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Abstract

In this paper, firstly, we obtain the credibility measure of fuzzy trapezoidal variables. Also, we attain the
expected value of fuzzy trapezoidal variables. Then, based on these theorems, we present the expected
value Nash equilibrium strategy of the fuzzy games. In other words we extend the expected model to fuzzy
trapezoidal variables and improve the previous researches in this area. However in some cases, the game
don’t have the Nash equilibrium strategy. Therefore, we investigate the existence of Pareto Nash equilibrium
and weak Pareto Nash equilibrium strategies in this cases.
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1. Introduction

Modern game theory was developed by the mathematician John Neumann in the Mid-1940‘s. Neuman
and Morgenstern [9] published the the book, that was considered to be the seminal work of game theory.
Today, the idea of Nash equilibrium is central concept in game theory. In 1951, noncooperative game theory
was presented by Nash [10].
Nash proves that if we approve mixed strategies, then every game with a finite number of players has at
least one Nash equilibrium.
In the game theory, the Nash equilibrium is a solution concept of a non-cooperative game in volving two
or more players in which each player is assumed to know the strategies of other players and no player
hass anything to gain by changing only his or her own strategy [11]. But many situations often are not
crisp and deterministic, for example some information and knowlage are usually represented by comparative
deal. Zadeh [15] exhibited the idea of fuzziness that it’s type of subjective uncertainty. He is pioneer in this
category. Then fuzzy number became useful tool to gauge with incomplete information in engineering, social
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and economics. Dubios and Prade [5] used this idea in their work. Many of researches such as Zimmermann
[16], Sakawa [12] and Yazenin [13], [14] applied this theory to optimization problems. Lately, Liu [6] founded
theory in the uncertain environments and called such a theory uncertain programming. In 2003, Meada
[8] constructed kind of concepts of minimax equilibrium strategies and investigated their properties. Li
Cunlin and Zhang Qiang [3] investigated two-person zero-sum games in fuzzy environment. They obtained
Nash equilibrium of this kind of game. They also obtained pareto Nash equilibrium strategy for fuzzy
matrix game. Maeda and Cun Lin presented several kinds of equilibrium strategy for two-person zero-sum
matrix games in the symmetric tringular fuzzy environment. Then, Bapi Dutta[2] extended this models in
trapezoidal fuzzy environment. So, Ding Jian et al.[4] establshed the expected model of two-person zero-sum
matrix games with fuzzy payoffs.
In this paper, we extend the expected model to fuzzy trapezoidal variables and present the expected value
Nash eqilibrium strategy of the fuzzy games. This method simplify the previous ways.

2. Preliminaries

In this section, we give some basic concepts and results of credibility space, credibility measure, fuzzy
variables and the expected value of fuzzy variables which are used throughout the paper.
Let P be a nonempty set, and P the power set of P (i.e., the larggest - algebra over P). Each element in
P is called an event. In order to present an axiomatic definition of credibility, it is necessary to assign to
each event A a number Cr{A} which indicates the credibility that A will occur. In order to ensure that the
number Cr{A} has certain mathematical properties which we intuitively expect a credibility to have, we
accept the following four axioms:

• Axiom 1. (Normality) Cr{P} = 1.

• Axiom 2. (Monotonicity) Cr{A} ≤ Cr{B} whenever A ⊂ B.

• Axiom 3. (Self-Duality) Cr{A}+ Cr{Ac} = 1 for any event A.

• Axiom 4. (Maximality) Cr{
⋃

iAi} = supiCr{Ai} for any events {Ai} with supiCr{Ai} < 0.5.

Definition 2.1 ([7]). The set function Cr : P 7→ [0, 1] is called a credibility measure, if it satisfies the
normality, monotonicity, self-duality, and maximality axioms.

Definition 2.2. Let P be a nonempty set, P the power set of P , and Cr a credibility measure. Then the
triplet (P ,P(P), Cr) is called a credibility space.

Definition 2.3 ([4]). A fuzzy variable is a (measurable) function from a credibility space(P ,P (P) , Cr)to
the set of real numbers R.

Definition 2.4 ([7]). Let x̃ be a fuzzy variable on credibility space (P ,P(P), Cr), its membership function
µx̃(t) is derived from the credibility measure

µx̃(t) = (2Cr{θ ∈ P |x̃(θ) = t}) ∧ 1, t ∈ R.

Theorem 2.5 ([7]). Let x̃ be a fuzzy variable on credibility space (P ,P(P), Cr) , its membership function
is µx̃(t). For event B , then

Cr(x̃ ∈ B) =
1

2
(sup
t∈B

µx̃(t) + 1− sup
t/∈B

µx̃(t))
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3. Fuzzy variable and the Expected value of Fuzzy variable

In this section, we give some basic concepts and results of fuzzy trapezoidal variables. Then we prove
the expected value of fuzzy trapezoidal variables.

Definition 3.1 ([2]). A fuzzy trapezoidal variable ã = (a, b, h, k) is a fuzzy set defined on the space of real
number sets R, whose membership function µã : R −→ [0, 1] as following:

µã(x) =


x−(a−h)

h a− h ≤ x ≤ a,
1 a ≤ x ≤ b,
(b+k)−x

k b ≤ x ≤ b+ k,

0 otherwise,

where h > 0 is the left extention and k > 0 is the right extention.

Theorem 3.2. Let ã = (a, b, h, k) be a fuzzy trapezoidal variable and x ∈ R, then

Cr{ã ≥ x} =



1, x < a− h,
1− 1

2µx̃(t), a− h ≤ x ≤ a,
1
2 , a ≤ x ≤ b,
1
2µx̃(t), b ≤ x ≤ b+ k,

0, x > b+ k.

Proof. By Theorem 2.5, we have

Cr(ã ≥ x) =
1

2
(sup
x≤t

µã(t) + 1− sup
x>t

µã(t)).

So, we consider following conditions.
If x ≤ a− h then for t = a we get

Cr(ã ≥ x) =
1

2
(sup
x≤t

µã(t) + 1− sup
x>t

µã(t))

=
1

2
(1 + 1− 0)

= 1.

If a− h ≤ x ≤ a since the membership function of ã is strictly decreasing, then

Cr(ã ≥ x) =
1

2
(sup
x≤t

µã(t) + 1− sup
x>t

µã(t))

=
1

2
(1 + 1− µã(t))

= 1− µã(t).

In the interval of [a, b] the membership function of ã is monotonous, thus

Cr(ã ≥ x) =
1

2
(sup
x≤t

µã(t) + 1− sup
x>t

µã(t))

=
1

2
(1 + 1− 1)

=
1

2
.
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If b ≤ x ≤ a the membership function of ã is strictly increasing, hence

Cr(ã ≥ x) =
1

2
(sup
x≤t

µã(t) + 1− sup
x>t

µã(t))

=
1

2
(µã(t) + 1− 1)

=
1

2
µã(t).

One of the ways to solve the fuzzy problems is to use the average value of fuzzy variables. So, is defined
an expected operator for fuzzy variabels. L. Baoding and L. Kui [1] presented credibility measures. Based
on it, they defined the expectation of the fuzzy variable as following form.

Definition 3.3 ([1]). Let x̃ be a fuzzy variable. Then the expected value of x̃ is defined by

Ec(x̃) =

∫ +∞

0
Cr{x̃ ≥ t}dt−

∫ 0

−∞
Cr{x̃ ≤ t}dt,

provided that at least one of the two integrals is finite.

In the following, basic properties about the expected value of fuzzy variables is given.

Theorem 3.4 ([4]). Let x̃ , ỹ be a fuzzy variable, α, β ∈ R is a constant, then

Ec(αx̃+ βỹ) = αEc(x̃) + βEc(ỹ).

Theorem 3.5. Let ã = (a, b, h, k) is a fuzzy trapezoidal variable, then

Ec(ã) =
2a+ 2b− h+ k

4
.

Proof. By using the Definition 3.3 and to purpose that Cr{ã ≤ t} = 0 for t ≤ 0 and a− h ≥ 0, we get

Ec(ã) =

∫ +∞

0
Cr{ã ≥ t}dt−

∫ 0

−∞
Cr{ã ≤ t}dt

=

∫ ∞
0

Cr{ã ≥ t}dt

=

∫ a−h

0
1dt+

∫ a

a−h
(1− 1

2
µã(t))dt+

∫ b

a

1

2
dt+

∫ b+k

b
µã(t) +

∫ +∞

b+k
0dt

=
1

2

(
a+ b−

∫ a

a−h
µã(t)

)
dt+

∫ b+k

b
µã(t)dt)

=
1

2
(a+ b− h

2
+
k

2
) =

2a+ 2b− h+ k

4
.

So, complete the proof.

Nash introduced non-cooperative games based on the idea that each player has a well-defined quantitative
utility function. Actually, decision making problems always is made in uncertain environments. In this
paper is used fuzzy variables to present the payoffs of the players, so the payoffs of strategy is modeled by
a trapezoidal fuzzy variable ã = (a, b, h, k). So, expected payoffs of the players are fuzzy variables.
In this section, we shall consider two-person zero-sum games with fuzzy payoffs. Firstly, we define some
useful notations. Let I, J denote players and let M = {1, 2, ...,m} and N = {1, 2, ..., n} be the sets of all
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pure strategies available for player I and J , respectively. The sets of all mixed strategies available for players
I and J by

SI ≡ {(x1, x2, ..., xm) ∈ Rm|xi ≥ 0, i = 1, 2, ...,m,
m∑
i=1

xi = 1},

SJ ≡ {(y1, y2, ..., yn) ∈ Rn|yj ≥ 0, i = 1, 2, ..., n,
n∑

j=1

yj = 1}.

Let player I choose a mixed strategy x ∈ SI and player J choose mixed strategy y ∈ SJ . The variable
ãij = (aij , bij , hij , kij) indicates payoffs that player I receives and player J loses. The fuzzy payoff matrix
of the game is given by

A =

 ã11 · · · ã1n
...

. . .
...

ãm1 · · · ãmn

 .
The fuzzy two-person zero-sum games is denoted by G̃ ≡ (SI , SJ , Ã). The values xT Ãy =

∑m
i=1

∑n
j=1 xiãijyj

are the expected that player I receives and player J loses. In the rest of this paper, we set Ã = (ãij), A =
(aij), B = (bij), H = (hij),K = (hij), where Ã is m × n matrix whose (i, j)-th element is ãij , A is m × n
matrix whose (i, j)-th element is aij , H is m × n matrix whose (i, j)th element is hij and so B is m × n
matrix whose (i, j)th element is bij .
According above statement, if the payoffs of the player are fuzzy variables, the expected incomes of the
player, for example xT ãy , are fuzzy variables. The expected value model of the fuzzy two-person zero-sum
games is presented as below.

Definition 3.6 ([4]). A pair (x̂, ŷ) ∈ SI × SJ is the expected Nash equilibrium strategy for the game G̃, if
it holds that

i) Ec(x
T Ãŷ) ≤ Ec(x̂

T Ãŷ), ∀x ∈ SI ,
ii) Ec(x̂

T Ãŷ) ≤ Ec(x
T Ãy), ∀y ∈ SJ .

The point E(x̂T Ãŷ) is the value of the game.

Theorem 3.7. Let G̃ be a two-person zero-sum game with fuzzy payoffs, the pair (x̂, ŷ) is the expected Nash
equilibrium strategy of G̃ if and only if the followings hold:

i) xT (
1

2
A+

1

2
B − 1

4
H +

1

4
K)ŷ ≤ x̂(

1

2
A+

1

2
B − 1

4
H +

1

4
K)ŷ,

ii) x̂T (
1

2
A+

1

2
B − 1

4
H +

1

4
K)ŷ ≤ x̂T (

1

2
A+

1

2
B − 1

4
H +

1

4
K)y.

Proof. First, we suppose that (x̂, ŷ) is the expected Nash equilibrium strategy of G̃ then we have

Ec(x̂Ãŷ) = Ec(

m∑
i=1

n∑
j=1

x̂(ãij)ŷ)

=

m∑
i=1

n∑
j=1

x̂Ec(ãij)ŷ

=

m∑
i=1

n∑
j=1

x̂(
2aij + 2bij − hij + kij

4
)ŷ

=
1

2

m∑
i=1

n∑
j=1

x̂aij ŷ +
1

2

m∑
i=1

n∑
j=1

x̂bij ŷ −
1

4

m∑
i=1

n∑
j=1

x̂hij ŷ
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+
1

4

m∑
i=1

n∑
j=1

x̂kij ŷ

=
1

2
x̂TAŷ +

1

2
x̂TBŷ − 1

4
x̂THŷ +

1

4
x̂TKŷ

=x̂T (
1

2
A+

1

2
B − 1

4
H +

1

4
K)ŷ.

Analogously, we get

Ec(x
T Ãŷ) = xT (

1

2
A+

1

2
B − 1

4
H +

1

4
K)ŷ.

From the definition of the expected Nash equilibrium strategy, we know that Ec(x
T Ãŷ) ≤ Ec(x̂

T Ãŷ) thus,

xT (
1

2
A+

1

2
B − 1

4
H +

1

4
K)ŷ ≤ x̂T (

1

2
A+

1

2
B − 1

4
H +

1

4
K)ŷ.

Analogously, the condition (ii) holds. Overhand is obvious.

If we adopt the following notations

AL
0 = A−H, BU

0 = B +K,

then we obtain following corollary that is direct result of previous theorem.

Corollary 3.8. Let G̃ be a two-person zero-sum game with fuzzy payoffs. The pair (x̂, ŷ) is the expected
Nash equilibrium strategy of G̃ if and only if the followings hold:

i) xT
(

1

4
(AL

0 +A+B +BU
0 )

)
ŷ ≤ x̂

(
1

4
(AL

0 +A+B +BU
0 )

)
ŷ,

ii) x̂T
(

1

4
(AL

0 +A+B +BU
0 )

)
ŷ ≤ x̂T

(
1

4
(AL

0 +A+B +BU
0 )

)
y.

Example 3.9. Let G̃ be a fuzzy two-person zero-sum game with trapezoidal fuzzy payoff matrix Ã given
by

Ã =

[
(50, 60, 10, 20) (80, 96, 16, 32)

(100, 120, 20, 40) (20, 24, 4, 8)

]
.

Find the Nash equilibrium strategies forthe game G̃. By Theorem 3.7, if the pair (x, y) is the Nash equilib-
rium strategy of game G̃ it must satisfy the following inequalities

(0, 1)Fy ≤ xTFy, (0, 1)Fy ≤ xTFy,
xTFy ≤ xTF (1, 0)T , xTFy ≤ xTF (0, 1)T ,

where F =

[
57.5 92
115 23

]
,x =

[
t

1− t

]
and y =

[
s

1− s

]
. So the Nash equilibrium strategy of G̃ is given as

below {
92(s− 1)(1− t)− 34.5(s− 1)t ≤ 0,

57.5(t− 1)s− 69(t− 1)(1− s) ≤ 0,

then (x, y) =
(
( 8
11 ,

3
11), ( 6

11 ,
5
11

)
).
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