence of nontrivial
solutions for BVPs in a system with (FO) dynamics and feedback law. Since (FO) controller providing
more flexibility than integer orders in the design, applying them will be more better to describe physical
and control problems.

The paper is organized as follows. The next section contains background materials and preliminaries
from multivalued analysis. In section 3, we present some necessary notations definitions and lemmas from
fractional calculus and fractional Sobolev spaces. Section 4 contains several properties of Fredholm operators.
In section 5, some results on bifurcation theory and topological index are listed. In the last section, the
main results of present paper are given and proved.

2. Preliminaries

Let X,Y be metric spaces. Denote by P (Y )[C(Y ),K(Y )] the collection of all nonempty [resp., nonempty
closed, nonempty compact] subsets of Y . For a Banach space E by symbols Cv(E)[Kv(E)] we denote the
collection of all nonempty convex closed [resp., nonempty convex compact] subsets of E.

Definition 2.1 ([2]). A multivalued map (multimap) F : X → P (Y ) is said to be compact if F (X) is
relatively compact in Y and is said to be upper semicontinuous (u.s.c.) if for every open subset V ⊂ Y the
set

F−1
+ (V ) = {x ∈ X : F (x) ⊂ V }

is open in X. A u.s.c. multimap F is said to be completely u.s.c., if it maps every bounded subset X1 ⊂ X
into a relatively compact subset F (X1) of Y .

Definition 2.2. A set M ∈ K(Y ) is said to be aspheric (see, e.g., [14, 24]), if for every ε > 0 there exists
δ > 0 such that each continuous map σ : Sn → Oδ(M), n = 0, 1, 2, ..., can be extended to a continuous map
σ̃ : Bn+1 → Oε(M), where Sn = {x ∈ Rn+1 : ||x|| = 1}, Bn+1 = {x ∈ Rn+1 : ||x|| ≤ 1}, and Oδ(M)[Oε(M)]
denotes the δ-neighborhood [resp. ε-neighborhood] of the set M .

Definition 2.3 ([5]). A nonempty compact space A is said to be an Rδ-set if it can be represented as the
intersection of a decreasing sequence of compact, contractible spaces.

Definition 2.4 ([2]). A u.s.c. multimap Σ : X → K(Y ) is said to be a J-multimap (Σ ∈ J(X,Y )) if every
value Σ(x), x ∈ X, is an aspheric set.

Now let us recall (see, e.g., [2]) that a metric space X is called the absolute retract (the AR-space) [resp.,
the absolute neighborhood retract (the ANR-space)] provided for each homeomorphism h taking it onto a
closed subset of a metric space X́ , the set h(X) be the retract of X́ [resp., of its open neighborhood in
X́]. Notice that the class of ANR-spaces is broad enough: in particular, a finite-dimensional compact set
is the ANR-space if and only if it is locally contractible. In turn, it means that compact polyhedrons and
compact finite-dimensional manifolds are the ANR-spaces. The union of a finite number of convex closed
subsets in a normed space is also the ANR-space.

Proposition 2.5 ([2]). Let Z be an ANR-space. In each of the following cases a u.s.c. multimap Σ : X →
K(Z) is a J -multimap: for each x ∈ X the value Σ(x) is
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(a) a convex set;
(b) a contractible set;
(c) an Rδ -set;
(d) an AR-space.

In particular, every continuous map σ : X → Z is a J-multimap.

Definition 2.6. Let O ⊂ X. By Jc(O,X) we will denote the collection of all multimaps F : O → K(X)
that may be represented in the form of composition F = fog, where g ∈ J(O, Y ) and f ∈ J(Y,X). The
composition fog will be called the decomposition of F . We will denote F = (fog).

It has to be noted that a multimap can admit different decompositions (see [2]).
Now, let X be a Banach space and U ⊂ X be an open bounded subset and F = (foG) ∈ Jc(U,X) be a
completely continuous multimap such that x ̸∈ F (x) for x ∈ ∂U . Then the topological degree deg(i− F,U)
of the corresponding multivalued vector field (i−F )(x) = x−F (x) is well defined and has all usual properties
of the Leray Shauder topological degree (see, e.g., [2]).

3. Fractional Calculus

Now for convenience, we present some definitions and results from fractional calculus which can be found
in [7].

Definition 3.1. The fractional integral of arbitrary order 0 < α ∈ R of a function h : (0, 1) → R is defined
by

Iα0+h(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds,

provided that the right hand side integral is pointwise defined on (0,+∞).

Definition 3.2. For a continuous function h : (0, 1) → R, the αth (α > 0) Caputo fractional derivative of
h, is given by

Dα
0+h(t) = In−α

0+
dnh(t)

dtn
=

1

Γ(n− α)

∫ t

0
(t− s)n−α−1h(n)(s)ds.

Here n is the smallest integer which satisfies n− 1 < α ≤ n.

Lemma 3.3. Let n− 1 < α ≤ n. The fractional differential equation Dα
0+h(t) = 0 has solution

h(t) = C1 + C2t+ C3t
2 + · · ·+ Cnt

n−1.

Lemma 3.4. Assume that h(t) with a fractional derivative of order α > 0. Then

Iα0+D
α
0+h(t) = h(t) + C1 + C2t+ C3t

2 + · · ·+ Cnt
n−1, Ci ∈ R, i = 1, 2, . . . , n,

where n is the smallest integer which satisfies n− 1 < α ≤ n.

3.1. Fractional Sobolev Spaces

Fractional Sobolev spaces form a very important class of Banach spaces which proved to be a powerful
tool in the analysis of fractional boundary value problems. In order to define fractional Sobolev spaces, first
one need to generalize the classical notion of Sobolev space. As usual, we denote by C(I,Rn)(Lp(I,Rn)) the
space of all continuous (resp. the space of all p−summable) functions x : I → Rn. For every u ∈ C(I,Rn)
and f ∈ Lp their corresponding norms are:

||u||C = max
t∈I

|u(t)| and ||f ||p = (

∫ T

0
|f(s)|pds)

1
p

.
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The symbol ⟨., .⟩ denotes the inner product in L2(I,Rn) and BC(0, R) denotes the ball in C(I,Rn) of
radius R centered at the origin. For an integer k > 0 the Sobolev space W k,p is defined as

W k,p(I,Rn) = {u ∈ Lp(I,Rn) : u(m) ∈ Lp(I,Rn) for all 0 ≤ m ≤ k}, (3.1)

where u(m) denotes the distributional derivative of u of order m. In other words, W k,p(I,Rn) consists of
all the LP (I,Rn) functions such that all distributional derivatives up to order k belong to LP (I,Rn). This
space is equipped by the norm

||u||W = (

k∑
m=0

||u(m)||pp)
1
p .

In particular the norm of an element u ∈ W 1,2(I,Rn) is defined as

||u||W = (||u||22 + ||ú||22)
1
2 .

By W k,p
T (I,Rn) we will denote the subset of W k,p(I,Rn) consisting of all functions u such that u(0) = u(T )

i.e.,
W k,p

T (I,Rn) = {u ∈ W k,p(I,Rn) : u(0) = u(T )}.

According to the Sobolev embedding theorem (see e.g. Theorems 3.9.50 and 3.9.53 [1]) the space W 1,2(I,Rn)
is compactly embedded into C(I,Rn).
The fractional extension of (3.1) for any s ∈ R will be the spaces W s,p(I,Rn) (see Definition 3.22 in [3]),

W s,p(I,Rn) = {u ∈ Lp(I,Rn) : Dαu ∈ Lp(I,Rn) for all 0 ≤ α ≤ s}, (3.2)

where Dαu denotes the Caputo fractional derivative of u or equivalently

W s,p(I,Rn) = {u ∈ Lp(I,Rn) :

∫
I

∫
I

|u(x)− u(y)|p

|x− y|1+sp
dxdy < ∞}.

This extension especially for 0 < s ≤ 1 is of great service in connection with boundary value problems. Now
according to [1] and Theorem 4.17 in [3], the embedding W s,2(I,Rn) into C(I,Rn) is compact provided
s > 1

2 .

4. Fredholm Operators

Now, we recall some basic notions of the theory of linear Fredholm operators. Let X and Y be Banach
spaces.

Definition 4.1. A bounded linear operator L : X → Y is said to be a Fredholm operator of index zero, if
(1i) ImL is closed in Y ;
(2i) KerL and CokerL have finite dimensions and dimKerL = dimCokerL.

Let L : domL ⊂ X → Y be a linear Fredholm operator of index zero. Then there exist projections
P : X → X and Q : Y → Y such that ImP = KerL and KerQ = ImL. If the operator

LP : domL ∩KerP → ImL

is defined as the restriction of L on domL∩KerP , then LP is a linear isomorphism and so the linear operator
kP : ImL → domL, kP = L−1

P is well-defined. Now, let CokerL = Y/ImL. Define a canonical projection
operator πL : Y → CokerL,

πL(z) = z + ImL,

and let lL : CokerL → KerL be a linear continuous isomorphism. Then, the equation

Lx = y, y ∈ Y,
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is equivalent to the following relation:

x = Px+ (lLπL + kL)y, (4.1)

where kL : Y → X is defined as

kL = kP (i−Q).

Now Define

A : W β,2
T (I,Rn) → L2(I,Rn)

Ax = Dβx. (4.2)

Lemma 4.2. Let A be defined by (4.2), then

KerA = {x ∈ W β,2
T (I,Rn)|x(t) = c ∈ Rn}

ImA = {y ∈ L2(I,Rn)|
∫ T

0

(t− s)β−1

Γ(β)
y(s)ds = 0}.

Proof. Let Dβx = 0, then from Lemma 3.3 KerA = Rn. If y ∈ ImA, then there exists a function x ∈ domA
such that y(t) = Dβx(t). So x(t) = Iβ

0+
y(t) + c0, therefore from x(0) = x(T ) one can concludes that∫ T

0

(t− s)β−1

Γ(β)
y(s)ds = 0. (4.3)

On the other hand, suppose y ∈ Y and satisfies (4.3). Let x(t) = Iβ
0+
y(t); then x ∈ domA and Ax(t) =

Dβ
0+
x(t) = y(t). So that, y ∈ ImA. The proof is complete.

Lemma 4.3. Let A be defined by (4.2), X = W β,2
T (I,Rn) and Y = L2(I,Rn) then A is a Fredholm operator

of index zero, and the linear continuous projector operators P : X → X and Q : Y → Y can be defined as

Px(t) = x(0), Qy(t) =
β

T β

∫ T

0
(T − s)β−1y(s)ds, for all t ∈ I.

Proof. For any y ∈ Y , we have

Q2y = Qy
β

T β

∫ T

0
(T − s)β−1ds = Qy.

Let y1 = y −Qy, then we get that

β

T β

∫ T

0
(T − s)β−1y1(s)ds =

β

T β

∫ T

0
(T − s)β−1y(s)ds− β

T β

∫ T

0
(T − s)β−1Qy(s)ds = Qy(t)−Q2y(t) = 0,

which implies y1 ∈ ImA. Hence Y = ImA + ImQ. Since ImA ∩ ImQ = {0}, we have Y = ImA ⊕ ImQ.
Thus n = dimKerA = dimImQ = codimImA. This means that A is a Fredholm operator of index zero.

Corollary 4.4. Let A be defined by (4.2), then

KerA ∼= Rn ∼= CokerA,

and A is a Fredholm operator of index zero.
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5. Bifurcation theorem

Let X be a Banach space. Denote by BX(0, r) the ball of radius r centered at 0 in X. Consider the
following one-parameter family of inclusions:

x ∈ F (x, µ), (5.1)

where F : X ×R → K(X) is a completely u.s.c. Jc-multimap satisfying the following conditions:
(F1) 0 ∈ F (0, µ) for all µ ∈ R;
(F2) for each µ, 0 < |µ− µ0| ≤ r0, there is δµ > 0 such that x ̸∈ F (x, µ) when 0 < ||x|| ≤ δµ , where µ0, r0
are given numbers.
A point (0, µ) is said to be a bifurcation point of inclusion (5.1), if for every open subset U ⊂ X × R with
(0, µ∗) ∈ U , there exists a point (x, µ) ∈ U such that x ̸= 0 and x ∈ F (x, µ).
From (F2), it follows that for each µ, 0 < |µ− µ0| ≤ r0 the topological degree

deg(i− F (., µ), BX(0, δµ)),

is well defined. Then, the bifurcation index of the multimap F at (0, µ0) may be defined as

Bi[F, (0, µ0)] = limµ→µ+
0
deg(i− F (., µ), 0, BX(0, δµ))

− limµ→µ−
0
deg(i− F (., µ), 0, BX(0, δµ)).

(5.2)

Let us denote by S the set of all non-trivial solutions to inclusion (5.1), i.e., S = {(x, µ) ∈ X × R;x ̸=
0 and x ∈ F (x, µ)}. The following assertion can be easily followed from the global bifurcation theorems
presented in [9].

Theorem 5.1. Under conditions (F1), (F2), assume that Bi[F, (0, µ0)] ̸= 0. Then, there exists a connected
subset C ⊂ S such that (0, µ0) ∈ C and one of the following occurs:
(a) C is unbounded;
(b) (0, µ∗) ∈ C for some µ∗ ̸= µ0.

6. Main Results

Consider the BVP (1.1) with the following assumptions:
(f1) there exists 0 < c < a such that

|f(t, x, y, z)| ≤ c|x|(|y|+ |z|),

for all (x, y, z) and t ∈ I,
(g1) for a.e. t ∈ I, the multimap G(t, ., ., .) : Rn × Rm × R → Kv(Rm) is u.s.c.,
(g2) the multimap G is uniformly continuous with respect to the second and fourth arguments in the
following sense: For every ε > 0, there is δ > 0 such that

G(t, x, y, z) ⊂ Oε(G(t, x, y, z)), ∀(t, y) ∈ I × Rm,

provided max{|x− x|, |z − z|} < δ;

(g3) there is B > 0 such that BeTB < (a−c)Γ(α)
cTα and

|G(t, x, y, z)| ≤ β(|x|+ |y|+ |z|),

for all (x, y, z) ∈ Rn × Rm × R and a.e. t ∈ T ,
(g4) for every (x, y, z) ∈ Rn × Rm × R the multifunction G(., x, y, z) : I → Kv(Rm) has a measurable
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selection.
By Theorem 1.3.5 [6] for each w ∈ Rm and (x, µ) ∈ C(I,Rn)× R, the multifunction G(x,µ)(., w) defined as

G(x,µ) : I × Rm → Kv(Rm),

G(x,µ)(t, w) = G(t, x(t), w, µ),

has a measurable selection. Moreover, from (g1) and (g2), for a.e. t ∈ I the multimap G(x,µ)(t, w) depends
upper semicontinuously on (x,w, µ).
Now, we claim that for each (x, µ) ∈ C(I,Rn)× R, the set Π(x,µ) of solutions of the inclusion problem

Dα
0+u(t) ∈ G(t, x(t), u(t), µ) t ∈ (0, 1),

u(0) = 0.
(6.1)

is an Rδ-set in C(I,Rm) and the multimap

Π : C(I,Rn)× R → K(C(I,Rm)),

Π(x, µ) = Π(x,µ)

is upper semi-continuous.
By a solution of (6.1) we shall understand an absolutely continuous map u : I → Rm such that Dαu(t) =
g(t, u(t)) for almost all t ∈ I, u(0) = 0 and g ∈ G(x,µ).
Define the fractional integral operator F : C(I,Rm) → C(I,Rm) by

F (u)(t) = Iα0+g(r, u(r))dr,

for every u ∈ C(I,Rm) and t ∈ I. Then Fu(0) = 0 and Dα
0+F = g(t, u(t)), for a given map g ∈ G(x,µ). It

is easy to see that F satisfies all the assumptions of Theorem (69.2) in [2], so by applying Theorems (69.2)
and (69.9) in [2] and using the same argument in section 69 of [2], the desired result is obtained.
By a solution to problem (1.1), we mean a pair (x, µ) ∈ W β,2(I,Rn)×R such that there is u ∈ Π(x, µ) that
the following holds

Dβ
0+
x− aµx(t) = f(t, x(t), u(t), µ) for a.e. t ∈ I.

Note that by (f1), (0, µ) is a solution of (1.1) for every µ ∈ R. These solutions are called trivial. Here, the
set of all non-trivial solutions of (1.1) is denoted by S . In what follows, we need the following statement.

Lemma 6.1 ([4]). Let u, v : [a, b] → R be continuous nonnegative functions and C ≥ 0 be a constant and

v(t) ≤ C +

∫ t

a
u(s)v(s)ds, a ≤ t ≤ b.

Then
v(t) ≤ Ce

∫ t
a u(s)ds, a ≤ t ≤ b.

Theorem 6.2. Let conditions (f1) and (g1) − (g4) hold. Then, there is an unbounded connected subset
C ⊂ S such that (0, 0) ∈ C.

Proof. For every (x, µ) ∈ C(I,Rn)× R, define the following multimap:

Π : C(I,Rn)× R → K(C(I,Rn))× C(I,Rm)× R),

Π(x, µ) = {x} ×Π(x, µ)× {µ},

and a map f : C(I,Rn)× C(I,Rm)× R → L2(I,Rn)

f(x, u, µ)(t) = aµx(t) + f(t, x(t), u(t), µ), t ∈ I.
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Set B : C(I,Rn)× R → K(L2(I,Rn)),

B(x, µ) = f ◦Π(x, µ).

Since Π is a J-multimap and f is a continuous map, B is a Jc−multimap and problem (1.1) can be substituted
by the following operator inclusion:

Ax ∈ B(x, µ), (6.2)

where A : W β,2
T (I,Rn) → L2(I,Rn), Ax = Dβ

0+
x. From Corollary 4.4

KerA ∼= Rn ∼= CokerA,

and A is a Fredholm operator of index zero. The projection

πA : L2(I,Rn) → Rn,

is defined as

πA(g) =
1

T

∫ T

0

(t− s)β−1

Γ(β)
g(s)ds,

and the homeomorphism lA : Rn → Rn is an identity operator. The space L2(I,Rn) can be represented as

L2(I,Rn) = L0 ⊕ L1,

where L0 = CokerA and L1 = ImA. The decomposition of an element g ∈ L2(I,Rn) is denoted by

g = g(0) + g(1), g(0) ∈ L0, g(1) ∈ L1.

So inclusion (6.2) is equivalent to the following inclusion:

x ∈ H(x, µ), (6.3)

where H : C(I,Rn)× R → K(C(I,Rn)),

H(x, µ) = Px+ (πA + kA) ◦B(x, µ).

It is clear that H is a Jc -multimap. In order to show that H is completely u.s.c., let Ω ⊂ C(I,Rn)× R be
a bounded subset and (x, µ) ∈ Ω. Taking arbitrarily γ ∈ Q(Ω), then there exist u ∈ Π(x, µ), such that

γ(t) = µax(t) + f(t, x(t), u(t), µ), for a.e. t ∈ I.

From (f1), it follows that

|γ(t)| ≤ |x(t)|((a+ c)µ+ cu(t)), for a.e. t ∈ I. (6.4)

Since u ∈ Π(x, µ), there is g ∈ L1(I,Rm), such that

g(t) ∈ G(t, x(t), u(t), µ) for a.e. t ∈ I,

and

u(t) =

∫ t

0

(t− s)α−1

Γ(α)
g(s)ds.

From (g3) we have

|u(t)| ≤
∫ t
0 |(t− s)α−1g(s)|ds ≤ Tα−1

Γ(α)

∫ t
0 B(|x(s)|+ |u(s)|+ |µ|)ds

≤ Tα−1

Γ(α) B
√
T ||x||2 +

∫ t
0 B|u(s)|ds+ βT |µ|.
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From Lemma 6.1, it follows that

|u(t)| ≤ Tα−1

Γ(α)
(B

√
T ||x||2 +BT |µ|)eBT , for allt ∈ I. (6.5)

From (6.5) and (6.4), there exists MΩ > 0 such that |γ(t)| < MΩ, for a.e. t ∈ I, i.e., the set Q(Ω) is bounded
in L2(I,Rn). Notice that the operator

πA + kA : L2(I,Rn) → W 1,2(I,Rn),

is continuous and the map P takes values in Rn. Then, the set H(Ω) is bounded in W 1,2(I,Rn), and hence,
it is a relative compact set in C(I,Rn). So, H is a completely u.s.c. Jc-multimap.
Now we want to show that for each µ ̸= 0, there exists δµ > 0 such that inclusion (6.3) has no non-trivial
solution on BC(0, δµ)×{µ}. In fact, to contrary assume that (x, µ) ∈ BC(0, δµ)×{µ} is a nontrivial solution
of (6.3). Then there is u ∈ Π(x, µ) such that

Dβ
0+
x(t) = µax(t) + f(t, x(t), u(t), µ), for a.e. t ∈ I. (6.6)

Therefore ∫ T

0
⟨µx(t), µax(t) + f(t, x(t), u(t), µ)⟩dt =

∫ T

0
⟨µx(t), Dβ

0+
x(t)⟩dt,

since Dβ
0+

is continuous on x(t) for all t ∈ I and x(T ) = x(0), one can set u = x(t) and dv = Dβ
0+
x(t)dt.

From integration by parts we have ∫ T

0
⟨µx(t), Dβ

0+
x(t)⟩dt = 0. (6.7)

On the other hand∫ T
0 ⟨µx(t), µax(t) + f(t, x(t), u(t), µ)⟩dt

≥ aµ2||x||22 − |µ|
∫ T
0 |x(t)||f(t, x(t), u(t), µ)dt

≥ aµ2||x||22 − c|µ|TB−1

Γ(α)

∫ T
0 x2(t)(|µ|+ |u(t)|)dt

≥ (a− c)µ2||x||22 − c|µ|
∫ T
0 x2(t)(B

√
T ||x||2 +BT |µ|)eBTdt

= (a− c− cTαBeTB

Γ(α) )µ2||x||22 −
c|µ|Tα− 1

2BeTB ||x||32
Γ(α)

> 0,

(6.8)

provided

0 < ||x||2 <
(aT − c− cTαBeTB

Γ(α) )µ2

c|µ|Tα− 1
2BeTβ

Γ(α)

. (6.9)

Therefore, inclusion (6.3) has no solution (x, µ) that satisfies (6.9). Thus, for sufficiently small δµ, we
obtain a contradiction.

Now, for evaluating the topological degree

deg(i−H(., µ), BC(0, δµ)),

for a given µ ̸= 0, let us consider the multimap

Σµ : BC(0, δµ)× [0, 1] → K(C(I,Rn),
Σµ (x, λ) = Px+ (πA + kA) ◦ φ(B(x, µ), λ),

where φ : L2((I,Rn)× [0, 1] → L2((I,Rn),

φ(g, λ) = g(0) + λg(1), g(0) ∈ L0, g(1) ∈ L1.
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It is clear that Σµ is a compact Jc-multimap. Assume that there is (x∗, λ∗) ∈ ∂BC(0, δµ)× [0, 1] such that
x∗ ∈ Σµ(x∗, λ∗). Then there are γ∗ ∈ L2(I,Rn) and u∗ ∈ Π(x∗, µ), such that

γ∗(t) = aµx∗(t) + f(t, x∗(t), u
∗(t), µ), for a.e.t ∈ I,

and 
Dβx∗(t) = λ∗γ

∗(1),

0 = γ∗(0),
(6.10)

where γ∗(0) + γ∗(1) = γ∗, γ∗(0) ∈ L0, γ
∗
(1) ∈ L1.

If λ∗ ̸= 0, then ∫ T

0
⟨µx∗(t), γ∗(t)⟩dt =

1

λ∗

∫ T

0
⟨µx∗(t), Dβx∗(t)⟩dt = 0.

On the other hand, from ||x∗||2 ≤
√
T ||x∗||C =

√
Tδµ , it follows that x∗ satisfies relation (6.9) for sufficiently

small δµ. Therefore, ∫ T

0
⟨µx∗(t), γ∗(t)⟩dt > 0,

giving a contradiction.

If λ∗ = 0, then x∗ ∈ KerA i.e. x∗(t) = w ∈ Rn for all t ∈ I. Since the fact that w satisfies relation (6.9),
we have ∫ T

0
⟨µw, γ(t)⟩dt > 0

for all u ∈ Π(w, µ), where

γ(t) = aµw + f(t, w, u(t), µ) ∈ B(w, µ), for a.e. t ∈ I.

Notice that ∫ T

0
⟨µw, γ(t)⟩dt = T ⟨µw, πAγ⟩.

Consequently,
⟨µw, πAγ⟩ > 0, for all γ ∈ B(w, µ). (6.11)

In particular,
0 < ⟨µw, πAγ∗⟩ = ⟨µw, πAγ∗(0)⟩ = 0,

Which is a contradiction.
So, Σµ is a homotopy connecting the multimaps Σµ(., 1) = H(., µ) and

Σµ(., 0) = P + πAB(., µ).

According to the invariant property of the topological degree, we have

deg(i−H(., µ), BC(0, δµ)) = deg(i− P − πAB(., µ), BC(0, δµ)).

Notice that the multimap P + πAB(., µ) takes values in Rn, and hence

deg(i− P − πAB(., µ), BC(0, δµ)) = deg(i− P − πAB(., µ), BRn(0, δµ)).

In the space Rn, the vector field i− P − πAB(., µ) has the form

i− P − πAB(., µ) = −πAB(., µ).
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From (6.11), it follows that πAB(., µ) and µi are homotopic on ∂BRn(0, δµ). So, we obtain

deg(−πAB(., µ), BRn(0, δµ)) = deg(−µi,BRn(0, δµ)) = −sign(µ).

Thus, the bifurcation index Bi[H; (0, 0)] = −2. From (6.9)-(6.8), it follows that (0, 0) is the unique bifurca-
tion point of system (1.1). To complete the proof, we need only to apply Theorem (5.1) with a remark that
the case (b) of Theorem 1 could not appear.

Remark 6.3. By the last theorem, it is shown that not only there is a solution set for the mentioned control
feedback system (1.1), but also the global structure of nontrivial solution set of such systems like being
connected and bifurcating from (0, 0) and tending to infinity is obtained.
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