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Abstract

In this paper, a new monotone hybrid method is introduced in the framework of Banach spaces for finding
a common element of the set of zeros of a maximum monotone operator and the fixed point set of a family
of generalized nonexpansive mappings. The prove is given in the framework of Banach spaces for the strong
convergence of a sequence of iteration to a common element of the set of zeros of a maximum monotone
operator and the fixed point set of a family of generalized nonexpansive mappings. New convergence
results are obtained for resolvents of maximal monotone operators and a family of generalized nonexpansive
mappings in a Banach space.
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1. Introduction

Let E be a real Banach space and K a nonempty closed convex subset of E. A mapping T : K → K is
said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, for all x, y ∈ K.

Throughout this paper, the set of fixed points of T will be denoted by F (T ) := {x : Tx = x} . A mapping
T : K → E is called generalized nonexpansive whenever F (T ) 6= ∅ and

ϕ(p, Tx) ≤ ϕ(p, x) for all x ∈ K and p ∈ F (T ).

The class of nonexpansive mappings constitutes an important part of nonlinear operators and which nu-
merous authors have considered. Studies on the iterative processes for such maps are gaining the attention
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of the researchers. The results on the algorithms for the class of nonexpansive mappings have been applied
in several areas, such as signal processing and image restoration (see, e.g., [1, 2]). To obtain strong conver-
gence results for the class of nonexpansive mappings, research efforts have been on the modification of some
existing iterative processes such as Picard’s sequence (see, e.g., [3]) and Mann’s iteration process (see, e.g.,
[4]). Given a real sequence {βn} ⊂ [0, 1] and with an initial guess x1 ∈ K, which is chosen arbitrarily, the
Manns iteration process is defined as

xn+1 = βnxn + (1− βn)Txn, n ∈ N. (1.1)

It is known that even in a Hilbert space, Mann’s iteration has only weak convergence.
In 2003, by using hybrid method in mathematical programming, a modification of (1.1) was proposed as
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x1 = x ∈ K,

un = βnxn + (1− βn)Txn,

Kn = {y ∈ K : ‖y − un‖ ≤ ‖y − xn‖}

Qn = {y ∈ K : 〈xn − y, x− xn〉 ≥ 0}

xn+1 = PKn∩Qnx,

(1.2)

for a nonexpansive mapping T in a Hilbert space H and for all n ∈ N, where PKn∩Qn is the metric projection
of H onto Kn ∩ Qn (see, e.g., [5]). Under suitable control condition on the sequence {βn} , the strong
convergence of (1.2) to a fixed point of T was established.

A modification of (1.2) which is being called monotone hybrid method for a nonexpansive mapping T in
a Hilbert space H is given as
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x1 = x ∈ K,K0 = Q0 = K,

un = βnxn + (1− βn)Txn,

Kn = {y ∈ Kn−1 ∩Qn−1 : ‖y − un‖ ≤ ‖y − xn‖}

Qn = {y ∈ Kn−1 ∩Qn−1 : 〈xn − y, x− xn〉 ≥ 0}

xn+1 = PKn∩Qnx.

(1.3)

A strong convergence theorem was established for (1.3) under appropriate control conditions (see, e.g., [6]).
Moreover, there are studies on using monotone hybrid method for a family of generalized nonexpansive
mappings in a Banach space E, which is given as
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x1 = x ∈ K,K0 = Q0 = K,

un = βnxn + (1− βn)Snxn,

Kn = {y ∈ Kn−1 ∩Qn−1 : ϕ(y, un) ≤ ϕ(y, xn)}

Qn = {y ∈ Kn−1 ∩Qn−1 : 〈xn − y, Jx− Jxn〉 ≥ 0}

xn+1 = RKn∩Qnx,

(1.4)

where J is the duality mapping on E, RKn∩Qn is the sunny nonexpansive retraction from K onto Kn ∩Qn

and {Sn} is a countable family of generalized nonexpansive mappings which is defined from a generalized
nonexpansive mapping T : K → E by

Snx = αnx+ (1− αn)Tx,

for all x ∈ K, and {αn} ⊂ (0, 1). Under the conditions that {αn} and {βn} respectively satisfy lim inf
n→∞

αn(1−

αnn) > 0 lim inf
n→∞

(1 − βn) > 0 and the family {Tn} satisfies NST -condition, the strong convergence of the

sequence {xn} generated by (1.4) was established (see, e.g., [7, 8]). For more information on the class of
generalized nonexpansive mappings in Banach spaces, interested readers are referred to [9, 10, 11, 12].
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Consider a problem of finding a solution of the equation Au = 0, where A is a maximal monotone
operator. Such a problem is associated with convex minimization problems. Indeed, for a proper lower semi
continuous convex function f : E → (−∞,+∞], the subdifferential mapping ∂f : E → 2E

∗

, is defined at
x ∈ E by

∂f(x) = {x∗ ∈ E∗ : fy − fx ≥ 〈y − x, x∗〉 ∀ y ∈ E} ,

and it known to be maximal monotone (See, e.g., [14]). Solving the equation Au = 0 is equivalent to finding
f(u) = min

x∈E
f(x) by setting ∂f ≡ A.

Inspired by the previous results in this inclination, the goal of this study is to introduce a new monotone
hybrid algorithm which is suitable for finding a common element of the zero point set of a maximal monotone
operator and the fixed point set of a family of generalized nonexpansive mapping in a Banach space. This
study establishs the conditions which guarantee the strong convergence of the generated sequence of iteration.

2. Preliminaries

Let E be a real Banach space and S := {x ∈ E : ‖x‖ = 1}. E is said to be smooth if the limit

lim
t→0

‖x+ ty‖ − ‖x‖

t
(2.1)

exists for each x, y ∈ S. E is said to be uniformly smooth if it is smooth and the limit (2.1) is attained
uniformly for each x, y ∈ S. The modulus of convexity of a Banach space E, δE : (0, 2] → [0, 1] is defined by

δE(ǫ) = inf

{

1−
‖x+ y‖

2
: ‖x‖ = ‖y‖ = 1, ‖x− y‖ > ǫ

}

.

E is uniformly convex if and only if δE(ǫ) > 0 for every ǫ ∈ (0, 2]. A Banach space E is said to be strictly
convex if

‖x‖ = ‖y‖ = 1, x 6= y ⇒
‖x+ y‖

2
< 1.

It is well known that a space E is uniformly smooth if and only if E∗ is uniformly convex, where E∗ is
its dual. The sets of all positive integers and real numbers will be denoted by N and R, respectively. The
normalized duality mapping J from E to 2E

∗

is defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x∗‖ = ‖x‖} ∀ x ∈ E.

J is known to be uniformly norm-to-norm continuous on bounded sets of E if E is uniformly smooth. Let
A ⊂ E × E∗ be a multi-valued operator. A is said to be monotone if for all (x, x∗), (y, y∗) ∈ A,

〈x− y, x∗ − y∗〉 ≥ 0,

and it is said to be maximal monotone if it is monotone and its graph is not properly contained in the graph
of any other monotone mapping. For a maximal monotone operator A, the set A−1(0) := {x ∈ E : Ax = 0}
is closed and convex. According to a result of Rockafellar [13], A is said to be maximum monotone if it is
monotone and the range of (J + rA) is all of E∗ for some r > 0.

Definition 2.1. Let E be a smooth Banach space. The function ϕ : E × E → R is defined by

ϕ(x, y) = ‖x‖2 − 2 〈x, Jy〉+ ‖y‖2,

for all x, y ∈ E. In a Hilbert space, it is expressed as ϕ(x, y) = ‖x− y‖2 ≥ 0. The following identities hold
for all x, y, z ∈ E :

(i) (‖x‖ − ‖y‖)2 ≤ ϕ(x, y) ≤ (‖x‖+ ‖y‖)2 ,
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(ii) ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2 〈x− z, Jz − Jy〉 ,

(iii) ϕ(x, y) = 〈x, Jx− Jy〉+ 〈x− y, Jy〉 ≤ ‖x‖‖Jx− Jy‖+ ‖x− y‖‖y‖.

Definition 2.2. Resolvent: Let E be a strictly convex, smooth, and reflexive Banach space and A ⊂ E×E∗

a maximal monotone mapping. Given r > 0 and x ∈ E, then there exists a unique xr ∈ D(A) such that
Jx ∈ Jxr + rAxr. Thus one can define a single-valued mapping Jr : E → D(A) by

Jrx = {z ∈ D(A) : Jx ∈ Jz + rAz} ,

which is being called the resolvent of A. Jrx consists of one point and for all r > 0, A−1(0) = F (Jr), where
F (Jr) is the set of fixed points of Jr. Also, for all r > 0 and x ∈ E, the Yosida approximation Ar : C → E∗

is defined by

Arx =
1

r
(J − JJr)x.

For all r > 0 and x ∈ E, the following hold (See e.g, [17, 18])

(i) ϕ(p, Jrx) + ϕ(Jrx, x) ≤ ϕ(p, x) for all p ∈ A−1(0).

(ii) (Jrx,Arx) ∈ A.

Definition 2.3. Metric projection: Let K be a nonempty closed convex subset of a Hilbert space H. A
mapping PK : H → K of H onto K satisfying

‖x− PKx‖ = min
y∈K

‖x− y‖,

is called the metric projection. This set is known to be singleton. The metric projection has the important
property that; for x ∈ H and x0 ∈ K,x0 = PKx if and only if

〈x− x0, x0 − y〉 ≥ 0 ∀ y ∈ K.

Definition 2.4. Retraction: Let K be nonempty subset of a Banach space E. A mapping R : E → K is
called sunny if

R(Rx+ α(x−Rx)) = Rx,

for all x ∈ E and all α ≥ 0. If Rx = x for all x ∈ K, it is also called a retraction. A retraction which is
also sunny and nonexpansive is called a sunny nonexpansive retraction. If E is a smooth Banach space,
the sunny nonexpansive retraction of E onto K is denoted by RK . K is said to be a sunny generalized
nonexpansive retract of E provided that there exists a sunny generalized nonexpansive retraction R from E

onto K.

The following results on sunny generalized nonexpansive retraction will be needed and for their proof,
interested readers are referred to see [18, 19].

Lemma 2.5. Let K be a nonempty closed subset of a smooth and strictly convex Banach space E. Let RK

be a retraction of E onto K. Then RK is sunny and generalized nonexpansive if and only if

〈x−RKx, JRKx− Jy〉 ≥ 0

for each x ∈ E and y ∈ K.

Lemma 2.6. Let K be a nonempty closed subset of a smooth and strictly convex Banach space E such that
there exists a sunny generalized nonexpansive retraction R from E onto K and let (x, z) ∈ E×K. Then the
following hold:

(i) z = Rx if and only if 〈x− z, Jy − Jz〉 ≤ 0 for all y ∈ K;
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(ii) ϕ(x,RKy) + ϕ(RKy, y) ≤ ϕ(x, y).

Lemma 2.7. Let E be a smooth, strictly convex and reflexive Banach space and let K be a nonempty closed
subset of E. Then the following are equivalent:

(i) K is a sunny generalized nonexpansive retract of E;

(ii) K is a generalized nonexpansive retract of E;

(iii) JK is closed and convex.

The following results are well known results and will be applied to establish the main results.

Lemma 2.8. Let E be a uniformly convex and smooth Banach space and let {un} and {vn} be two sequences
in E such that either {un} or {vn} is bounded. If lim

n→∞
ϕ(un, vn) = 0, then lim

n→∞
‖un − vn‖ = 0 (See [15]).

Lemma 2.9. Let E be a uniformly convex and smooth Banach space and let d > 0. Then there exists a
strictly increasing, continuous and convex function g : [0, 2d] → [0,∞) such that g(0) = 0 and

g (‖x− y‖) ≤ ϕ(x, y)

for all x, y ∈ Bd(0), where Bd(0) = {z ∈ E : ‖z‖ ≤ d} (See e.g, [15]).

Lemma 2.10. Let E be a uniformly convex Banach space and let d > 0. Then there exists a strictly
increasing, continuous and convex function g : [0,∞) → [0,∞) such that g(0) = 0 and

‖αx+ (1− α)y‖2 ≤ α‖x‖2 + (1− α)‖y‖2 − α(1− α)g (‖x− y‖)

for all x, y ∈ Bd(0) and α ∈ [0, 1], where Bd(0) = {w ∈ E : ‖w‖ ≤ d} (See e.g, [16]).

3. Main Results

Lemma 3.1. Let E be a strictly convex, smooth, and reflexive Banach space and let A ⊂ E × E∗ be a
maximal monotone mapping with A−1(0) 6= ∅. For each r > 0, let Jr : E → E be the resolvent of A for r.

Then Jr is a generalized nonexpansive mapping.

Proof. Let x ∈ E, y ∈ F (Jr) and r > 0. Since A is maximal monotone, recall that A−1(0) = F (Jr). Apply
Definition 2.2(i) to have

ϕ(y, Jrx) + ϕ(Jrx, x) ≤ ϕ(y, x) for all y ∈ A−1(0).

By Definition 2.1(i), ϕ(Jrx, x) ≥ 0. Consequently

ϕ(y, Jrx) ≤ ϕ(y, x).

Theorem 3.2. Let E be a uniformly convex and uniformly smooth Banach space, K be a nonempty closed
convex subset of E and RK : E → K be a sunny and generalized nonexpansive retraction from E onto K.

For all r > 0, let Jr : E → E denote the resolvent which is associated with a maximal monotone mapping
A ⊂ E × E∗. Let T : K → E be a closed generalized nonexpansive mapping such that F (T ) ∩ A−1(0) 6= ∅
and for each n ∈ N, define the sequence {xn} by


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
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





x1 = x ∈ K, K0 = Q0 = K,

un = J−1 (βnJxn + (1− βn)JTnRK (Jrnxn)) ,

Kn = {y ∈ Kn−1 ∩Qn−1 : ϕ(y, un) ≤ ϕ(y, xn)}

Qn = {y ∈ Kn−1 ∩Qn−1 : 〈xn − y, Jx− Jxn〉 ≥ 0}

xn+1 = RKn∩Qnx,
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where J is the duality mapping on E and {Tn} is a countable family of generalized nonexpansive mappings
such that the mapping Tn from K into E is given by

Tnx = J−1 (αnJx+ (1− αn)JTx) , (3.1)

for all x ∈ K. The real sequence {αn} ⊂ (0, 1), {βn} ⊂ [0, 1] and {rn} ⊂ [a,∞) for some a > 0, are such that
lim inf
n→∞

αn(1−αn) > 0 and lim inf
n→∞

(1−βn) > 0. Then the sequence {xn} converges strongly to RF (T )∩A−1(0)x,

where RF (T )∩A−1(0) is the sunny nonexpansive retraction from K onto F (T ) ∩A−1(0).

Proof. Step 1: Tn is a generalized nonexpansive mapping for each n ∈ N and
∞
⋂

n=1

F (Tn) = F (T ). Indeed,

for p ∈
∞
⋂

n=1

F (Tn) and x ∈ K,

ϕ (p, Tnx) = ϕ
(

p, J−1 (αnJx+ (1− αn)JTx)
)

= ‖p‖2 − 2 〈p, αnJx+ (1− αn)JTx〉+ ‖αnJx+ (1− αn) JTx‖
2

≤ ‖p‖2 − 2αn 〈p, Jx〉 − 2(1− αn) 〈p, JTx〉+ αn‖x‖
2 + (1− αn)‖Tx‖

2

= αnϕ (p, x) + (1− αn)ϕ (p, Tx)

≤ αnϕ (p, x) + (1− αn)ϕ (p, x)

= ϕ (p, x) .

Thus, Tn is generalized nonexpansive. Furthermore, suppose p ∈
∞
⋂

n=1

F (Tn), then p ∈ F (Tn) for each n ∈ N.

Therefore, by (3.1),

p = Tp,

which shows that p ∈ F (T ) and consequently

∞
⋂

n=1

F (Tn) ⊂ F (T ). Also, suppose p ∈ F (T ), then by (3.1),

Tnp = p

which shows that p ∈ F (Tn) for each n ∈ N and thus, p ∈
∞
⋂

n=1

F (Tn), which justifies that F (T ) ⊂
∞
⋂

n=1

F (Tn).

Hence

∞
⋂

n=1

F (Tn) = F (T ).

Step 2: To show that Kn and Qn are closed and convex for all n ∈ N. By definition, Kn is closed and Qn

is closed and convex for each n ∈ N. How to establish that Kn is convex is the burden. Notice that

ϕ(y, un) ≤ ϕ(y, xn)

implies that for all y ∈ Kn,

‖xn‖
2 − ‖un‖

2 − 2 〈y, Jxn − Jun〉 ≥ 0,

which is affine in y, and thus Kn is convex. So for all n ∈ N, Kn ∩Qn is a closed and convex subset of E.
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Step 3: To show that F (T ) ∩A−1(0) ⊂ Kn ∩Qn. Setting vn = RK (Jrnxn) and for p ∈ F (T ) ∩A−1(0),

ϕ (p, un) = ϕ
(

p, J−1 (βnJxn + (1− βn)JTnRKJrnxn)
)

= ‖p‖2 − 2 〈p, βnJxn + (1− βn)JTnvn〉+ ‖βnJxn + (1− βn)JTnvn‖
2

≤ ‖p‖2 − 2βn 〈p, Jxn〉 − 2(1 − βn) 〈p, JTnvn〉+ βn‖xn‖
2 + (1− βn)‖Tnvn‖

2

= βnϕ (p, xn) + (1− βn)ϕ (p, Tnvn)

≤ βnϕ (p, xn) + (1− βn)ϕ (p, vn) (By generalized nonexpansive property of Tn) (3.2)

= βnϕ (p, xn) + (1− βn)ϕ (p,RK (Jrnxn))

≤ βnϕ (p, xn) + (1− βn)ϕ (p, Jrnxn) (By the property of RK)

≤ βnϕ (p, xn) + (1− βn)ϕ (p, xn) (By generalized nonexpansive property of Jrn)

= ϕ (p, xn) .

This shows that p ∈ Kn for all n ∈ N, wherefore F (T )∩A−1(0) ⊂ Kn. Induction method will be applied
to show that F (T ) ∩ A−1(0) ⊂ Qn for all n ∈ N. Recall that J is one-to-one in a strictly convex Banach
space. Wherefore, J (Kn ∩Qn) = JKn ∩ JQn is closed convex for each n ∈ N. Also, it is known that
Kn ∩Qn is a sunny generalized nonexpansive retract of E (By Lemma 2.7). Observe that by definition, for
n = 1, F (T ) ∩ A−1(0) ⊂ K = K0 ∩Q0. For some j ∈ N, assume that F (T ) ∩A−1(0) ⊂ Kj−1 ∩Qj−1. Since
xj = RKj−1∩Qj−1

y, Lemma 2.5 gives that

〈x− xj, Jxj − Jy〉 ≥ 0,

for all y ∈ Kj−1 ∩Qj−1. Therefore, it can be deduced that

〈x− xj , Jxj − Jy〉 ≥ 0, ∀ y ∈ F (T ) ∩A−1(0) (3.3)

since F (T )∩A−1(0) ⊂ Kj−1∩Qj−1. The inequality (3.3) and the definition of Qn gives that F (T )∩A−1(0) ⊂
Qk and thus F (T ) ∩ A−1(0) ⊂ Qn for all n ∈ N. Hence, F (T ) ∩ A−1(0) ⊂ Kn ∩ Qn for all n ∈ N, which
confirms that {xn} is well defined.

Step 4: The climax is to show that xn → RF (T )∩A−1(0)x as n → ∞. By the definition of Qn, xn = RQnx.

Using Lemma 2.6(ii) gives

ϕ(x, xn) = ϕ(x,RQnx) ≤ ϕ(x, u) − ϕ(RQnx, u) ≤ ϕ(x, u),

for all F (T ) ∩A−1(0) ⊂ Qn, so, {ϕ(x, xn)} is bounded. Moreover, it can be deduced from the definition of
ϕ that {xn} , {un} and {vn} are bounded. Thus, the limit of {ϕ(x, xn)} exists. Given a positive integer k,

from xn = RQnx for each n ∈ N, one can have that

ϕ (xn, xn+k) = ϕ (RQnx, xn+k) ≤ ϕ (x, xn+k)− ϕ (x,RQnx) ≤ ϕ (x, xn+k)− ϕ (x, xn) ,

which leads to

lim
n→∞

ϕ(xn, xn+k) = 0. (3.4)

Using Lemma 2.9, a strictly increasing, convex and continuous function g : [0, 2r] → [0,∞) exists such that
for m,n ∈ N with m > n,

g (‖xm − xn‖) ≤ ϕ (xm, xn) ≤ ϕ (xm, x0)− ϕ (xn, x0) .

It is obvious by the the property of g that {xn} is Cauchy. Thus there exists z ∈ K so that xn → z.

Considering xn+1 = RKn∩Qnx ∈ Kn and by the definition of Kn, one can have that

ϕ (xn+1, xn)− ϕ (xn+1, un) ≥ 0, ∀ n ∈ N. (3.5)
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By (3.4) and (3.5), it can be deduced that lim
n→∞

ϕ(xn+1, xn) = lim
n→∞

ϕ (xn+1, un) = 0. Due to uniform

convexity and smoothness of E, using Lemma 2.8 gives

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

‖xn+1 − un‖ = 0,

therefore

lim
n→∞

‖xn − un‖ = 0. (3.6)

Since the duality mapping J is norm-to-norm uniform continuous on bounded sets, it can be obtained that

lim
n→∞

‖Jxn+1 − Jxn‖ = lim
n→∞

‖Jxn+1 − Jun‖ = ‖Jxn − Jun‖ = 0. (3.7)

It can be observed from (3.2) that

ϕ (p, vn) ≥
1

(1− βn)
(ϕ (p, un)− βnϕ (p, xn)) .

Since vn := RK (Jrnxn) , wherefore,

ϕ (vn, xn) = ϕ (RK (Jrnxn) , xn) ≤ ϕ (p, xn)− ϕ (p, vn) ( by Lemma 2.6 (ii),)

≤ ϕ (p, xn)−
1

(1− βn)
(ϕ (p, un)− βnϕ (p, xn))

=
1

(1− βn)
(ϕ (p, xn)− ϕ (p, un))

=
1

(1− βn)

(

‖xn‖
2 − ‖un‖

2 − 2 〈p, Jxn − Jun〉
)

≤
1

(1− βn)

(

|‖xn‖
2 − ‖un‖

2|+ 2| 〈p, Jxn − Jun〉 |
)

≤
1

(1− βn)
(|‖xn‖ − ‖un‖| (‖xn‖+ ‖un‖) + 2‖p‖‖Jxn − Jun‖)

≤
1

(1− βn)
(‖xn − un‖ (‖xn‖+ ‖un‖) + 2‖p‖‖Jxn − Jun‖) .

By (3.6) and (3.7), lim
n→∞

ϕ (vn, xn) = 0. Apply Lemma 2.8 to have

lim
n→∞

‖vn − xn‖ = 0. (3.8)

Furthermore, it can be obtained that

‖Jxn+1 − Jun‖ = ‖Jxn+1 − βnJxn − (1− βn)JTnvn‖

= ‖(1− βn) (Jxn+1 − JTnvn)− βn (Jxn − Jxn+1) ‖

≥ (1− βn)‖Jxn+1 − JTnvn‖ − βn‖Jxn − Jxn+1‖.

Then

‖Jxn+1 − JTnvn‖ ≤
1

(1− βn)
(‖Jxn+1 − Jun‖+ βn‖Jxn − Jxn+1‖) .

Since lim inf
n→∞

(1− βn) > 0 and by considering (3.6), it leads to

lim
n→∞

‖Jxn+1 − JTnvn‖ = 0.

By the property of J−1 which is norm-to-norm uniformly continuous on bounded sets, it follows that

lim
n→∞

‖xn+1 − Tnvn‖ = 0.
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It should be noted that

‖xn − Tnvn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Tnvn‖,

which results in

lim
n→∞

‖xn − Tnvn‖ = 0. (3.9)

Notice that

‖vn − Tnvn‖ ≤ ‖vn − xn‖+ ‖xn − Tnvn‖.

Wherefore by (3.8) and (3.9),

lim
n→∞

‖vn − Tnvn‖ = 0. (3.10)

Since E is uniformly smooth and by (3.10), one can have that

lim
n→∞

‖Jvn − JTnvn‖ = 0.

It is known that {Tvn} is bounded since {vn} is bounded. Let d = max {supn ‖vn‖, supn ‖Tvn‖} . Therefore,
there exists d > 0 such that Bd(0) = {w ∈ E : ‖w‖ ≤ d} and {vn} , {Tvn} ⊂ Bd(0). Using Lemma 2.10, for

p ∈
∞
⋂

n=1

F (Tn),

ϕ (p, Tnvn) = ϕ
(

p, J−1 (αnJvn + (1− αn)JTvn)
)

= ‖p‖2 − 2 〈p, αnJvn + (1− αn)JTvn〉+ ‖αnJvn + (1− αn)JTvn‖
2

≤ ‖p‖2 − 2αn 〈p, Jvn〉 − 2(1− αn) 〈p, JTvn〉+ αn‖vn‖
2

+(1− αn)‖Tvn‖
2 − αn(1− αn)g (‖vn − Tvn‖)

= αnϕ (p, vn) + (1− αn)ϕ (p, Tvn)− αn(1− αn)g (‖vn − Tvn‖)

≤ αnϕ (p, vn) + (1− αn)ϕ (p, vn)− αn(1− αn)g (‖vn − Tvn‖)

= ϕ (p, vn)− αn(1− αn)g (‖vn − Tvn‖) .

For this reason,

αn(1− αn)g (‖vn − Tvn‖) ≤ ϕ (p, vn)− ϕ (p, Tnvn) . (3.11)

Let
{

‖vnj
− Tvnj

‖
}

be any subsequence of {‖vn − Tvn‖} . It is known that
{

vnj

}

is bounded. Therefore,

there exists a subsequence
{

vn′

k

}

of
{

vnj

}

such that

lim
k→∞

ϕ
(

p, vn′

k

)

= lim sup
j→∞

ϕ
(

p, vnj

)

= 0.

Applying Definition 2.1 ((ii) and (iii)) gives

ϕ
(

p, vn′

k

)

= ϕ
(

p, Tn′

k
vn′

k

)

+ ϕ
(

Tn′

k
vn′

k
, vn′

k

)

+ 2
〈

p− Tn′

k
vn′

k
, JTn′

k
vn′

k
− Jvn′

k

〉

≤ ϕ
(

p, Tn′

k
vn′

k

)

+ ‖Tn′

k
vn′

k
‖‖JTn′

k
vn′

k
− Jvn′

k
‖

+ ‖Tn′

k
vn′

k
− vn′

k
‖‖vn′

k
‖+ 2‖p− Tn′

k
vn′

k
‖‖JTn′

k
vn′

k
− Jvn′

k
‖.

(3.12)

Therefore

c = lim inf
k→∞

ϕ (p, vnk
) = lim inf

k→∞

ϕ
(

p, Tn′

k
vn′

k

)

.
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Alternatively, ϕ (p, Tnvn) ≤ ϕ (p, vn) leads to

lim sup
k→∞

ϕ
(

p, Tn′

k
vn′

k

)

= lim sup
k→∞

ϕ (p, vnk
) = c,

for that reason
lim
k→∞

ϕ (p, vnk
) = lim

k→∞

ϕ
(

p, Tn′

k
vn′

k

)

= c.

Given that lim inf
n→∞

αn(1−αn) > 0, it can be obtained from (3.11) that lim
k→∞

g
(

‖vn′

k
− Tvn′

k
‖
)

= 0. According

to the properties of the function g, it can be deduced that lim
k→∞

‖vn′

k
− Tvn′

k
‖ = 0 and consequently

lim
n→∞

‖vn − Tvn‖ = 0. (3.13)

By (3.8) and (3.13),
‖xn − Tvn‖ ≤ ‖xn − vn‖+ ‖vn − Tvn‖ → 0 as n → ∞.

Forasmuch as xn → z and by (3.8), therefore vn → z. Given that T is closed and vn → z, then z is a fixed
point of T.

The next thing is to establish that z ∈ A−1(0). Since E is uniformly smooth and by (3.8),

lim
n→∞

‖Jxn − Jvn‖ = 0.

For rn ≥ a, one can have that

lim
n→∞

1

rn
‖Jxn − Jvn‖ = 0.

For that reason

lim
n→∞

‖Arnxn‖ = lim
n→∞

1

rn
‖Jxn − Jvn‖ = 0.

For (q, q∗) ∈ A, one can have by the monotonicity of A that

〈q − zn, q
∗ −Arnxn〉 ≥ 0 for all n ∈ N.

Letting n → ∞ results in
〈q − z, q∗〉 ≥ 0.

Since A is maximal monotone, then z ∈ A−1(0). Next is to prove that z = RF (T )∩A−1(0)x. Using Lemma 2.6
leads to

ϕ
(

z,RF (T )∩A−1(0)x
)

+ ϕ
(

RF (T )∩A−1(0)x, x
)

≤ ϕ (z, x) .

Since xn+1 = RKn∩Qnx and z ∈ F (T ) ∩A−1(0) ⊂ Kn ∩Qn, using Lemma 2.6 leads to

ϕ
(

RF (T )∩A−1(0)x, xn+1

)

+ ϕ (xn+1, x) ≤ ϕ
(

RF (T )∩A−1(0)x, x
)

.

The definition of ϕ leads to the deduction that ϕ (z, x) ≤ ϕ
(

RF (T )∩A−1(0)x, x
)

and ϕ (z, x) ≥ ϕ
(

RF (T )∩A−1(0)x, x
)

,

for that reason, ϕ (z, x) = ϕ
(

RF (T )∩A−1(0)x, x
)

. Thus, since RF (T )∩A−1(0)x is unique, one can conclude that
z = RF (T )∩A−1(0)x.

The following result can be deduced from Theorem 3.2, which is the main result of this paper.

Corollary 3.3. Let E be a uniformly convex and uniformly smooth Banach space, K be a nonempty closed
convex subset of E and RK : E → K be a sunny and generalized nonexpansive retraction from E onto K.

For all r > 0, let Jr : E → E denote the resolvent which is associated with a maximal monotone mapping
A ⊂ E × E∗. Let T : K → E be a closed generalized nonexpansive mapping such that F (T ) ∩ A−1(0) 6= ∅
and for each n ∈ N, define the sequence {xn} by
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





























x1 = x ∈ K, K0 = Q0 = K,

un = J−1 (βnJxn + (1− βn)JTRK (Jrnxn)) ,

Kn = {y ∈ Kn−1 ∩Qn−1 : ϕ(y, un) ≤ ϕ(y, xn)}

Qn = {y ∈ Kn−1 ∩Qn−1 : 〈xn − y, Jx− Jxn〉 ≥ 0}

xn+1 = RKn∩Qnx,

where J is the duality mapping on E. The real sequence {βn} ⊂ [0, 1] and {rn} ⊂ [a,∞) for some
a > 0, are such that lim inf

n→∞
(1−βn) > 0. Then the sequence {xn} converges strongly to RF (T )∩A−1(0)x, where

RF (T )∩A−1(0) is the sunny nonexpansive retraction from K onto F (T ) ∩A−1(0).

Proof. By letting αn = 0 for all n ∈ N in Theorem 3.2, it is obvious that {Tn} = {T} . Then the desired
result follows.

In the framework of Hilbert spaces, the main result of this paper is given as below.

Corollary 3.4. Let H be a Hilbert space, K be a nonempty closed convex subset of H and PK : H → K be
a metric projection from H onto K. For all r > 0, let Jr : H → H denote the resolvent which is associated
with a maximal monotone mapping A ⊂ H × H∗. Let T : K → H be a closed generalized nonexpansive
mapping such that F (T ) ∩A−1(0) 6= ∅ and for each n ∈ N, define the sequence {xn} by































x1 = x ∈ K, K0 = Q0 = K,

un = βnxn + (1− βn)TnRK (Jrnxn) ,

Kn = {y ∈ Kn−1 ∩Qn−1 : ‖y − un‖ ≤ ‖y − xn‖}

Qn = {y ∈ Kn−1 ∩Qn−1 : 〈xn − y, x− xn〉 ≥ 0}

xn+1 = PKn∩Qnx,

where {Tn} is a countable family of generalized nonexpansive mappings such that the mapping Tn from K

into H is given by (3.1). The real sequence {αn} ⊂ (0, 1), {βn} ⊂ [0, 1] and {rn} ⊂ [a,∞) for some a > 0,
are such that lim inf

n→∞
αn(1 − αn) > 0 and lim inf

n→∞
(1 − βn) > 0. Then the sequence {xn} converges strongly to

RF (T )∩A−1(0)x, where RF (T )∩A−1(0) is the metric projection from K onto F (T ) ∩A−1(0).

Proof. Recall that in a Hilbert space, ϕ(x, y) = ‖x − y‖2 for all x, y ∈ H and J is the identity mapping.
Therefore, the desired result readily follows from Theorem 3.2.

4. Conclusion

The class of nonexpansive mappings constitutes an important part of nonlinear operators and the class of
maximal monotone operator is indispensable as it is closely associated with convex minimization problems.
Results on the algorithms for the class of nonexpansive mappings have several applications such as in signal
processing and image restoration. This study establishes the strong convergence of a proposed monotone
hybrid algorithm for finding a common element of the set of zeros of a maximum monotone operator and the
fixed point set of a family of generalized nonexpansive mappings. The stated conditions for the parameters
in the main theorem are readily satisfied by {αn} =

{

2
3 −

1
2n

}

and {βn} =
{

1
2 +

1
5n

}

.

Abbreviation

lsc: lower semicontinuous. conditions stated in the main theorem are {λn} =
{

1
8 + 1

5n

}

and {βn} =
{

1− 1
2n

}

.
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