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Abstract

The main objective of this paper is to study the Ambartsumian equation in the sense of Ξ-Hilfer Generalized
proportional fractional derivative(HGPFD). The existence and stability properties of solution are studied.
The technique used for study is fixed point theorem and Gronwall inequality. Ulam-Hyers-Rassias stability
of the solution is also investigated.
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1. Introduction

The fractional calculus was originated in 1695 as a generalization of the integer order calculus. Fractional
calculus and its applications to the sciences and engineering are recent foci of interest to many researchers,
see [1, 12, 13] and references therein.

In [11, 22], the authors proposed a fractional integral operator with respect to another function ψ,
obtaining a general operator, in the sense that it is enough to choose a function ψ with certain properties
to obtain the most of the existing fractional integral operators. Attempting to unify several definitions of
fractional derivatives into a single one, the concept of fractional derivative of a function with respect to
another function was recently introduced. In [10], authors proposed a new fractional derivative called ψ-
Caputo that generalizes a class of fractional derivatives in the Caputo sense. The same idea can be adapted
to define the ψ-Riemann-Liouville fractional derivative. In 2018, Sousa and Oliveira [24] unified both
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definitions using Hilfer’s idea of interpolating between Riemann-Liouville and Caputo fractional derivatives
by introducing a two-parameter family of fractional derivatives of order α > 0 and type µ ∈ [0, 1] which
depends on an arbitrary function ψ and called it the ψ-Hilfer fractional derivative. For more details see the
papers [2, 6, 20, 23].

Motivated by [17, 22], we study a proportional fractional derivatives and provide a generalization of the
operator defined in [9] and named it was ψ-HGPFD of a function with respect to another function.

Stability is the most relevant property of dynamical systems. The study of Ulam stability was initiated
due to an interesting problem posed in the year 1940, by Ulam [25], regarding the stability for the equation
of group homomorphisms. An answer was given by Hyers [8], in 1941, in the framework of Banach spaces,
for the additive Cauchy equation. In the following years, many mathematicians [15, 26] were concerned with
this problem, also for the case of differential equations, integral equations, and partial differential equations.

The original integer order Ambartsumian equation was introduced in the theory of surface brightness in
the Milky Way. The authors in [3, 4, 5, 16, 19, 21] studied the Ambartsumian equation in different aspects.

In this work, we analyse the existence and stability results of the nonlocal fractional order Ambartsumian
equation with Ξ-HGPFD
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fractional integral with 0 < p < 1, 0 ≤ q ≤ 1, ϑ = p + q(1 − p) and Q : J × R × R → R is a continuous
function.
The above problem (1.1)-(1.2) is equivalent to the Volterra integral equation,
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.

2. Preliminaries

In this section, we gives some definitions and lemmas useful in our subsequent discussion. Let 0 ≤ a <

b <∞, J = [a, b] be a finite interval and ϑ be a parameter such that n− 1 ≤ ϑ < n.

C[a, b] be the space of the continuous functions Q on J with the norm defined by

‖Q‖C[a,b] = max
t∈J

|Q(t)| ,

and ACn[a, b] be the space of n times absolutely continuous differentiable functions given by,

ACn[a, b] =
{

Q : [a, b] → R;Qn−1 ∈ AC[a, b]
}

.

The weighted space Cϑ,Ξ[a, b] of functions Q on (a, b] is defined by

Cϑ,Ξ[a, b] =
{

Q : (a, b] → R; (Ξ(t)− Ξ(a))ϑQ(t) ∈ C[a, b]
}

,
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with the norm defined by
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∣
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The weighted space Cn
ϑ,Ξ[a, b] of functions Q on [a, b] is defined by

Cn
ϑ,Ξ[a, b] =

{

Q : [a, b] → R;Q(t) ∈ Cn−1[a, b];Qn(t) ∈ Cϑ,Ξ[a, b]
}

,

with the norm defined by,
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∥
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.

Clearly,

(i) C0
ϑ,Ξ[a, b] = Cϑ,Ξ[a, b], for n = 0.

(ii) For n− 1 ≤ ϑ1 < ϑ2 < n, Cϑ1,Ξ[a, b] ⊂ Cϑ2,Ξ[a, b].

Definition 2.1. [9, 11] Let ϕ0, ϕ1 : [0, 1] × R → [0,∞) be two continuous functions such that forall t ∈ R

and ̺ ∈ [0, 1], we have,

lim
̺→0+

ϕ0(̺, t) = 0, lim
̺→0+

ϕ1(̺, t) = 1, lim
̺→1−

ϕ0(̺, t) = 1, lim
̺→1−

ϕ1(̺, t) = 0,

and ϕ0(̺, t) 6= 0, ̺ ∈ (0, 1];ϕ1(̺, t) 6= 0, ̺ ∈ (0, 1]. Also let Ξ(t) be a strictly positive increasing continuous
function. Then,

D̺,ΞQ(t) = ϕ1(̺, t)Q(t) + ϕ0(̺, t)
Q

′

(t)

Ξ′(t)
, (2.1)

gives the proportional differential operator of order ̺ with respect to the function Ξ(t) of a function Q(t).
If ϕ0(̺, t) = ̺ and ϕ1(̺, t) = 1− ̺, then D̺,Ξ becomes

D̺,ΞQ(t) = (1− ̺)Q(t) + ̺
Q

′

(t)

Ξ′(t)
, (2.2)

and the integral corresponding to the proportional derivative which is defined in Eq.(2.2) is given by,
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where, I0,̺,Ξ
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The generalized proportional integral of order n corresponding to the proportional fractional derivative
Dn,̺,ΞQ(t) is defined by,
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where, Dn,̺,Ξ = D̺,Ξ.D̺,Ξ.D̺,Ξ...D̺,Ξ.

Definition 2.2. [9, 11] If ̺ ∈ (0, 1] and p ∈ C with Re(p) > 0. Then the left-sided generalized proportional
fractional integral of order p of the function Q with respect to the another function Ξ is defined by,
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Definition 2.3. [9, 11] If ̺ ∈ (0, 1] and p ∈ C with Re(p) ≥ 0 and Ξ ∈ C[a, b] where Ξ
′

(s) > 0. Then
the left-sided generalized proportional fractional derivative of order p of the function Q with respect to the
another function Ξ is defined by,

(
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a+

Q
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(t) =
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where Γ(.) is the gamma function and n = [Re(p)] + 1.

Proposition 2.4. [9, 11] If p, q ∈ C such that Re(p) ≥ 0 and Re(q) > 0, then for any ̺ > 0, we have
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Theorem 2.5. [9, 11] Suppose ̺ ∈ (0, 1], Re(p) > 0 and Re(q) > 0. Then, if Q is continuous and defined
for t ≥ a, we have
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Theorem 2.6. [9, 11] Suppose ̺ ∈ (0, 1], 0 ≤ n < [Re(p)] + 1 with n ∈ N. If Q ∈ L1(a, b), then
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In particular, for n=1, hence by using the Leibnitz rule, we have
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Theorem 2.8. [9, 11] Suppose Q ∈ L1(a, b) and Re(p) > 0, ̺ ∈ (0, 1], n = [Re(p)] + 1. Then,
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Definition 2.11. [9, 11] If ̺ ∈ (0, 1] and p ∈ C with Re(p) ≥ 0, then the generalized left Caputo proportional
fractional derivative of function Q with respect to a another function Ξ is defined by,
(

CDp,̺,Ξ
a+

Q

)

(t) = In−p,̺,Ξ
a+

(

Dn,̺,ΞQ
)

(t),

=
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(
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s Q(s)ds

)

, (2.12)

where, n = [Re(p)] + 1.

Corollary 2.12. [11] Let p ∈ C with Re(p) > 0 and ̺ ∈ (0, 1], n = [Re(p)] + 1. If Q ∈ Cn[a, b] then,

(
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Q
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∑
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̺k.k!

(
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Q

)

(a)

]

. (2.13)

Proposition 2.13. [9, 11] If p, q ∈ C with Re(p) > 0, Re(q) > 0 then for any ̺ > 0 and n = [Re(p)] + 1,
we obtained as follows

(
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a+

e
̺−1

̺
(Ξ(s)−Ξ(a))(Ξ(s)− Ξ(a))q−1

)

(t) =
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Γ(q − p)
e

̺−1
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For k=0,1,2,........,n-1, we have

(
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e
̺−1
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)
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In particular,
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e
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̺
(Ξ(s)−Ξ(a))

)
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3. Main Result

Definition 3.1. [17] Let J = [a, b], where −∞ ≤ a < b ≤ ∞ be an interval and Q,Ξ ∈ Cn[a, b] be two
functions such that Ξ is positive strictly increasing and Ξ

′

(t) 6= 0,∀t ∈ [a, b]. The Ξ-HGPFD of order p and
type q of Q with respect to the another function Ξ are defined by

(

Dp,q,̺,Ξ
a±

Q

)

(t) =
(

Iq(n−p),̺,Ξ
a±

(

Dn,̺,Ξ
)

I(1−q)(n−p),̺,Ξ
a±

Q

)

(t), (3.1)

where n− 1 < p < n, 0 ≤ q ≤ 1 with n ∈ N and ̺ ∈ (0, 1]. Also D̺,ΞQ(t) = (1− ̺)Q(t) + ̺
Q

′
(t)

Ξ′(t)
and I is the

generalized proportional fractional integral defined in Eq.(2.5).
In particular, if n = 1, then 0 < p < 1 and 0 ≤ q ≤ 1, so Eq.(3.1) becomes,

(

Dp,q,̺,Ξ
a±

Q

)

(t) =
(

Iq(1−p),̺,Ξ
a±

(

D1,̺,Ξ
)

I(1−q)(1−p),̺,Ξ
a±

Q

)

(t).

Remark 3.2. [17] From the Definition 3.1, we can view the operator Dp,q,̺,Ξ
a±

is the interpolate between the
Riemann-Liouville and Caputo generalized proportional fractional derivatives respectively, since

Dp,q,̺,Ξ
a±

Q =

{

Dn,̺,ΞIn−p,̺,Ξ
a±

Q, if q = 0,

Iq(n−p),̺,Ξ
a±

Dn,̺,ΞQ, if q = 1.

Property 3.3. [17] The Ξ-HGPFD Dp,q,̺,Ξ
a+

Q is equivalent to

(

Dp,q,̺,Ξ
a+

Q
)

(t) =
(

Iq(n−p),̺,Ξ
a+

(

Dn,̺,Ξ
)

I(1−q)(n−p),̺,Ξ
a+

Q
)

(t) =
(

Iq(n−p),̺,Ξ
a+

Dϑ,̺,Ξ
a+

Q
)

(t),

where, ϑ = p+ q(n− p).
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Theorem 3.4. [17] Let n − 1 < p < n with n ∈ N, 0 ≤ q ≤ 1, ̺ ∈ (0, 1] and ϑ = p + q(n − p). For α ∈ R

such that α > n then the image of the function Q(t) = e
̺−1

̺
(Ξ(t)−Ξ(a))

(Ξ(t) − Ξ(a))α−1 under the operator
Dp,q,̺,Ξ

a+
is defined by

Dp,q,̺,Ξ
a+

Q(t) =
̺pΓ(α)

Γ(α− p)
e

̺−1

̺
(Ξ(t)−Ξ(a))(Ξ(t)− Ξ(a))α−p−1.

Lemma 3.5. [17] Let n − 1 < p < n with n ∈ N, 0 ≤ q ≤ 1, ̺ ∈ (0, 1] and ϑ = p + q(n − p). For θ > 0,

consider the function Q(t) = e
̺−1

̺
(Ξ(t)−Ξ(a))

Eα(θ (Ξ(t)− Ξ(a)))p, where Eα(.) is the Mittag-Leffler function
with one parameter. Then,

Dp,q,̺,Ξ
a+

Q(t) = θ̺pQ(t).

Property 3.6. [17] Assume that p, q, ϑ satisfying the relations as

ϑ = p+ q(n− p), n − 1 < p, ϑ ≤ n, 0 ≤ q ≤ 1,

and

ϑ ≥ p, ϑ > q, n− ϑ < n− q(n− p).

Let us consider the weighted spaces of continuous functions on (a,b] follows as,

C
p,q
n−ϑ,Ξ[a, b] =

{

Q ∈ Cn−ϑ,Ξ[a, b],Dp,q,̺,Ξ
a+

Q ∈ Cϑ,Ξ[a, b]
}

,

and

C
p,q
n−ϑ,Ξ[a, b] =

{

Q ∈ Cn−ϑ,Ξ[a, b],Dϑ,̺,Ξ
a+

Q ∈ Cn−ϑ,Ξ[a, b]
}

.

By the Property 3.3, we say that

Cϑ
n−ϑ,Ξ[a, b] ⊂ C

p,q
n−ϑ,Ξ[a, b].

Lemma 3.7. [17] Let n− 1 ≤ ϑ < n, n− 1 < p < n with n ∈ N, ̺ ∈ (0, 1]. If Q ∈ Cϑ[a, b] then

Ip,q,Ξ
a+

Q(a) = lim
t→a+

Ip,q,Ξ
a+

Q(t) = 0, n− 1 ≤ ϑ < p. (3.2)

Lemma 3.8. [17] Let n−1 < p < n with n ∈ N, 0 ≤ q ≤ 1, ̺ ∈ (0, 1] and ϑ = p+ q(n−p). If Q ∈ Cϑ
n−ϑ[a, b]

then

Iϑ,̺,Ξ
a+

Dϑ,̺,Ξ
a+

Q = Ip,̺,Ξ
a+

Dp,q,̺,Ξ
a+

Q,

and

Dϑ,̺,Ξ
a+

Ip,̺,Ξ
a+

Q = Dq(n−p),̺,Ξ
a+

Q.

Lemma 3.9. [17] Let Q ∈ L1(a, b). If Dq(n−p),̺,ΞQ exists in L1(a, b), then

Dp,q,̺,Ξ
a+

Ip,̺,Ξ
a+

Q = Iq(n−p),̺,Ξ
a+

Dq(n−p),̺,Ξ
a+

Q.

Lemma 3.10. [17] Let n−1 < p < n with n ∈ N, 0 ≤ q ≤ 1, ̺ ∈ (0, 1] and ϑ = p+q(n−p). If Q ∈ Cϑ
n−ϑ[a, b]

and In−q(n−p),̺,Ξ
a+

Q ∈ Cn
n−ϑ,Ξ[a, b] then Dp,q,̺,Ξ

a+
Ip,̺,Ξ
a+

Q exists in (a,b] and

Dp,q,̺,Ξ
a+

Ip,̺,Ξ
a+

Q(t) = Q(t), t ∈ (a, b].
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Theorem 3.11. [17] Let n− 1 < p < n with n ∈ N, 0 ≤ q ≤ 1, ̺ ∈ (0, 1]. If Q ∈ Cn[a, b], then

(

Dp,q,̺,Ξ
a+

Q

)

(t) = Dn−q(n−p),̺,Ξ
a+

[

In−ϑ,̺,Ξ
a+

Q(t)−
n−1
∑

k=0

e
̺−1

̺
(Ξ(t)−Ξ(a))(Ξ(t)− Ξ(a))k

̺kk!

(

Dϑ,̺,Ξ
a+

Q

)

(t)

]

,

where ϑ = p+ q(n− p).

Lemma 3.12. [17] Let n − 1 < p < n with n ∈ N, 0 ≤ q ≤ 1, ̺ ∈ (0, 1] with ϑ = p + q(n − p) such that

n− 1 < ϑ < n. If Q ∈ Cϑ[a, b], and In−ϑ,̺,Ξ
a+

Q ∈ Cn
ϑ,Ξ[a, b], then

(

Ip,̺,Ξ
a+

Dp,q,̺,Ξ
a+

Q

)

(t) = Q(t)−
[

n
∑

k=1

e
̺−1

̺
(Ξ(t)−Ξ(a))

(Ξ(t)− Ξ(a))ϑ−k

̺ϑ−kΓ(ϑ− k + 1)

(

Ik−ϑ,̺,Ξ
a+

Q

)

(a)

]

. (3.3)

Lemma 3.13. Let 0 < p < 1, 0 ≤ q ≤ 1, ϑ = p + q(1 − p) and assume that Q
(

.,A(.),A
(

.
η

))

∈ C1−ϑ[a, b]

for any A ∈ C1−ϑ[a, b] where Q : (a, b] × R × R → R be a function. If A ∈ Cϑ
1−ϑ[a, b] then A satisfies our

proposed problem (1.1)-(1.2) if and only if A satisfies Eq.(1.3).

Proof. Let us consider A ∈ Cϑ
1−ϑ[a, b] is a solution of our proposed problem (1.1)-(1.2). Now we have to

prove that A is a solution of Eq. (1.3). From the Lemma 3.12 with n = 1, we get

(

Ip,̺,Ξ
a+

Dp,q,̺,Ξ
a+

A
)

(t) = A(t)− e
̺−1

̺
(Ξ(t)−Ξ(a))

(Ξ(t)− Ξ(a))ϑ−1

̺ϑ−1Γ(ϑ)

(

I1−ϑ,̺,Ξ
a+

A
)

(a),

which gives,

A(t) =
e

̺−1

̺
(Ξ(t)−Ξ(a))

(Ξ(t)− Ξ(a))ϑ−1

̺ϑ−1Γ(ϑ)

(

I1−ϑ,̺,Ξ
a+

A
)

(a)

+
1

̺pΓ(p)

∫ t

a+
e

̺−1

̺
(Ξ(t)−Ξ(s))

(Ξ(t)− Ξ(s))p−1 Ξ
′

(s)Q

(

s,A(s),A
(

s

η

))

ds. (3.4)

Let us take t = τi and multiplying µi on both sides of Eq. 3.4, we get

µiA(τi) =
µie

̺−1

̺
(Ξ(τi)−Ξ(a))

(Ξ(τi)− Ξ(a))ϑ−1

̺ϑ−1Γ(ϑ)

(

I1−ϑ,̺,Ξ
a+

A
)

(a)

+
1

̺pΓ(p)
µi

∫ τi

a+
e

̺−1

̺
(Ξ(τi)−Ξ(s)) (Ξ(τi)− Ξ(s))p−1 Ξ

′

(s)Q

(

s,A(s),A
(

s

η

))

ds,

which implies that

m
∑

i=1

µiA(τi) =
1

̺ϑ−1Γ(ϑ)

m
∑

i=1

µie
̺−1

̺
(Ξ(τi)−Ξ(a))

(Ξ(τi)− Ξ(a))ϑ−1
(

I1−ϑ,̺,Ξ
a+

A
)

(a)

+
1

̺pΓ(p)

m
∑

i=1

µi

∫ τi

a+
e

̺−1

̺
(Ξ(τi)−Ξ(s))

(Ξ(τi)− Ξ(s))p−1 Ξ
′

(s)Q

(

s,A(s),A
(

s

η

))

ds, (3.5)

where τi > a.

Hence by Eq.(1.2), we get

I1−ϑ,̺,Ξ
a+

A(a) =
̺ϑ−1Γ(ϑ)

̺pΓ(p)
∧

m
∑

i=1

µi

∫ τi

a+
e

̺−1

̺
(Ξ(τi)−Ξ(s)) (Ξ(τi)− Ξ(s))p−1 Ξ

′

(s)Q

(

s,A(s),A
(

s

η

))

ds. (3.6)
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After substituting (3.6) in (3.4), we get the required result.
Hence A(t) satisfies (1.3).
Conversely, suppose that A ∈ Cϑ

1−ϑ[a, b] satisfies (1.3), we have to show that A(t) also satisfies (1.1)-(1.2).

Now applying the operator Dϑ,̺,Ξ
a+

on both sides of Eq. (1.3) we get,

Dϑ,̺,Ξ
a+

A(t) = Dϑ,̺,Ξ
a+

( ∧
̺pΓ(p)

e
̺−1

̺
(Ξ(t)−Ξ(a))

(Ξ(t)− Ξ(a))ϑ−1

×
m
∑

i=1

µi

∫ τi

a+
e

̺−1

̺
(Ξ(τi)−Ξ(s))

(Ξ(τi)− Ξ(s))p−1 Ξ
′

(s)Q

(

s,A(s),A
(

s

η

))

ds

)

+Dϑ,̺,Ξ
a+

(

1

̺pΓ(p)

∫ t

a+
e

̺−1

̺
(Ξ(t)−Ξ(s)) (Ξ(t)− Ξ(s))p−1 Ξ

′

(s)Q

(

s,A(s),A
(

s

η

))

ds

)

. (3.7)

By using the Proposition 2.4 and Lemma 3.8, we get

Dϑ,̺,Ξ
a+

A(t) = Dq(1−p),̺,Ξ
a+

Q

(

s,A(s),A
(

s

η

))

(t).

Since A ∈ Cϑ
1−ϑ[a, b] and by the definition of weighted space Cϑ

1−ϑ[a, b] we get Dϑ,̺,Ξ
a+

A ∈ C1−ϑ[a, b] and by
the Eq.(3.7)we get

Dq(1−p),̺,Ξ
a+

Q = D1,̺,ΞI1−q(1−p),̺,ΞQ ∈ C1−ϑ,Ξ[a, b].

And for Q
(

s,A(s),A
(

s
η

))

(t) ∈ C1−ϑ[a, b] and by the Theorem 2.8, it gives that

I1−q(1−p),̺,Ξ
a+

Q ∈ C1−ϑ,Ξ[a, b],

and from the definition of Cn
1−ϑ,Ξ[a, b], that

I1−q(1−p),̺,Ξ
a+

Q ∈ C1
1−ϑ,Ξ[a, b].

Now applying the operator Iq(1−p),̺,Ξ
a+

on both sides of Eq.(3.7) and by the Theorem 2.10 and the Lemma
3.7,we get

Iq(1−p),̺,Ξ
a+

Dϑ,̺,Ξ
a+

A(t) = Iq(1−p),̺,Ξ
a+

Dq(1−p),̺,Ξ
a+

Q

(

s,A(s),A
(

s

η

))

(t)

= Q

(

s,A(s),A
(

s

η

))

−
e

̺−1

̺
(Ξ(t)−Ξ(s))I1−q(1−p),̺,Ξ

a+
Q(a)

̺q(1−p)−1Γ(q(1− p))
(Ξ(t)− Ξ(s))q(1−p)−1 (3.8)

= Q

(

s,A(s),A
(

s

η

))

.

Hence,

Iq(1−p),̺,Ξ
a+

Dϑ,̺,Ξ
a+

A(t) = Q

(

s,A(s),A
(

s

η

))

, t ∈ J.

Now, we have to prove that Eq.(1.2) holds. To prove this, we have to applying the operator I1−ϑ,̺,Ξ
a+

on the
both sides of Eq.(1.3), we get

I1−ϑ,̺,Ξ
a+

A(t) = I1−ϑ,̺,Ξ
a+

( ∧
̺pΓ(p)

e
̺−1

̺
(Ξ(t)−Ξ(a))

(Ξ(t)− Ξ(a))ϑ−1

×
m
∑

i=1

µi

∫ τi

a+
e

̺−1

̺
(Ξ(τi)−Ξ(s)) (Ξ(τi)− Ξ(s))p−1 Ξ

′

(s)Q

(

s,A(s),A
(

s

η

))

ds

)

+ I1−ϑ,̺,Ξ
a+

(

1

̺pΓ(p)

∫ t

a+
e

̺−1

̺
(Ξ(t)−Ξ(s)) (Ξ(t)− Ξ(s))p−1 Ξ

′

(s)Q

(

s,A(s),A
(

s

η

))

ds

)

.
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And then using Proposition 2.4 and Theorem 2.5, we get

I1−ϑ,̺,Ξ
a+

A(t) =
̺ϑ−1Γ(ϑ)

̺pΓ(p)
∧ e

̺−1

̺
(Ξ(t)−Ξ(a))

m
∑

i=1

µi

∫ τi

a+
e

̺−1

̺
(Ξ(τi)−Ξ(s))

(Ξ(τi)− Ξ(s))p−1 Ξ
′

(s)Q

(

s,A(s),A
(

s

η

))

ds+ I1−q(1−p),̺,Ξ
a+

Q

(

s,A(s),A
(

s

η

))

(t). (3.9)

Since 1− ϑ < q(1− p), so taking the limit as t→ a+ and using Lemma 3.7 in the Eq.(3.9), we get

I1−ϑ,̺,Ξ
a+

A(a+) =

̺ϑ−1Γ(ϑ)

̺pΓ(p)
∧

m
∑

i=1

µi

∫ τi

a+
e

̺−1

̺
(Ξ(τi)−Ξ(s))

(Ξ(τi)− Ξ(s))p−1 Ξ
′

(s)Q

(

s,A(s),A
(

s

η

))

ds. (3.10)

Next, substituting t = τi and multiply µi on both sides of Eq. (1.3), we get

µiA(τi) =
∧

̺pΓ(p)
µie

̺−1

̺
(Ξ(τi)−Ξ(a)) (Ξ(τi)− Ξ(a))ϑ−1

×
m
∑

i=1

µi

∫ τi

a+
e

̺−1

̺
(Ξ(τi)−Ξ(s))

(Ξ(τi)− Ξ(s))p−1 Ξ
′

(s)Q

(

s,A(s),A
(

s

η

))

ds

+
µi

̺pΓ(p)

∫ τi

a+
e

̺−1

̺
(Ξ(τi)−Ξ(s))

(Ξ(τi)− Ξ(s))p−1 Ξ
′

(s)Q

(

s,A(s),A
(

s

η

))

ds,

which gives that,

m
∑

i=1

µiA(τi) = ∧
m
∑

i=1

µi

(

Ip,̺,Ξ
a+

Q

(

s,A(s),A
(

s

η

)))

(τi)

m
∑

i=1

µie
̺−1

̺
(Ξ(τi)−Ξ(a))

(Ξ(τi)− Ξ(a))ϑ−1

+
m
∑

i=1

µi

(

Ip,̺,Ξ
a+

Q

(

s,A(s),A
(

s

η

)))

(τi)

=

m
∑

i=1

µi

(

Ip,̺,Ξ
a+

Q

(

s,A(s),A
(

s

η

)))

(τi)

(

1 + ∧
m
∑

i=1

µie
̺−1

̺
(Ξ(τi)−Ξ(a))

(Ξ(τi)− Ξ(a))ϑ−1

)

.

Thus,

m
∑

i=1

µiA(τi) =
̺ϑ−1Γ(ϑ)

̺pΓ(p)
∧

m
∑

i=1

µi

∫ τi

a+
e

̺−1

̺
(Ξ(τi)−Ξ(s)) (Ξ(τi)− Ξ(s))p−1 Ξ

′

(s)Q

(

s,A(s),A
(

s

η

))

ds. (3.11)

Hence from (3.10) and (3.11), we get

I1−ϑ,̺,Ξ
a+

A(a+) =

m
∑

i=1

µiA(τi), (3.12)

this complete the proof.

4. Existence of solution

Now in our next theorem, we prove the existence of solution of Eq.(1.1)-(1.2) in the weighted space
C

p,q
1−ϑ,Ξ by the concepts of Krasnoselskii’s fixed point theorem.

Theorem 4.1. (Krasnoselskii’s fixed point theorem)[7] Let B be a non empty bounded closed convex subset
of a Banach space X. Let N,M : B → X be two continuos operators satisfying:
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• Nx+My ∈ B whenever x, y ∈ B,

• N is compact and continuous,

• M is contraction mapping,

then, there exist u ∈ B such that u = Nu+Mu.

Let us consider the following hypotheses:

(H1) : Let Q : (a, b]× R× R → R be a function such that Q ∈ C
q(1−p)
1−ϑ,Ξ [a, b] for any A ∈ Cϑ

1−ϑ,Ξ[a, b].
(H2) : There exists a constant k > 0 such that

|Q(t, u, v) −Q(t, u, v)| ≤ k {|u− v|+ |u− v|} , ∀u, v, u, v ∈ R and t ∈ J.

(H3) : Let us assume that

kφ < 1,

where,

φ =
β(ϑ, p)

̺pΓ(p)

(

|∧|
m
∑

i=1

µi (Ξ(τi)− Ξ(a))p+ϑ−1 + (Ξ(b)− Ξ(a))p

)

, (4.1)

and

β(ϑ, p) =

∫ 1

0
tϑ−1(1− t)p−1dt, Re(ϑ), Re(p) > 0,

is the beta function.
(H4) :Also let

k△ < 1,

where,

△ =
β(ϑ, p)

̺pΓ(p)
|∧|

m
∑

i=1

µi (Ξ(τi)− Ξ(a))p+ϑ−1 . (4.2)

Theorem 4.2. Let 0 < p < 1, 0 ≤ q ≤ 1 and ϑ = p+q(1−p). Suppose that the assumptions (H1), (H2), (H4)
hold. Then the problem (1.1)-(1.2) has at least one solution in the space Cϑ

1−ϑ[a, b].

Proof. Given that ‖X‖C1−ϑ,Ξ[a,b]
= supt∈J

∣

∣

∣
(Ξ(t)− Ξ(a))1−ϑX(t)

∣

∣

∣
and choose k ≥M ‖X‖C1−ϑ,Ξ [a,b]

, where

M =
β(ϑ, p)

̺pΓ(p)

(

|∧|
m
∑

i=1

µi (Ξ(τi)− Ξ(a))p+ϑ−1 + (Ξ(b)− Ξ(a))p

)

, (4.3)

also consider Bk =
{

A ∈ C[a, b] : ‖A‖C1−ϑ[a,b]
≤ k

}

. Thus ∀t ∈ [a, b] consider the operators G and H defined

on Bk by

(HA) (t) =
1

̺pΓ(p)

∫ t

a+
e

̺−1

̺
(Ξ(t)−Ξ(s)) (Ξ(t)− Ξ(s))p−1 Ξ

′

(s)Q

(

s,A(s),A
(

s

η

))

ds,
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(GA) (t) =
∧

̺pΓ(p)
e

̺−1

̺
(Ξ(t)−Ξ(a)) (Ξ(t)− Ξ(a))ϑ−1

×
m
∑

i=1

µi

∫ τi

a+
e

̺−1

̺
(Ξ(τi)−Ξ(s))

(Ξ(τi)− Ξ(s))p−1 Ξ
′

(s)Q

(

s,A(s),A
(

s

η

))

ds.

Step1. For all A,A ∈ Bk, yields
∣

∣

∣

(

HA(t) + GA(t)
)

(Ξ(t)− Ξ(a))1−ϑ
∣

∣

∣

≤ (Ξ(t)− Ξ(a))1−ϑ

̺pΓ(p)

∫ t

a+
(Ξ(t)− Ξ(s))p−1 (Ξ(s)− Ξ(a))ϑ−1 Ξ

′

(s)

∣

∣

∣

∣

Q

(

s,A(s),A
(

s

η

))

(Ξ(s)− Ξ(a))ϑ−1

∣

∣

∣

∣

ds

+
∧

̺pΓ(p)

m
∑

i=1

µi
(Ξ(t)− Ξ(a))1−ϑ

̺pΓ(p)

∫ τi

a+
(Ξ(t)− Ξ(s))p−1 (Ξ(s)− Ξ(a))ϑ−1

∣

∣

∣

∣

Q

(

s,A(s),A
(

s

η

))

(Ξ(τi)− Ξ(a))ϑ−1

∣

∣

∣

∣

ds

≤ ‖X‖
[

β(ϑ, p)

̺pΓ(p)

(

|∧|
m
∑

i=1

µi (Ξ(τi)− Ξ(a))p+ϑ−1 + (Ξ(b)− Ξ(a))p
)]

≤ ‖X‖M
≤ ̺ <∞,

this implies that HA+HA ∈ Bk.

Step2. We show that M is a contraction. Let A,A ∈ C1−ϑ[a, b] and t ∈ J then
∣

∣

∣

(

GA(t)− GA(t)
)

(Ξ(t)− Ξ(a))1−ϑ
∣

∣

∣

=

∣

∣

∣

∣

∣

∧e
̺−1

̺
(Ξ(t)−Ξ(a))

m
∑

i=1

µiI1−q(1−p),̺,Ξ
a+

(

Q

(

s,A(s),A
(

s

η

))

−Q

(

s,A(s),A
(

s

η

)))

∣

∣

∣

∣

∣

ds

≤ k∧
̺pΓ(p)

m
∑

i=1

µi

∫ τi

a+
(Ξ(τi)− Ξ(s))p−1 (Ξ(s)− Ξ(a))ϑ−1 Ξ

′

(s)
∣

∣A(s)−A(s)
∣

∣ ds

≤
[

k∧
̺pΓ(p)

β(ϑ, p)

m
∑

i=1

µi (Ξ(τi)− Ξ(s))p+ϑ−1

]

∥

∥A−A
∥

∥

C1−ϑ,Ξ[a,b]

∣

∣

∣

(

GA(t)− GA(t)
)

(Ξ(t)− Ξ(a))1−ϑ
∣

∣

∣
≤ k△

∥

∥A−A
∥

∥

C1−ϑ,Ξ[a,b]
. (4.4)

Hence by (H4) and Eq.(4.4), we can say M is a contraction.
Step3. Now we have to verify that the operator N is continuous and compact.
Since the function Q is continuous, so the operator N is also continuous.
Hence, for any A ∈ C1−ϑ[a, b], we get

‖HA‖ ≤ ‖X‖ β(ϑ, p)
̺pΓ(p)

(Ξ(b)− Ξ(a))p <∞.

This shows that H is uniformly bounded on Bk. Therefore it remains to prove that the operator H is

compact. Denoting sup(t,A)∈J×Bk

∣

∣

∣
Q

(

s,A(s),A
(

s
η

))∣

∣

∣
= δ <∞ and for any a < τ1 < τ2 < b,
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∣

∣

∣
(Ξ(τ2)− Ξ(a))1−ϑ (HA(τ2)) + (Ξ(τ1)− Ξ(a))1−ϑ (HA(τ1))

∣

∣

∣

=

∣

∣

∣

∣

∣

(Ξ(τ2)− Ξ(a))1−ϑ

̺pΓ(p)

∫ τ2

a+
e

̺−1

̺
(Ξ(τ2)−Ξ(s))(Ξ(τ2)− Ξ(s))p−1Ξ

′

(s)Q

(

s,A(s),A
(

s

η

))

ds

+
(Ξ(τ1)− Ξ(a))1−ϑ

̺pΓ(p)

∫ τ1

a+
e

̺−1

̺
(Ξ(τ1)−Ξ(s))(Ξ(τ1)− Ξ(s))p−1Ξ

′

(s)Q

(

s,A(s),A
(

s

η

))

ds

∣

∣

∣

∣

∣

≤ 1

ϑpΓ(p)

∫ τ2

τ1

[

(Ξ(τ2)− Ξ(a))1−ϑ (Ξ(τ2)− Ξ(s))p−1 (Ξ(τ1)− Ξ(a))1−ϑ (Ξ(τ1)− Ξ(s))p−1
]

× Ξ
′

(s)

∣

∣

∣

∣

Q

(

s,A(s),A
(

s

η

))
∣

∣

∣

∣

ds

+
1

ϑpΓ(p)

∫ τ2

τ1

(Ξ(τ1)− Ξ(a))1−ϑ (Ξ(τ1)− Ξ(s))p−1Ξ
′

(s)

∣

∣

∣

∣

Q

(

s,A(s),A
(

s

η

))∣

∣

∣

∣

ds

∣

∣

∣
(Ξ(τ2)− Ξ(a))1−ϑ (HA(τ2)) + (Ξ(τ1)− Ξ(a))1−ϑ (HA(τ1))

∣

∣

∣
→ 0 as τ2 → τ1.

As a consequence of Arzela-Ascoli theorem H is compact on Bk. Thus, as a result of our proposed problem
(1.1)-(1.2) has at least one solution.

5. Uniqueness of solution

In this section, we prove the uniqueness of solution of (1.1)-(1.2) in the weighted space Cϑ
1−ϑ,Ξ.

Theorem 5.1. Let 0 < p < 1, 0 ≤ q ≤ 1 and ϑ = p + q(1− p). Suppose that the assumptions (H2)− (H3)
hold, then the problem (1.1)-(1.2) has a unique solution in the space Cϑ

1−ϑ,Ξ[a, b].

Proof. Consider the fractional operator T : C1−ϑ,Ξ[a, b] → C1−ϑ,Ξ[a, b] defined by:

(T A) (t) =



















∧

̺pΓ(p)e
̺−1

̺
(Ξ(t)−Ξ(a))

(Ξ(t)− Ξ(a))ϑ−1

×∑m
i=1 µi

∫ τi
a+
e

̺−1

̺
(Ξ(τi)−Ξ(s)) (Ξ(τi)− Ξ(s))p−1 Ξ

′

(s)Q
(

s,A(s),A
(

s
η

))

ds

+ 1
̺pΓ(p)

∫ t

a+
e

̺−1

̺
(Ξ(t)−Ξ(s))

(Ξ(t)− Ξ(s))p−1 Ξ
′

(s)Q
(

s,A(s),A
(

s
η

))

ds.

(5.1)

Clearly the operator T is well defined. Now for any A1,A2 ∈ C1−ϑ[a, b], t ∈ J and
∣

∣

∣
e

̺−1

̺
Ξ(t)
∣

∣

∣
< 1, gives

∣

∣

∣
((T A1) (t)− (T A2) (t)) (Ξ(t)− Ξ(a))1−ϑ

∣

∣

∣

≤ ∧
̺pΓ(p)

m
∑

i=1

µi

∫ τi

a+
(Ξ(τi)− Ξ(s))p−1 Ξ

′

(s)

∣

∣

∣

∣

Q

(

s,A1(s),A1

(

s

η

))

−Q

(

s,A2(s),A2

(

s

η

))
∣

∣

∣

∣

ds

+
(Ξ(t)− Ξ(a))1−ϑ

̺pΓ(p)

∫ t

a+
(Ξ(t)− Ξ(s))p−1 Ξ

′

(s)

∣

∣

∣

∣

Q

(

s,A1(s),A1

(

s

η

))

−Q

(

s,A2(s),A2

(

s

η

))∣

∣

∣

∣

ds

≤ k∧
̺pΓ(p)

(

m
∑

i=1

µi

∫ τi

a+
(Ξ(τi)− Ξ(s))p−1 (Ξ(s)− Ξ(a))ϑ−1 Ξ

′

(s)ds

)

‖A1 −A2‖C1−ϑ,Ξ[a,b]

+
k (Ξ(t)− Ξ(a))1−ϑ

̺pΓ(p)

(
∫ t

a+
(Ξ(t)− Ξ(s))p−1 (Ξ(s)− Ξ(a))1−ϑ Ξ

′

(s)

)

‖A1 −A2‖C1−ϑ,Ξ[a,b]
.

≤ k∧
̺pΓ(p)

β(ϑ, p)

m
∑

i=1

µi (Ξ(τi)− Ξ(s))p+ϑ−1 ‖A1 −A2‖C1−ϑ,Ξ [a,b]

+
k (Ξ(b)− Ξ(a))p

̺pΓ(p)
β(ϑ, p) ‖A1 −A2‖C1−ϑ,Ξ[a,b]

.
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Hence,
‖T A1 − T A2‖C1−ϑ,Ξ[a,b]

≤ k

̺pΓ(p)
β(ϑ, p)

(

|∧|
m
∑

i=1

µi (Ξ(τi)− Ξ(s))p+ϑ−1 + (Ξ(b)− Ξ(a))p
)

‖A1 −A2‖C1−ϑ,Ξ[a,b]

‖T A1 − T A2‖C1−ϑ,Ξ [a,b]
≤ kφ ‖A1 −A2‖C1−ϑ,Ξ[a,b]

. (5.2)

Thus, from (H3) and Eq.(5.2), T is a contraction map. Hence, our proposed problem (1.1)-(1.2) has a
unique solution.

6. Stability theory

In this section, we study the Ulam-Hyers-Rassias(U-H-R) stability results for our proposed problem
(1.1)-(1.2).

Now, we consider the Ulam-Hyers(U-H) stability for the problem

Dp,q,̺,Ξ
a+

A(t) = Q

(

t,A(t),A
(

t

η

))

, t ∈ J.

Let ǫ > 0 and ν : (a, b] → [0,∞) be a continuous function.
We consider the following inequality,

∣

∣

∣

∣

Dp,q,̺,Ξ
a+

A(t)−Q

(

t,A(t),A
(

t

η

))
∣

∣

∣

∣

≤ ǫν(t), t ∈ J. (6.1)

Definition 6.1. [26] Our proposed problem (1.1)-(1.2) is U-H-R stable with respect to ν, if there exists a
real number αQ > 0 and for each solution A ∈ Cϑ

n−ϑ,Ξ[a, b] of the inequality (6.1) there exists a solution

A ∈ Cϑ
n−ϑ,Ξ[a, b] of the problem (1.1)-(1.2) with

∣

∣A(t)−A(t)
∣

∣ ≤ ǫαQ,ν(t), t ∈ J.

Remark 6.2. [26] A function A ∈ Cϑ
n−ϑ,Ξ[a, b] is a solution of inequality (6.1) if and only if there exist a

function σ ∈ Cϑ
n−ϑ,Ξ[a, b] such that,

• |σ(t)| < ǫν(t), t ∈ J .

• Dp,q,̺,Ξ
a+

A(t) = Q

(

t,A(t),A
(

t
η

))

+ σ(t), t ∈ J .

Lemma 6.3. [26] Let 0 < p < 1, 0 ≤ q ≤ 1, A ∈ Cϑ
n−ϑ,Ξ[a, b] is a solution of the inequality (6.1) then A is

a solution of the following integral inequality
∣

∣

∣

∣

A(t)− Yt −
1

̺pΓ(p)

∫ t

a+
e

̺−1

̺
(Ξ(t)−Ξ(s))

(Ξ(t)− Ξ(s))p−1 Ξ
′

(s)Q

(

s,A(s),A
(

s

η

))
∣

∣

∣

∣

≤ ∧e
̺−1

̺
(Ξ(t)−Ξ(a))

(Ξ(t)− Ξ(a))ϑ−1 ǫkνν(t),

where,

Yt =
e

̺−1

̺
(Ξ(t)−Ξ(a))(Ξ(t)− Ξ(a))ϑ−1

̺pΓ(p)
∧

m
∑

i=1

µi

∫ τi

a+
e

̺−1

̺
(Ξ(τi)−Ξ(s))

(Ξ(τi)− Ξ(s))p−1 Ξ
′

(s)Q

(

s,A(s),A
(

s

η

))

ds.
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Lemma 6.4. [26] Let ν : [0, T ] → [0,∞) be a real function and w(.) is a non negative and locally integrable
function on [0, T ] and there are constants α > 0, 0 < p < 1 such that

ν(t) ≤ w(t) + α

∫ t

0

ν(s)

e
̺−1

̺
(Ξ(t)−Ξ(s)) (Ξ(t)− Ξ(s))p−1 Ξ′(s)

ds.

Then there exists a constant k such that

ν(t) ≤ w(t) + kα

∫ t

0

w(s)

e
̺−1

̺
(Ξ(t)−Ξ(s))

(Ξ(t)− Ξ(s))p−1 Ξ
′
(s)

ds.

(H5) : There exist a increasing function φ(t) ∈ Cϑ
n−ϑ,Ξ[a, b] there exist λφ > 0 then,

I1−ϑ,̺,Ξ
a+

φ ≤ λφφ(t).

Theorem 6.5. Let us assume that (H1)− (H5) are hold. Then our proposed problem (1.1)-(1.2) is U-H-R
stable.

Proof. Let ǫ > 0, and let A ∈ Cϑ
n−ϑ,Ξ[a, b] be a function which satisfies the inequality

∣

∣

∣

∣

Dp,q,̺,Ξ
a+

A(t)−Q

(

t,A(t),A
(

t

η

))∣

∣

∣

∣

≤ ǫν(t), t ∈ J,

and let A ∈ Cϑ
n−ϑ,Ξ[a, b] is the unique solution of the problem,

Dp,q,̺,Ξ
a+

A(t) = Q

(

t,A(t),A
(

t

η

))

I1−ϑ,̺,Ξ
a+

A(t) =
m
∑

i=1

µiA(τi), t ∈ J, τi ∈ [0, T ], ϑ = p+ q(1− p).

where 0 < p < 1 and 0 ≤ q ≤ 1.
By the Lemma 3.13, we get

A(t) = Yt +
1

̺pΓ(p)

∫ t

a+
e

̺−1

̺
(Ξ(t)−Ξ(s)) (Ξ(t)− Ξ(s))p−1 Ξ

′

(s)Q

(

s,A(s),A
(

s

η

))

,

where,

Yt =
e

̺−1

̺
(Ξ(t)−Ξ(a))

(Ξ(t)− Ξ(a))ϑ−1

̺pΓ(p)
∧

m
∑

i=1

µi

×
∫ τi

a+
e

̺−1

̺
(Ξ(τi)−Ξ(s))

(Ξ(τi)− Ξ(s))p−1 Ξ
′

(s)Q

(

s,A(s),A
(

s

η

))

ds.

Hence, by the integration of the inequality (6.1) and by the Lemma 6.3, we get
∣

∣

∣

∣

A(t)− Yt −
1

̺pΓ(p)

∫ t

a+
e

̺−1

̺
(Ξ(t)−Ξ(s))

(Ξ(t)− Ξ(s))p−1 Ξ
′

(s)Q

(

s,A(s),A
(

s

η

))
∣

∣

∣

∣

≤ |∧| e
̺−1

̺
(Ξ(t)−Ξ(a))

(Ξ(t)− Ξ(a))ϑ−1 ǫkνν(t).

On the other hand, we have

∣

∣A(t)−A(t)
∣

∣ ≤
∣

∣

∣

∣

A(t)− Yt −
1

̺pΓ(p)

∫ t

a+
e

̺−1

̺
(Ξ(t)−Ξ(s)) (Ξ(t)− Ξ(s))p−1 Ξ

′

(s)Q

(

s,A(s),A
(

s

η

))
∣

∣

∣

∣

+k
1

̺pΓ(p)

∫ t

a+
e

̺−1

̺
(Ξ(t)−Ξ(s)) (Ξ(t)− Ξ(s))p−1 Ξ

′

(s)

(

Q

(

s,A(s),A
(

s

η

))

−Q

(

s,A(s),A
(

s

η

)))
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∣

∣A(t)−A(t)
∣

∣ ≤ |∧| e
̺−1

̺
(Ξ(t)−Ξ(a))

(Ξ(t)− Ξ(a))ϑ−1 ǫkνν(t)

+k
1

̺pΓ(p)

∫ t

a+
e

̺−1

̺
(Ξ(t)−Ξ(s))

(Ξ(t)− Ξ(s))p−1 Ξ
′

(s)

∣

∣

∣

∣

Q

(

s,A(s),A
(

s

η

))

−Q

(

s,A(s),A
(

s

η

))
∣

∣

∣

∣

By the Lemma 6.4 and (H5), we get,

∣

∣A(t)−A(t)
∣

∣ ≤
[

|∧| e
̺−1

̺
(Ξ(t)−Ξ(a)) (Ξ(t)− Ξ(a))ϑ−1 ((1 + k)αkν) kν

]

ǫkνν(t)
∣

∣A(t)−A(t)
∣

∣ ≤ λQǫφ(t),

which completes the proof of the theorem.

7. Examples

Example 7.1. Let consider the following fractional order Ambartsumian equation with GHPFD







D
1

3
, 1
7
, 2
3
,Ξ

0+
A(t) = 1

8A
(

t
8

)

−A(t), t ∈ [0, 1],

I1−ϑ, 2
3
,Ξ

0+
A(0) = 5A

(

1
3

)

+
√
3A
(

3
5

)

.
(7.1)

Now comparing Eq.(7.1) with our proposed problem (1.1)-(1.2), we get
p = 1

3 , q = 1
7 , ̺ = 2

3 , ϑ = 3
7 , η = 8, a = 0, b = 1, µ1 = 5, µ2 =

√
3 as m = 2, τ1 =

2
5 ,

τ2 =
3
7 ∈ [0, 1].

Also,Q : [0, 1] × R×R → R. is a function defined by

Q

(

t,A(t),A
(

t

η

))

=
1

8
A
(

t

8

)

−A(t), t ∈ [0, 1].

Clearly, Q is continuous function and for u, v, u, v ∈ R,

|Q (t, u, v) −Q (t, u, v)| ≤ 1

8
{|u− v|+ |u− v|} .

Hence the hypotheses (H1), (H2) hold with k = 1
8 .

Now choose Ξ(t) = t2 + 1, then it implies that Ξ(t) is positive increasing and continuous in [0, 1].
Next substituting the values that we mentioned above in |∧|.

|∧| =

∣

∣

∣

∣

∣

∣

∣

∣

1
(

2
3

)
3

7
−1

Γ
(

3
7

)

−
(

5e(
−1

18 )
(

1
9

)( 2

3
−1)

+
√
3e(

−9

50 )
(

9
25

)( 3

7
−1)
)

∣

∣

∣

∣

∣

∣

∣

∣

≈ 0.1,

and

φ =
β
(

3
7 ,

1
3

)

(

2
3

)
1

3 Γ
(

1
3

)

{

|∧|
(

5

(

1

9

)

+
√
3

(

9

25

))

+ 1

}

≈ 2.04.

This implies that kφ < 1, which is (H3).

Further more △ ≈ 0.46 and k < 1, which means that the assumption (H4) is also satisfied. Hence by
Theorem 4.2 and Theorem 5.1, defined problem has at least one solution and hence is unique on J.Here all
the conditions of Theorem 6.5 are satisfied, hence our proposed problem (7.1) is U-H-R stable.
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Example 7.2. Let consider the following problem given by






D
1

3
, 1
7
, 2
3
,Ξ

0+
A(t) = 1

5A
(

t
5

)

−A(t), t ∈ [0, 1],

I1−ϑ, 2
3
,Ξ

0+
A(0) = 5A

(

1
3

)

+
√
3A
(

3
5

)

+
√
5
(

6
7

)

.
(7.2)

Now comparing Eq.(7.2) with our proposed problem (1.1)-(1.2), we get
p = 1

3 , q = 1
7 , ̺ = 2

3 , ϑ = 3
7 , η = 5, a = 0, b = 1, µ1 = 5, µ2 =

√
3, µ3 =

√
5 as

m = 3, τ1 =
2
5 , τ2 =

3
7 , τ3 =

6
7 ∈ [0, 1].

Also,Q : [0, 1] × R×R → R. is a function defined by

Q

(

t,A(t),A
(

t

η

))

=
1

5
A
(

t

5

)

−A(t), t ∈= [0, 1].

Clearly, Q is continuous function and for u, v, u, v ∈ R,

|Q (t, u, v) −Q (t, u, v)| ≤ 1

5
{|u− v|+ |u− v|} .

Hence the hypotheses (H1), (H2) hold with k = 1
5 .

Now choose Ξ(t) = t2 + 1, then it implies that Ξ(t) is positive increasing and continuous in [0, 1].
Next substituting the values that we mentioned above in |∧|.

|∧| =

∣

∣

∣

∣

∣

∣

∣

∣

1
(

2
3

)
3

7
−1

Γ
(

3
7

)

−
(

5e(
−1

18 )
(

1
9

)( 2

3
−1)

+
√
3e(

−9

50 )
(

9
25

)( 3

7
−1)

+
√
7e(

−18

49 ) (36
49

)
2

3
−1
)

∣

∣

∣

∣

∣

∣

∣

∣

≈ 0.03,

and

φ =
β
(

3
7 ,

1
3

)

(

2
3

)
1

3 Γ
(

1
3

)

{

|∧|
(

5

(

1

9

)

+
√
3

(

9

25

)

+
√
7

(

36

49

))

+ 1

}

≈ 2.14.

This implies that kφ < 1, which is (H3).
Further more △ ≈ 0.183 and k < 1, which means that the assumption (H4) is also satisfied. Hence by

Theorem 4.2 and Theorem 5.1, defined problem has at least one solution and hence is unique on J. Here all
the conditions of Theorem 6.5 are satisfied, hence our proposed problem (7.2) is U-H-R stable
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[20] J.E Nápoles Valdés , Generalized fractional Hilfer integral and derivative, Contr.Math., 2(2020), 55-60. 1
[21] J. Patade, S.Bhalekar, On analytical solution of Ambartsumian equation, Natl.Acad.Sci.Lett., 40(2017), 291-293.

1
[22] S. Rashid, F. Jarad, M. A. Noor, H. Kalsoom, Y. M. Chu, Inequalities by means of generalized proportional

fractional integral operators with respect to another function, Math., 7(2019), 1-16. 1
[23] A. Salim , M. Benchohra ,J.R. Graef, J.E. Lazreg , Boundary value problem for the fractional generalized Hilfer-

type fractional derivative with non instantaneous impulses, Frac.Fract.,5(2021), 1-21. 1
[24] J. V. C. Sousa, E. C. Oliveira, On the ξ-Hilfer fractional derivative, Commun.Nonlinear Sci., 60(2018), 72-91. 1
[25] S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1960. 1
[26] D. Vivek, K. Kanagarajan, E. Elasyed, Some existence and stability results for Hilfer fractional implicit differential

equations with nonlocal conditions, Mediterr.J.Math., 15(2018), 15. 1, 6.1, 6.2, 6.3, 6.4


	1 Introduction
	2 Preliminaries
	3 Main Result
	4 Existence of solution
	5 Uniqueness of solution
	6 Stability theory
	7 Examples

