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1. Introduction

The existence and uniqueness of fixed and common fixed points of self mappings has been a subject of
great interest since the work of Banach [10] in 1922.

The existence of fixed points in ordered metric spaces has been initiated in 2004 by Ran and Reurings
[23] and further studied by several authors in this direction, see for example [21, 22].

The concept of a partial metric space was introduced by Matthews [19] in 1994. After that, fixed and
common fixed point results in partial metric spaces were studied by many other authors, see for example
[6–8, 13, 14, 18, 24]

Azam et al. [9] introduced the notion of a complex valued metric space which is a generalization of the
classical metric space and obtained sufficient conditions for the existence of common fixed points of a pair of
mappings satisfying a rational contractive condition. Later several authors proved fixed and common fixed
point theorems in complex valued metric spaces,see for example [1, 3, 11, 16, 17, 20, 25, 29, 33–35, 38].

Recently Dhivya and Marudai [12] introduced the concept of a complex partial metric spaces and studied
common fixed point results for two mappings satisfying a rational inequality.

First we give the following known concepts in the literature.

∗Corresponding author
Email addresses: kprrao2004@gmail.com (K. P. R. Rao), somu.mphil@gmail.com (A. Sombabu)

Received —



K. P. R. Rao, A. Sombabu, Commun. Nonlinear Anal. 5 (2018), 40–54 41

Let C be the set of all complex numbers and z1, z2 ∈ C. Define a partial order ≾ on C as follows:

z1 ≾ z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).

Let C+ denotes for all 0 ≾ C ∈ C. Through out this paper N denotes the set of all natural numbers and R+

denotes the set of all non negative real numbers.

2. Preliminaries

Recently Dhivya and Marudai [12] defined the notion of a complex partial metric space as follows.

Definition 2.1 ([12]). A complex partial metric on a non empty set X is a function pc : X ×X → C+ such
that for all x, y, z ∈ X:

(p1) 0 ≾ pc(x, x) ≾ pc(x, y);

(p2) pc(x, x) = pc(x, y) = pc(y, y) if and only if x = y;

(p3) pc(x, y) = pc(y, x);

(p4) pc(x, y) ≾ pc(x, z) + pc(z, y)− pc(z, z).

(X, pc) is called a complex partial metric space.

Example 2.2. Let X = [0,∞) and pc : X ×X → C+ be defined by

pc(x, y) = max{x, y}+ imax{x, y}

for all x, y ∈ X. Then (X, pc) is a complex partial metric space.

It is clear that |p∗c(x, y)| ≤ |1 + p∗c(x, y)| for all x, y ∈ X.
Each complex partial metric pc on X generates a topology τpc on X with the base family of open pc-balls

{Bpc(x, ϵ) : x ∈ X, ϵ > 0}, where Bpc(x, ϵ) = {y ∈ X : pc(x, y) ≺ pc(x, x) + ϵ} for all x ∈ X and 0 < ϵ ∈ C+.
With this terminology, the complex partial metric space (X, pc) is a T0 space.

Definition 2.3. Let (X, pc) be a complex partial metric space. A sequence {xn} inX is said to be convergent
to x ∈ X if for every 0 < ϵ ∈ C+, there is N ∈ N such that xn ∈ Bpc(x, ϵ) for all n ≥ N. Here x is said to
be a limit of {xn} and we write lim

n→∞
xn = x or xn → x as n → ∞.

Lemma 2.4. Let (X, pc) be a complex partial metric space. A sequence {xn} in X is said to be convergent
to x ∈ X if and only if pc(x, x) = lim

n→∞
pc(x, xn).

Definition 2.5. Let (X, pc) be a complex partial metric space. A sequence {xn} in X is said to be Cauchy
if there exists a ∈ C+ such that for every ϵ > 0 there is n0 ∈ N such that |pc(xn, xm) − a| < ϵ for all
n,m ≥ n0.

Definition 2.6. Let (X, pc) be a complex partial metric space.

(i) X is said to be complete if every Cauchy sequence {xn} in X converges, with respect to τpc , to a point
x ∈ X such that

pc(x, x) = lim
n,m→∞

pc(xn, xm).

(ii) A mapping T : X → X is said to be continuous to x0 ∈ X if for every ϵ > 0 there exists δ > 0 such
that T (Bpc(x, δ)) ⊆ Bp(Tx0, ϵ).

Lemma 2.7.

(a1) Let (X, pc) be a complex partial metric space. A sequence {xn} is Cauchy in (X, pc) iff {xn} is Cauchy
in (X, dpc).
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(a2) (X, pc) is complete if and only if (X, dpc) is complete. Moreover,

lim
n→∞

dpc(x, xn) = 0 ⇔ pc(x, x) = lim
n→∞

pc(x, xn) = lim
n,m→∞

pc(xn, xm).

Note that if (X, pc) be a complex partial metric space, then we have

lim
n→∞

pc(x, xn) = 0 ⇔ lim
n→∞

|pc(x, xn)| = 0

for every {xn}, x ∈ X.
One can prove the following.

Lemma 2.8. Let (X, pc) be a complex partial metric space. A sequence {xn} in X converges to x ∈ X such
that pc(x, x) = 0. Then lim

n→∞
pc(xn, y) = pc(x, y) for every y ∈ X.

Proof. We have pc(xn, y) ≾ pc(xn, x) + pc(x, y)− pc(x, x) = pc(xn, x) + pc(x, y). Thus,

lim
n→∞

pc(xn, y) ≾ pc(x, x) + pc(x, y) = pc(x, y). (i)

Also, pc(x, y) ≾ pc(x, xn) + pc(xn, y)− pc(xn, xn) ≾ pc(x, xn) + pc(xn, y). So we have

pc(x, y) ≾ pc(x, x) + lim
n→∞

pc(xn, y) = lim
n→∞

pc(xn, y). (ii)

From (i) and (ii), we have lim
n→∞

pc(xn, y) = pc(x, y).

Rao et al. [26] modified the definition of partial compatible pair of maps given by Samet et al. [30]
as partial∗ compatible maps in partial metric spaces. In this paper we introduce p∗c-compatible maps as
follows.

Definition 2.9. Let (X, pc) be a complex partial metric space and F, g : X → X. Then the pair (F, g) is
said to be p∗c-compatible if the following conditions hold:

(i) pc(x, x) = 0 ⇒ pc(gx, gx) = 0 whenever x ∈ X;

(ii) lim
n→∞

pc(Fgxn, gFxn) = 0 whenever there exists a sequence {xn} in X such that Fxn → t and gxn → t

for some t ∈ X with pc(t, t) = 0.

Samet et al. [31] introduced the notion of α-admissible mappings associated with single map.
Later Karapinar et al. [15], Shahi et al. [32], Abdeljawad [5], and Rao et al. [26] extended α-admissible

mappings associated with two and four mappings and proved fixed and common fixed point theorems for
mappings on various spaces.

Definition 2.10. Let X be a non empty set and α : X ×X → R+. We need the following definitions and
notations in the rest of research (see [5, 15, 26, 31, 32] for more detail).

(i) A mapping of T : X → X is called α-admissible if α(x, y) ≥ 1 implies α(Tx, Ty) ≥ 1 for all x, y ∈ X.

(ii) A mapping of T : X → X is called triangular α-admissible if α(x, y) ≥ 1 ⇒ α(Tx, Ty) ≥ 1 for all
x, y ∈ X and α(x, z) ≥ 1 and α(z, y) ≥ 1 ⇒ α(x, y) ≥ 1 for all x, y, z ∈ X.

(iii) Let f, g : X → X. Then f is said to be α-admissible with respect to g if α(gx, gy) ≥ 1 implies
α(fx, fy) ≥ 1 for all x, y ∈ X.

(iv) Let f, g : X → X. Then the pair(f, g) is said to be α-admissible if α(x, y) ≥ 1 implies α(fx, gy) ≥ 1
and α(gx, fy) ≥ 1 for all x, y ∈ X.

(v) Let f, g, S, T : X → X. Then the pair (f, g) is said to be α-admissible w.r.to the pair (S, T ) if
α(Sx, Ty) ≥ 1 implies α(fx, gy) ≥ 1 and α(Tx, Sy) ≥ 1 implies α(gx, fy) ≥ 1 for all x, y ∈ X.

Recently Abbas et al. [2, 4] introduced the new concepts in a partially ordered set as follows.
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Definition 2.11 ([2, 4]). Let (X,⪯) be a partially ordered set and f : X → X.

(b1) f is said to be a dominating map if x ⪯ fx for all x ∈ X.

(b2) f is said to be dominated map if fx ⪯ x for all x ∈ X.

Suzuki [36, 37] proved and generalized versions of Banach’s and Edelsteins basic results. The importance
of Suzuki contraction theorem is that the contractive condition required to satisfied not for all points of the
domain of mapping involved in it. In this direction several authors have given fixed and common fixed point
theorems in various spaces, (see [26–28]).

Recently Rao et al. [27] proved the following.

Theorem 2.12 ([27, Theorem2.1]). Let (X, d,⪯) be a partially ordered complete complex valued metric
space, and α : X × X → R+ be a function. Let f, g, S, T : X → X be self mappings on X satisfying the
following

(c1) f , g are dominating maps and f and g are weak annihilators of T and S, respectively;

(c2) f(X) ⊆ T (X) and g(X) ⊆ S(X);

(c3)
1
2 min {|d(fx, Sx)| , |d(gy, Ty)|} ≤ max {|d(Sx, Ty)| , |d(fx, gy)|} implies

α (Sx, Ty) d (fx, gy) ≾ a1d (Sx, Ty)+a2d (Sx, fx)+a3d (Ty, gy)

+ a4d (Sx, gy) + a5d (Ty, fx)+a6
d (fx, Sx) d (gy, Ty)

1 + d (Sx, Ty)
+a7

d (Sx, gy) d (Ty, fx)

d (Sx, Ty)

for all comparable elements x, y ∈X, where ai(i=1, 2, . . . , 7) are non-negative real numbers such that
7∑

i=1
ai < 1;

(c4) the pair (f, g) is α-admissible with respect to the pair (S, T );

(c5) α(Sx1, fx1) ≥ 1 and α(fx1, Sx1) ≥ 1 for some x1 ∈ X;

(c6) (a) S is continuous, the pair (f, S) is compatible, and the pair (g, T ) is weakly compatible and there
exists a sequence {yn} in X such that α(yn, yn+1) ≥ 1 and α(yn+1, yn) ≥ 1 for all n ∈ N and yn → z
for some z ∈ X, then we have α(Sy2n, y2n−1) ≥ 1 and α(z, y2n−1) ≥ 1, α(z, z) ≥ 1, α(z, Tz) ≥ 1; or

(c7) (b) T is continuous, the pair (g, T ) is compatible, and the pair (f, S) is weakly compatible and there
exists a sequence {yn} in X such that α(yn, yn+1) ≥ 1 and α(yn+1, yn) ≥ 1 for all n ∈ N and yn → z
for some z ∈ X, then we have α(y2n, T y2n−1) ≥ 1 and α(y2n, z) ≥ 1, α(z, z) ≥ 1, α(Sz, z) ≥ 1;

(c8) if for a non-increasing sequence {xn} in X with xn ⪯ yn for all n ∈ N and yn → u for some u ∈ X
implies xn ⪯ u for all n ∈ N ,

then f, g, S, and T have a common fixed point in X. Further

(c9) if we assume that α(u, v) ≥ 1 whenever u and v are common fixed points of f, g, S, and T and the set
of common fixed points of f, g, S, and T is well ordered,

then f, g, S, and T have unique common fixed point in X.

The aim of this paper is using alpha-admissible function concept to prove a common fixed point theorem
of Suzuki type for two pairs of maps of which only one pair is p∗c-compatible and one of the maps is continuous
in a partial ordered complex partial metric space. We also obtain another common fixed point theorem using
closedness of one of the range set of a map instead of p∗c-compatibility of any pair and continuity of any
map. We provide two examples to illustrate our theorems.

Now we give our main results.
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3. Main Result

Theorem 3.1. Let (X, pc,≾) be a partially ordered complete complex partial metric space, α : X×X → R+

be a function, and f, g, S, T : X → X be mappings satisfying

(3.1.1) f , g are dominated and S, T are dominating mappings;

(3.1.2) f(X) ⊆ T (X) and g(X) ⊆ S(X);

(3.1.3) min {|pc(fx, Sx)| , |pc(gy, Ty)|} ≤ max {|pc(Sx, Ty)| , |pc(fx, gy)|} implies

α (Sx, Ty) pc (fx, gy) ≾ a1pc (Sx, Ty)+a2pc (Sx, fx)+a3pc (Ty, gy)

+ a4pc (Sx, gy) + a5pc (Ty, fx)

+a6
pc (Sx, fx) pc (Ty, gy)

1 + pc (Sx, Ty)+pc (fx, gy)
+ a7

pc (Sx, gy) pc (Ty, fx)

1 + pc (Sx, Ty) + pc (fx, gy)

for all comparable elements x, y ∈ X, where ai(i = 1, 2, . . . , 7) are non-negative real numbers such that
a1 + a2 + a3 + 2a4 + 2a5 + a6 + a7 < 1;

(3.1.4) the pair (f, g) is α-admissible with respect to the pair (S, T );

(3.1.5) α(Sx1, fx1) ≥ 1 and α(fx1, Sx1) ≥ 1 for some x1 ∈ X;

(3.1.6) if for a non-increasing sequence {xn} in X with yn ⪯ xn for all n ∈ N and yn → u for some u ∈ X
implies u ⪯ xn for all n ∈ N;

(3.1.7) (a) the pair (f, S) is p∗c compatible and f or S is continuous. Further assume that α(Sy2n, y2n−1) ≥
1 and α(p, y2n−1) ≥ 1 for all n ∈ N and α(p, p) ≥ 1 whenever there exists a sequence {yn} in X such
that α(yn, yn+1) ≥ 1 and α(yn+1, yn) ≥ 1 for all n ∈ N and yn → p for some p ∈ X; or

(3.1.7) (b) the pair (g, T ) is p∗c compatible and g or T is continuous. Further assume that α(y2n, T y2n−1) ≥
1 and α(y2n, p) ≥ 1 for all n ∈ N and α(p, p) ≥ 1 whenever there exists a sequence {yn} in X such
that α(yn, yn+1) ≥ 1 and α(yn+1, yn) ≥ 1 for all n ∈ N and yn → p for some p ∈ X.

Then f, g, S, and T have a common fixed point in X.

Proof. From (3.1.5), there exists x1 ∈ X such that α(Sx1, fx1) ≥ 1 and α(fx1, Sx1) ≥ 1.

From(3.1.2), there exist sequences {xn} and {yn} in X such that y2n+1 = fx2n+1 = Tx2n+2 and y2n+2 =
gx2n+2 = Sx2n+3, n = 0, 1, 2, . . . . Now we have

α (Sx1, fx1) ≥ 1 ⇒ α (Sx1, Tx2) ≥ 1, from the definition of {yn}
⇒ α (fx1, gx2) ≥ 1, from (2.1.4), i.e., α (y1, y2) ≥ 1

⇒ α (Tx2, Sx3) ≥ 1, from the definition of {yn}
⇒ α (gx2, fx3) ≥ 1, from (2.1.4), i.e., α (y2, y3) ≥ 1

⇒ α (Sx3, Tx4) ≥ 1, from the definition of {yn}
⇒ α (fx3, gx4) ≥ 1, from (2.1.4), i.e., α (y3, y4) ≥ 1.

Continuing in this way, we have

α(yn, yn+1) ≥ 1, ∀n ∈ N. (3.1)

Similarly by using α(fx1, Sx1) ≥ 1 we can show that

α(yn+1, yn) ≥ 1, ∀n ∈ N. (3.2)

From (3.1.1), we have x2n+1 ⪯ Sx2n+1 = gx2n ⪯ x2n ⪯ Tx2n = fx2n−1 ⪯ x2n−1. Thus

xn+1 ⪯ xn, ∀n ∈ N.
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Case (i): Suppose that yn ̸= yn+1 for all n ∈ N. From (3.1), α(Sx2n+1, Tx2n+2) = α(y2n, y2n+1) ≥ 1. From
the definition of {yn} we have

min {|pc(fx2n+1, Sx2n+1)| , |pc(gx2n+2, Tx2n+2)|} = min {|pc(Sx2n+1, Tx2n+2)| , |pc(gx2n+2, fx2n+1)|}
≤ max {|pc(Sx2n+1, Tx2n+2)| , |pc(gx2n+2, fx2n+1)|} .

From (3.1.3), we have

pc (y2n+1, y2n+2) = pc (fx2n+1, gx2n+2)

≾ α (Sx2n+1, Tx2n+2) pc (fx2n+1, gx2n+2)

≾ a1pc (y2n, y2n+1) + a2pc (y2n, y2n+1) + a3pc (y2n+2, y2n+1)

+ a4pc (y2n, y2n+2) + a5pc (y2n+1, y2n+1)

+ a6
pc (y2n, y2n+1) pc (y2n+2, y2n+1)

1 + pc (y2n, y2n+1) + pc (y2n+1, y2n+2)
+ a7

pc (y2n, y2n+2) pc (y2n+1, y2n+1)

1 + pc (y2n, y2n+1) + pc (y2n+1, y2n+2)
.

Using

pc (y2n, y2n+2) ≾ pc (y2n, y2n+1) + pc (y2n+1, y2n+2)− pc (y2n+1, y2n+1) ≾ pc (y2n, y2n+1) + pc (y2n+1, y2n+2)

and pc (y2n+1, y2n+1) ≾ pc (y2n+1, y2n), we get

|pc (y2n+1, y2n+2)| ≤ a1 |pc (y2n, y2n+1)|+ a2 |pc (y2n, y2n+1)|+ a3 |pc (y2n+2, y2n+1)|
+ a4 [|pc (y2n, y2n+1)|+ |pc (y2n+1, y2n+2)|] + a5 |pc (y2n+1, y2n)|
+ a6 |pc (y2n, y2n+1)|+ a7 |pc (y2n+1, y2n)| .

Thus

|pc (y2n+1, y2n+2)| ≤
(
a1 + a2 + a4 + a5 + a6 + a7

1− a3 − a4

)
|pc (y2n, y2n+1)| . (A)

From (3.2), α(Sx2n+1, Tx2n) = α(y2n, y2n−1) ≥ 1. From the definition of {yn} we have

min {|pc(fx2n+1, Sx2n+1)| , |pc(gx2n, Tx2n)|} = min {|pc(fx2n+1, gx2n)| , |pc(Sx2n+1, Tx2n)|}
≤ max {|pc(fx2n+1, gx2n)| , |pc(Sx2n+1, Tx2n)|} .

From (3.1.3), we have

pc (y2n, y2n+1) = pc (fx2n+1, gx2n)

≾ α (Sx2n+1, Tx2n) pc (fx2n+1, gx2n)

≾ a1pc (y2n, y2n−1) + a2pc (y2n, y2n+1) + a3pc (y2n−1, y2n)

+ a4pc (y2n, y2n) + a5pc (y2n−1, y2n+1)

+ a6
pc (y2n, y2n+1) pc (y2n−1, y2n)

1 + pc (y2n, y2n−1) + pc (y2n, y2n+1)
+ a7

pc (y2n, y2n) pc (y2n−1, y2n+1)

1 + pc (y2n, y2n−1) + pc (y2n, y2n+1)
,

|pc (y2n, y2n+1)| ≤ a1 |pc (y2n, y2n−1)|+ a2 |pc (y2n, y2n+1)|+ a3 |pc (y2n−1, y2n)|
+ a4 |pc (y2n, y2n−1)|+ a5 [|pc (y2n−1, y2n)|+ |pc (y2n, y2n+1)|]
+ a6 |pc (y2n−1, y2n)|+ a7 |pc (y2n, y2n−1)| .

Thus

|pc (y2n, y2n+1)| ≤
(
a1 + a3 + a4 + a5 + a6 + a7

1− a2 − a5

)
|pc (y2n−1, y2n)| . (B)
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Hence
|pc (yn, yn+1)| ≤ h |pc (yn−1, yn)| for n = 2, 3, 4, . . . ,

where

h = max

{
a1+a2+a4+a5+a6+a7

1− a3−a4
,
a1+a3+a4+a5+a6+a7

1− a2−a5

}
< 1.

Thus
|pc (yn, yn+1)| ≤ hn−1 |pc (y1, y2)| for n = 2, 3, 4, . . . . (3.3)

For m > n, using (3.3), we have

|pc (yn, ym)| ≤ |pc (yn, yn+1)|+ |pc (yn+1, yn+2)|+ · · ·+ |pc (ym−1, ym)|

≤
(
hn−1 + hn + · · ·+ hm−2

)
|pc (y1, y2)| ≤

hn−1

1− h
|pc (y1, y2)| → 0 as n → ∞,m → ∞,

which implies that

lim
m,n→∞

pc(yn, ym) = 0. (C)

Hence {yn} is a Cauchy sequence in X.
Since (X, pc) is complete, there exists z ∈ X such that yn → z and

pc(z, z) = lim
n→∞

pc(z, yn) = lim
m,n→∞

pc(yn, ym) = 0, from (C).

Hence

pc (z, z) = lim
n→∞

pc (fx2n+1, z) = lim
n→∞

pc (gx2n+2, z) = lim
n→∞

pc (Sx2n+1, z) = lim
n→∞

pc (Tx2n+2, z) = 0. (3.4)

Suppose (3.1.7) (a) holds. Since tha pair (f, S) is p∗c compatible, from (3.4), we have

pc(Sz, Sz) = 0 (3.5)

and
lim
n→∞

pc(fSx2n+1, Sfx2n+1) = 0. (3.6)

Since S is continuous at z, from (3.5) we have

lim
n→∞

pc(SSx2n+1, Sz) = pc(Sz, Sz) = 0 (3.7)

and
lim
n→∞

pc(Sfx2n+1, Sz) = pc(Sz, Sz) = 0. (3.8)

Also
|pc (fSx2n+1, Sz)| ≤ |pc (fSx2n+1, Sfx2n+1)|+ |pc (Sfx2n+1, Sz)| .

Letting n → ∞, we get from (3.6) and (3.8) that

lim
n→∞

|pc(fSx2n+1, Sz)| = 0. (3.9)

From (3.9) and (3.7) we get

|pc (fSx2n+1, SSx2n+1)| ≤ |pc (fSx2n+1, Sz)|+ |pc (Sz, SSx2n+1)| → 0 as n → ∞. (3.10)

Letting n → ∞ and (3.9) and (3.4) in

|pc (fSx2n+1, gx2n)− pc(Sz, z)| ≤ |pc (fSx2n+1, Sz)|+ |pc (z, gxn)|
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we get

lim
n→∞

pc(fSx2n+1, gx2n) = pc(Sz, z). (3.11)

Letting n → ∞ and (3.7) and (3.4) in

|pc (SSx2n+1, Tx2n)− pc(Sz, z)| ≤ |pc (SSx2n+1, Sz)|+ |pc (z, Tx2n)|

we get

lim
n→∞

pc(SSx2n+1, Tx2n) = pc(Sz, z). (3.12)

Letting n → ∞ and (3.7) and (3.5) in

|pc (SSx2n+1, gx2n)− pc(Sz, z)| ≤ |pc (SSx2n+1, Sz)|+ |pc (z, gx2n)|

we get

lim
n→∞

pc(SSx2n+1, gx2n) = pc(Sz, z). (3.13)

Letting n → ∞ and (3.9) and (3.4) in

|pc (fSx2n+1, Tx2n)− pc(z, Sz)| ≤ |pc (fSx2n+1, Sz)|+ |pc (z, Tx2n)|

we get

lim
n→∞

pc(fSx2n+1, Tx2n) = pc(z, Sz). (3.14)

Suppose Sz ̸= z. from (3.1.7)(a) α(SSx2n+1, Tx2n) = α(Sy2n, y2n−1) ≥ 1 .
From (3.1.1), we have Sx2n+1 = gx2n ⪯ x2n. Now using (3.1.3), we get, if

min {|pc (fSx2n+1, SSx2n+1)| , |pc (gx2n, Tx2n)|} > max {|pc (SSx2n+1, Tx2n)| , |pc (fSx2n+1, gx2n)|} ,

then letting n → ∞, we get 0 ≥ |pc(Sz, z)|. It is contradiction. Hence

min {|pc (fSx2n+1, SSx2n+1)| , |pc (gx2n, Tx2n)|} ≤ max {|pc (SSx2n+1, Tx2n)| , |pc (fSx2n+1, gx2n)|} ,

|pc (fSx2n+1, gx2n)| ≤ α (SSx2n+1, Tx2n) |pc (fSx2n+1, gx2n)|
≤ a1 |pc (SSx2n+1, Tx2n)|+ a2 |pc (SSx2n+1, fSx2n+1)|
+ a3 |pc (Tx2n, gx2n)|+ a4 |pc (SSx2n+1, gx2n)|+ a5 |pc (Tx2n, fSx2n+1)|

+ a6
|pc (SSx2n+1, fSx2n+1)| |pc (Tx2n, gx2n)|

|1 + pc (SSx2n+1, Tx2n) + pc (fSx2n+1, gx2n)|

+ a7
|pc (SSx2n+1, gx2n)| |pc (Tx2n, fSx2n+1)|

|1 + pc (SSx2n+1, Tx2n) + pc (fSx2n+1, gx2n)|
,

(3.15)

we have

|1 + pc (Sz, z) + pc (Sz, z)| ≤
∣∣∣∣ 1 + pc (Sz, SSx2n+1) + pc (SSx2n+1, Tx2n) + pc (Tx2n, z)
+pc (Sz, fSx2n+1) + pc (fSx2n+1, gx2n) + pc (gx2n, z)

∣∣∣∣
≤ |1 + pc (SSx2n+1, Tx2n) + pc (fSx2n+1, gx2n)|+ |pc (Tx2n, z)|
+ |pc (Sz, SSx2n+1)|+ |pc (Sz, fSx2n+1)|+ |pc (gx2n, z)| .

Letting n → ∞, we get

|1 + pc (Sz, z) + pc (Sz, z)| ≤ lim
n→∞

|1 + pc (SSx2n+1, Tx2n) + pc (fSx2n+1, gx2n)|
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from (3.4), (3.7), and (3.9).
Letting n → ∞ in (3.15) and (3.4), (3.10), (3.11), (3.12), (3.13), and (3.14), we get

|pc (Sz, z)| ≤ a1 |pc (Sz, z)|+ a2(0) + a3(0) + a4 |pc (Sz, z)|+ a5 |pc (Sz, z)|+ a6(0)

+ a7
|pc (z, Sz)| |pc (z, Sz)|

|1 + pc (z, Sz) + pc (z, Sz)|
< (a1 + a4 + a5 + a7) |pc (Sz, z)| ,

which implies that Sz = z.
Suppose fz ̸= z. Since gx2n ⪯ x2n, gx2n → z by (3.1.6), we have z ⪯ x2n. Also α(Sz, Tx2n) =

α(z, y2n−1) ≥ 1 from (3.1.7) (a). Since pc(z, z) = 0, by Lemma 2.8, we have pc(fz, z) = limn→∞ pc(fz, gx2n).
If min {|pc (Sz, fz)| , |pc (gx2n, Tx2n)|} > max {|pc (Sz, Tx2n)| , |pc (fz, gx2n)|} , then letting n → ∞, we get
0 ≥ |pc(fz, z)|. It is contradiction. Hence

min {|pc (Sz, fz)| , |pc (gx2n, Tx2n)|} ≤ max {|pc (Sz, Tx2n)| , |pc (fz, gx2n)|} .

From (3.1.3), we get

|pc (fz, gx2n)| ≤ a1 |pc (z, Tx2n)|+ a2 |pc (z, fz)|+ a3 |pc (Tx2n, gx2n)|
+ a4 |pc (z, gx2n)|+ a5 |pc (Tx2n, fz)|

+ a6
|pc (z, Sz)| |pc (Tx2n, gx2n)|

|1 + pc (z, Tx2n) + pc (fz, gx2n)|
+ a7

|pc (z, gx2n)| |pc (Tx2n, fz)|
|1 + pc (z, Tx2n) + pc (fz, gx2n)|

,

(3.16)

|1 + pc (fz, z)| ≤ |1 + pc (fz, gx2n) + pc (gx2n, Tx2n) + pc (Tx2n, z)|
≤ |1 + pc (Tx2n, z) + pc (fz, gx2n)|+ |pc (gx2n, Tx2n)|
≤ |1 + pc (Tx2n, z) + pc (fz, gx2n)|+ |pc (gx2n, z)|+ |pc (z, Tx2n)| .

Letting n → ∞, we get

|1 + pc (fz, z)| ≤ lim
n→∞

|1 + pc (Tx2n, z) + pc (fz, gx2n)| , from (3.4).

Letting n → ∞ in (3.16), we get

|pc (fz, z)| ≤ a1(0) + a2 |pc (fz, z)|+ a3(0) + a4(0) + a5 |pc (z, fz)|+ a6(0) + a7(0) < (a2 + a5) |pc (fz, z)| ,

which implies that fz = z. Thus
Sz = z = fz. (3.17)

Since f(X) ⊆ T (X), there exists a point w ∈ X such that fz = Tw. From (3.1.1), we have w ⪯ Tw = fz =
z. Suppose z ̸= gw. From (3.1.7) (a), we have α(Sz, Tw) = α(z, z) ≥ 1, and

min {|pc (Sz, fz)| , |pc (gw, Tw)|} = min {|pc (z, z)| , |pc (gw, z)|}
= 0 from (3.5)

< max {|pc (Sz, Tw)| , |pc (fz, gw)|} .

From (3.1.3), we have

|pc (z, gw)| = |pc (fz, gw)|
≤ a1 |pc (z, z)|+ a2 |pc (z, z)|+ a3 |pc (z, gw)|+ a4 |pc (z, gw)|

+ a5 |pc (z, z)|+ a6
|pc (z, z)| |pc (z, gw)|

|1 + pc (z, z) + pc (z, gw)|
+ a7

|pc (z, gw)| |pc (z, z)|
|1 + pc (z, z) + pc (z, gw)|

≤ a1(0) + a2(0) + a3 |pc (z, gw)|+ a4 |pc (z, gw)|+ a5(0) + a6(0) + a7(0)

< (a3 + a4) |pc (z, gw)| ,

which implies that gw = z = Tw. Since T is dominating, and g is dominated, we have w ⪯ Tw = z and



K. P. R. Rao, A. Sombabu, Commun. Nonlinear Anal. 5 (2018), 40–54 49

z = gw ⪯ w. Hence z = w. Thus

gz = z = Tz. (3.18)

From (3.17) and (3.18), it follows that z is a common fixed point of f, g, S, and T .
Similarly, we can prove theorem when (3.1.7) (b) holds.

Case (ii): Suppose yn = yn−1 for some n. Without loss of generality assume that n = 2m. Then y2m =
y2m−1. From (A) in Case (i), we have y2m = y2m+1. Then From (B) in Case (i), we have y2m+1 = y2m+2.
Continuing in this way, we get y2m−1 = y2m = y2m+1 = y2m+2 = · · · . Thus {yn} is a constant Cauchy
sequence in X.

The rest of the proof follows as in Case (i).

Now we give an example to illustrate our Theorem 3.1.

Example 3.2. Let X = [0, 1] and pc : X ×X → C+ be defined by

pc(x, y) = max{x, y}+ imax{x, y} for all x, y ∈ X.

Let ⪯ be the ordinary ≤. Let f, g, S, and T be defined by

fx =
x

8
, ∀ x ∈ [0, 1], gx =

{
0, if x ∈

[
0, 1

2

)
,

1
16 , if x ∈

[
1
2 , 1] ,

Sx =

{
3x
2 , if x ∈

[
0, 1

2

)
,

x, if x ∈
[
1
2 , 1] ,

Tx =

{
2x, if x ∈

[
0, 1

2

)
,

x, if x ∈
[
1
2 , 1] .

Let α : X ×X → R+ be defined by

α(x, y) =

{
1, if x ∈ X, y = 1,
2, otherwise.

Then f(X) ⊆ T (X) and g(X) ⊆ S(X). From the following table it is clear that f, g are dominated and S, T
are dominating mappings.

x ∈ [0, 12) fx = x
8 ≤ x gx = 0 ≤ x x ≤ 3

2x = Sx x ≤ 2x = Tx

x ∈ [12 , 1] fx = x
8 ≤ x gx = 1

16 < x x = x = Sx x ≤ 1 = Tx

Now we will verify the condition (3.1.3) as follows.

(i) Let x, y ∈ [0, 12). Then pc(Sx, Ty) = pc(
3x
2 , 2y) = max{(3x2 , 2y)} + imax{(3x2 , 2y)}, α(Sx, Ty) =

α(3x2 , 2y) = 1,

α(Sx, Ty)pc(fx, gy) = (1)pc(
x

8
, 0) =

(x
8
+ i

x

8

)
=

1

12
(
3x

2
+ i

3x

2
)

≾ 1

12
[max{3x

2
, 2y}+ imax{3x

2
, 2y}] = 1

12
pc(Sx, Ty) ≾

1

4
pc(Sx, Ty).

(ii) Let x ∈ [0, 12) and y ∈ [12 , 1]. Then pc(Sx, Ty) = pc(
3x
2 , 1) = 1 + i, α(Sx, Ty) = α(3x2 , 1) = 1,

α(Sx, Ty)pc(fx, gy) = pc(
x

8
,
1

16
) =

1

16
+ i

1

16
≾ 1

16
(1 + i) =

1

16
pc(Sx, Ty) ≾

1

4
pc(Sx, Ty).

(iii) Let x ∈ [12 , 1] and y ∈ [0, 12). Then pc(Sx, Ty) = pc(x, 2y) = max{x, 2y} + imax{x, 2y}, α(Sx, Ty) =
α(x, 2y) = 2,

α(Sx, Ty)pc(fx, gy) = 2pc(
x

8
, 0) = 2(

x

8
+ i

x

8
=

1

4
(x+ ix) ≾ 1

4
[max{x, 2y}+ imax{x, 2y}] = 1

4
pc(Sx, Ty).
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(iv) Let x, y ∈ [12 , 1]. Then pc(Sx, Ty) = pc(x, 1) = 1 + i, α(Sx, Ty) = α(x, 1) = 1,

α(Sx, Ty)pc(fx, gy) = pc(
x

8
,
1

16
) =

x

8
+ i

x

8
≾ 1

8
(1 + i) =

1

8
pc(Sx, Ty) ≾

1

4
pc(Sx, Ty).

Thus (3.1.3) is satisfied with a1 =
1
4 , a2 = · · · = a7 = 0. Hence f is continuous and g, S, T are discontinuous.

Suppose pc(x, x) = 0. Then x = 0 and hence pc(Sx, Sx) = pc(0, 0) = 0. Thus pc(x, x) = 0 ⇒
pc(Sx, Sx) = 0. Suppose there exists a sequence {xn} in X such that fxn → t and Sxn → t for some t ∈ X
with pc(t, t) = 0. Then pc(t, t) = 0 ⇒ t = 0,

fxn → t ⇒ lim
n→∞

pc(fxn, t) = pc(t, t) = 0 ⇒ lim
n→∞

pc(fxn + ifxn) = 0 ⇒ lim
n→∞

fxn = 0 ⇒ lim
n→∞

xn = 0.

Similarly Sxn → t ⇒ lim
n→∞

xn = 0. Consider

lim
n→∞

pc(fSxn, Sfxn) = lim
n→∞

[max{fSxn, Sfxn}+ imax{fSxn, Sfxn}] = 0 by definitions of f and S.

Thus the pair (f, S) is p∗c-compatible. One can easily verify the remaining conditions. Clearly 0 is a common
fixed point of f, g, S, and T .

Remark 3.3. Our main Theorem 3.1 is an improvement of Theorem 2.1 of [27] which is in complex valued
metric space.

Now replacing continuity and p∗c compatibility assumptions with one of f(X), g(X), S(X), and T (X)
being a closed subspace of X, we prove the following theorem.

Theorem 3.4. Assume the conditions (3.1.1), (3.1.2), (3.1.3), (3.1.4), (3.1.5), and (3.1.6) hold. Further
assume the following.

(3.4.1) (a) Suppose S(X) is a closed subset of X. Further assume that α(p, y2n+1) ≥ 1 for all n ∈ N and
α(p, p) ≥ 1 whenever there exists a sequence {yn} in X such that α(yn, yn+1) ≥ 1 and α(yn+1, yn) ≥ 1
for all n ∈ N and yn → p for some p ∈ X; or

(3.4.1) (b) suppose T (X) is a closed subset of X. Further assume that α(y2n, p) ≥ 1 for all n ∈ N and
α(p, p) ≥ 1 whenever there exists a sequence {yn} in X such that α(yn, yn+1) ≥ 1 and α(yn+1, yn) ≥ 1
for all n ∈ N and yn → p for some p ∈ X.

Then f, g, S, and T have a common fixed point in X.

Proof. As in Theorem 3.1, there exists a Cauchy sequence {yn} in X such that y2n+1 = fx2n+1 = Tx2n+2

and y2n+2 = gx2n+2 = Sx2n+3, n = 0, 1, 2, . . ., and yn → z ∈ X such that

pc (z, z) = lim
n→∞

pc (fx2n+1, z) = lim
n→∞

pc (Sx2n+1, z) = lim
n→∞

pc (gx2n+2, z) = lim
n→∞

pc (Tx2n+2, z) = 0. (3.19)

Suppose (3.4.1) (a) holds. Since S(X) is a closed subset of X. Then there exists u ∈ X such that z = Su.
Since S is dominating we have u ⪯ Su = z. Since g is dominated we have gx2n+2 ⪯ x2n+2 and gx2n+2 → z
by (3.1.6), z ⪯ x2n+2. Thus u ⪯ x2n+2.

Suppose fu ̸= z, α(Su, Tx2n+2) = α(z, y2n+1) ≥ 1. If

min {|pc (fu, Su)| , |pc (gx2n+2, Tx2n+2)|} > max {|pc (Su, Tx2n+2)| , |pc (fu, gx2n+2)|} ,

then letting n → ∞, we get 0 ≥ |pc(fu, z)|. It is contradiction. Hence

min {|pc (fu, Su)| , |pc (gx2n+2, Tx2n+2)|} > max {|pc (Su, Tx2n+2)| , |pc (fu, gx2n+2)|} .
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Now From (3.1.3), we have

|pc (fu, gx2n+2)| ≤ α (Su, Tx2n+2) |pc (fu, gx2n+2)|
≤ a1 |pc (z, Tx2n+2)|+ a2 |pc (z, fu)|+ a3 |pc (Tx2n+2, gx2n+2)|
+ a4 |pc (z, gx2n+2)|+ a5 |pc (Tx2n+2, fu)|

+ a6
|pc (z, fu)| |pc (Tx2n+2, gx2n+2)|

|1 + pc (z, Tx2n+2) + pc (fu, gx2n+2)|

+ a7
|pc (z, gx2n+2)| |pc (Tx2n+2, fu)|

|1 + pc (z, Tx2n+2) + pc (fu, gx2n+2)|
,

(3.20)

1 + pc(fu, z) ≾ 1 + pc(fu, gx2n+2) + pc(gx2n+2, Tx2n+2) + pc(Tx2n+2, z),

|1 + pc(fu, z)| ≤ |1 + pc(fu, gx2n+2) + pc(Tx2n+2, z)|+ |pc(gx2n+2, Tx2n+2)| .

Letting n → ∞ and using (3.21), we get

|1 + pc(fu, z)| ≤ lim
n→∞

|1 + pc(z, Tx2n+2) + pc(fu, gx2n+2)| .

Letting n → ∞ in (3.20) and using (3.19), we get

|pc (fu, z)| ≤ a1(0) + a2 |pc (z, fu)|+ a3(0) + a4(0) + a5 |pc (z, fu)|+ a6(0) + a7(0) < (a2 + a5) |pc (z, fu)| ,

which in turn yields that fu = z. Thus fu = z = Su. Since f is dominated and S is dominating maps, we
have z = fu ⪯ u and u ⪯ Su = z. Thus u = z. Hence

fz = z = Sz. (3.21)

Since f(X) ⊆ T (X), there exists v ∈ X such that z = fz = Tv. Since T is dominating v ⪯ Tv = z. Suppose
z ̸= gv. Now α(Sz, Tv) = α(z, z) ≥ 1,

min {|pc (fz, Sz)| , |pc (gv, Tv)|} = 0 < max {|pc (Sz, Tv)| , |pc (fz, gv)|} , from (3.4).

From (3.1.3), we have

|pc (z, gv)| = |pc (fz, gv)| ≤ α (Sz, Tv) |pc (fz, gv)|
≤ a1 |pc (z, z)|+ a2 |pc (z, z)|+ a3 |pc (z, gv)|+ a4 |pc (z, gv)|+ a5 |pc (z, z)|

+ a6
|pc (z, z)| |pc (z, gv)|

|1 + pc (z, z) + pc (z, gv)|
+ a7

|pc (z, gv)| |pc (z, z)|
|1 + pc (z, z) + pc (z, gv)|

< (a3 + a4) |pc (z, gv)| ,

which in turn yields that z = gv. Thus gv = z = Tv. Since g is dominated and T is dominating maps, we
have z = gv ⪯ v and v ⪯ Tv = z. Thus v = z. Hence

gz = z = Tz. (3.22)

From (3.21) and (3.22), it follows that z is a common fixed point of f, g, S, and T . Similarly, we can prove
this theorem when (3.4.1) (b) holds.

The following example illustrates our Theorem 3.4.
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Example 3.5. Let X = [0, 3] and pc : X ×X → C+ be defined by pc(x, y) = max{x, y} + imax{x, y} for
all x, y ∈ X. Let ⪯ be the ordinary ≤. Let f, g, S, and T be defined by

fx =

{
x
6 , if x ∈ [0, 1) ,
1
8 , if x ∈ [1, 3] ,

gx =

{
0, if x ∈ [0, 1) ,
1
8 , if x ∈ [1, 3] ,

Sx =

{
2
√
x, if x ∈ [0, 1) ,

3, if x ∈ [1, 3] ,
Tx =

{
2
√
x, if x ∈ [0, 1) ,

x, if x ∈ [1, 3] .

Let α : X ×X → R+ be defined by

α(x, y) =

{
1, if y ∈ X,x = 3,
2, otherwise.

Then f(X) ⊆ T (X) and g(X) ⊆ S(X) and T (X) is a closed subset of X. From the following table it is
clear that f, g are dominated and S, T are dominating mappings.

x ∈ [0, 1) fx = x
6 ≤ x gx = 0 ≤ x x ≤ 2

√
x = Sx x ≤ 2

√
x = Tx

x ∈ [1, 3] fx = 1
8 ≤ x gx = 1

8 < x x ≤ 3 = Sx x = x = Tx

Now we will verify the condition (3.1.3) as follows.

(i) Let x, y ∈ [0, 1]. Then pc(Sx, Ty) = pc(2
√
x, 2

√
y) = max{2

√
x, 2

√
y}+ imax{2

√
x, 2

√
y}, α(Sx, Ty) =

α(2
√
x, 2

√
y) = 2,

α(Sx, Ty)pc(fx, gy) = 2pc(
x

6
, 0) = 2(

x

6
+ i

x

6
) =

1

3
(x+ ix) ≤ 1

3
(2
√
x+ i2

√
x)

≾ 1

3
[max{2

√
x, 2

√
y}+ imax{2

√
x, 2

√
y}] = 1

3
pc(Sx, Ty).

(ii) Let x ∈ [0, 1) and y ∈ [1, 3]. Then pc(Sx, Ty) = pc(2
√
x, y) = max{2

√
x, y} + i max{2

√
x, y},

α(Sx, Ty) = α(2
√
x, y) = 1,

α(Sx, Ty)pc(fx, gy) = pc(
x

6
,
1

8
) =

x

6
+ i

x

6
≾ 1

6

[
2
√
x+ i2

√
x
]
≾ 1

6
pc(Sx, Ty) ≾

1

3
pc(Sx, Ty).

(iii) Let x ∈ [1, 3] and y ∈ [0, 1). Then pc(Sx, Ty) = pc(3, 2
√
y) = 3 + 3i, α(Sx, Ty) = α(3, 2

√
y) = 2,

α(Sx, Ty)pc(fx, gy) = 2pc(
1

8
, 0) =

1

4
+ i

1

4
=

1

12
(3 + 3i) ≾ 1

3
pc(Sx, Ty).

(iv) Let x, y ∈ [1, 3]. Then pc(Sx, Ty) = pc(3, y) = 3 + 3i, α(Sx, Ty) = α(3, y) = 1,

α(Sx, Ty)pc(fx, gy) = pc(
1

8
,
1

8
) =

1

8
+ i

1

8
=

1

24
(3 + 3i) ≾ 1

3
pc(Sx, Ty).

Thus (3.1.3) is satisfied with a1 = 1
3 , a2 = · · · = a7 = 0. One can easily verify the remaining conditions.

Clearly 0 is a common fixed point of f, g, S, and T .

References

[1] M. Abbas, M. Arshad, A. Azam, Fixed points of asympotically regular mappings in complex valued metric spaces,
Georgian Math. J., 20 (2013), 213–221. 1

[2] M. Abbas, Y. J. Cho, T. Nazir, Common fixed points of ciric-type contractive mappings in two ordered generalized
metric spaces, Fixed Point Theory Appl., 2012 (2012), 17 pages. 2, 2.11

[3] M. Abbas, B. Fisher, T. Nazir, Well-posedness and periodic point property of mappings satisfying a rational
inequality in an ordered complex valued metric spaces, Sci. Stud. Res. Ser. Math. Inform., 22 (2012), 5–24. 1
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