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Abstract

We introduce a new four-step iterative algorithm and show that the new algorithm converges faster than a
number of existing iterative algorithms for contraction mappings. We prove strong and weak convergence
results for approximating fixed points of monotone generalized α-nonexpansive mappings. Further, we
utilize our proposed algorithm to solve Split Feasibility Problem (SFP). Our result complements, extends
and generalizes some existing results in literature.
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1. Introduction

Let Θ be a mapping with domain D(Θ) and range R(Θ) in an ordered Banach space $ endowed with
the partial order ≤, and ϑ a nonempty closed convex subset of $. Then, Θ : D(Θ) −→ R(Θ) is said to be:

(1) monotone [22] if

Θx ≤ Θy ∀ x, y ∈ D(Θ) with x ≤ y, (1.1)

(2) monotone nonexpansive [22] if Θ is monotone and

‖Θx−Θy‖ ≤ ‖x− y‖ ∀ x, y ∈ D(Θ) with x ≤ y. (1.2)

Remark 1.1. If Θ is does not satisfy the monotone condition, then Θ is said to be nonexpansive [31].
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(3) monotone quasi-nonexpansive [32] if ∃ F (Θ) 6= ∅ and

‖Θx− p‖ ≤ ‖x− p‖, (1.3)

∀p ∈ F (Θ) and x ∈ ϑ, with x ≤ p or x ≥ p .

(4) monotone α-nonexpansive [32] if Θ is monotone and for some α < 1

‖Θx−Θy‖2 ≤ α‖Θx− y‖2 + α‖Θy − x‖2 + (1− 2α)‖x− y‖2, (1.4)

∀x, y ∈ ϑ, x ≤ y.

Remark 1.2. If Θ is does not satisfy the monotone condition, then Θ is said to be α-nonexpansive
[16].

(5) Suzukis generalized nonexpansive if Θ satisfy condition (C), that is

1

2
‖x−Θx‖ ≤ ‖x− y‖, implies

‖Θx−Θy‖ ≤ ‖x− y‖, ∀ x, y ∈ ϑ (1.5)

(6) monotone generalized α-nonexpansive [24] if Θ is monotone and there exists
α ∈ [0, 1) such that

1

2
‖x−Θx‖ ≤ ‖x− y‖

=⇒ ‖Θx−Θy‖ ≤ α‖Θx− y‖+ α‖Θy − x‖+ (1− 2α)‖x− y‖, (1.6)

∀ x, y ∈ ϑ. If α = 0, then (1.6) reduces to (1.5).

Obviously, a monotone generalized α-nonexpansive mapping includes nonexpansive, firmly nonexpansive,
Suzukis generalized nonexpansive mapping as special cases and partially extends monotone α-nonexpansive
mapping.

In 1965, Browder [8] first initiated the study of existence of fixed points of nonexpansive mappings and
obtained a fixed point theorem for nonexpansive mappings on a bounded closed and convex subset of a
Hilbert space.

Consequently, Browder [9] and Gohde [6] generalized the result of Browder [8] from a Hilbert space to
a uniformly convex Banach space. Also Kirk [30] used the normal structure property in a reflexive Banach
space to generalize the same result.

Thereafter, quite a number of extensions and generalizations of nonexpansive mappings have been studied
by many mathematicians.

In 2008, Suzuki [28] introduced an interesting generalization of nonexpansive mappings called Suzuki
type generalized nonexpansive mapping (see Definition 5), and obtained some existence and convergence
results in Banach spaces.

In 2011, Aoyama and Kohsaka [16] introduced a new class of nonexpansive mappings namely α-nonexpansive
mappings (see Definition 4) and obtained a fixed point theorem for such mappings in a uniformly convex
Banach space.

Remarkably, it has been established that nonexpansive mappings are continuous on their domains but
Suzuki type generalized nonexpansive mappings and α-nonexpansive mappings need not be continuous, and
are therefore more important in theoretical and application point of view.

In 2016, Song et al. [32] introduced the concept of monotone α-nonexpansive mappings in ordered
Banach space and obtained some existence and convergence theorems for the Mann iteration under some
suitable conditions.

Pant and Shukla [24] introduced the class of generalized α-nonexpansive mapping which contains both
the Suzuki type generalized mappings and α-nonexpansive mappings. (If α = 0, generalized α-nonexpansive
mapping reduces to Suzuki type generalized mappings).
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Again, Shukla et al [26] introduced the class of monotone generalized α-nonexpansive mapping and
obtained some existence and convergence theorems for Mann iteration process.

The Mann iteration for approximating fixed points of nonexpansive mappings is defined by:

xk+1 = (1− bk)xk + bkΘxk, k ≥ 1 (1.7)

where {bk} ∈ (0, 1).
Another widely used iteration method in approximating fixed point of nonexpansive mapping is the

Ishikawa iteration scheme introduced by S. Ishikawa [27] in 1976 and defined by:

xk+1 = (1− ak)xk + akΘyk

yn = (1− bk)xk + bkΘxk, (1.8)

where {ak}, {bk} ∈ (0, 1) , k ∈ N .

In the recent past, quite a number of iteration processes have been constructed to approximate the fixed
points of various classes of mappings such as the Noor [21], Agarwal et al. [25] (S-iteration), Abbas and
Nazir [20], Thakur et al. [2], Piri et al. and M-iterations [19] and many others.

Recently, Garodia and Uddin [3] introduced a new iteration process as follows:
For an arbitrary x1 ∈ ϑ, define a sequence {xk} by

xk+1 = Θyk

yk = (1− bk)Θxk + bkΘzk

zk = Θ((1− ak)xk + akΘxk) (1.9)

where {ak}, {bk} ∈ (0, 1) , k ∈ N .
They proved that the iteration process (1.9) converges faster than a number of existing iteration processes

in literature for contractive-like mappings. Using the iteration process (1.9), they proved some weak and
strong convergence for generalized α-nonexpansive mappings in real Banach space.

Motivated and inspired by the ongoing research in this direction, we introduce a new four-step iteration
process called UI iterative scheme to approximate the fixed points of monotone generalized α-nonexpansive
mappings. We define the process as follows: For an arbitrary x1 ∈ ϑ, define a sequence {xk} by

xk+1 = Θyk,

yk = Θ((1− bk)Θwk + bkΘzk),

zk = Θ((1− ak)Θxk + akΘwk),

wk = Θ((1− ck)xk + ckΘxk) (1.10)

where {ak}, {bk}, {ck} ∈ (0, 1) , k ∈ N .

Our purpose in this paper first is, to prove analytically that the newly constructed UI iteration scheme
(1.10) converges faster than the iteration process (1.9) for contraction mappings. Also, we prove some exis-
tence and convergence theorems for the iteration process (1.10). Again, with a numerical example, we show
that our iteration process (1.10) converges faster than a number of iteration processes in literature. Finally,
we apply our iteration process (1.10) to the solution of Split Feasibility Problem (SFP).

2. Preliminaries

Throughout this paper, let $ be an ordered Banach space with the norm ‖· ‖ and the partial order ≤.
Let F (Θ) = {x ∈ $ : Θx = x} denote the set of all fixed points of a mapping Θ : $ −→ $.
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Definition 2.1. A Banach space $ is said to be:

(i) Strictly convex if 1
2‖x+ y‖ < 1

for all x, y ∈ $ with ‖x‖ = ‖y‖ = 1 and x 6= y.

(ii) Uniformly convex if, for all ε ∈ (0, 2], there exists δ > 0 such that
1
2‖x+ y‖ ≤ 1− δ, for all x, y ∈ $ with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε.

Definition 2.2. [34]: A Banach space$ is said to satisfy the Opial’s condition if for each weakly convergent
sequence {xk} in $, {xk} converges weakly to a point x ∈ $, implies

lim sup
k→∞

‖xk − x‖ < lim sup
k→∞

‖xk − y‖,

for all y ∈ $ with y 6= x.

Definition 2.3. Let ϑ be a nonempty subset of a Banach space $ and {xk} be a bounded sequence in $.
For each x ∈ $, we define the following:

(i) Asymptotic radius of {xk} at x by

r(x, {xk}) := lim sup
k→∞

‖xk − x‖

(ii) Asymptotic radius of {xk} relative to ϑ by

r(ϑ, {xk}) := inf{r(x, xk) : x ∈ ϑ}

(iii) Asymptotic center of {xk} relative to ϑ by

A(ϑ, {xk}) := {x ∈ ϑ : r(x, {xk}) = r(ϑ, {xk})}

It is known that in a uniformly convex Banach space, A(ϑ, {xk}) consists of exactly one point. Also,
A(ϑ, {xk}) is nonempty and convex when ϑ is weakly compact and convex.

Definition 2.4. [29] Let {Uk} and {Vk} be two sequences of real numbers that converge to u and v
respectively. Then, {Uk} converges faster to u than {Vk} does to v if

lim
k→∞

‖Uk − u‖
‖Vk − v‖

= 0.

Lemma 2.5. (see Shukla [26], Lemma 3.7)
Let ϑ be a nonempty closed convex subset of an ordered Banach space ($,≤) and Θ : ϑ −→ ϑ be a monotone
generalized α-nonexpansive mapping. Then, for all x, y ∈ ϑ with x ≤ y, the following inequalities hold.

(i) ‖Θx−Θ2x‖ ≤ ‖x−Θx‖

(ii) Either 1
2‖x−Θx‖ ≤ ‖x− y‖ or 1

2‖Θx−Θ2x‖ ≤ ‖Θx− y‖

(iii) (a) ‖Θx−Θy‖ ≤ α‖Θx− y‖+ α‖Θy − x‖+ (1− 2α)‖x− y‖ or

(b) ‖Θ2x− Ty‖ ≤ α‖Θ2x− y‖+ α‖Θx−Θy‖+ (1− 2α)‖Θx− y‖

Lemma 2.6. (See Shukla et al. [26] , Lemma 3.6)
Let ϑ be a nonempty subset of an ordered Banach space ($,≤) and Θ : ϑ −→ ϑ be a generalized α-
nonexpansive mapping. Then F (Θ) is closed. Moreover, if $ is strictly convex and ϑ is convex, then
F (Θ) is also convex.
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Lemma 2.7. (Xu [11] , Theorem 2)
For any real numbers q > 1 and r > 0, a Banach space E is uniformly convex if and only if there exists
a continuous strictly increasing convex function f : [0,+∞) −→ [0,+∞) with f(0) = 0 such that

‖tx+ (1− t)y‖q = t‖x‖p + (1− t)‖y‖q − ω(q, t)f(‖x− y‖),

for all x, y ∈ Br(0) = {x ∈ E : ‖x‖ ≤ r} and t ∈ [0, 1],
where, ω(q, t) = tq(1− t) + t(1− t)q.

In particular, taking q = 2 and t = 1
2

‖x+ y

2
‖2 ≤ 1

2
‖x‖2 +

1

2
‖y‖2 − 1

4
f(‖x− y‖),

Lemma 2.8. (Schu [15])
Let $ be a uniformly convex Banach space and {λk} be a sequence with 0 < lim inf

k→∞
λk ≤ lim sup

k→∞
λk < 1.

Suppose {xk} and {yk} are two sequences of $ such that lim sup
k→∞

‖xk‖ ≤ r , lim sup
k→∞

‖yk‖ ≤ r and

lim
k→∞

‖λkxk + (1− λk)yk‖ = r. Then lim
k→∞

‖xk − yk‖ = 0

3. Main Result

3.1. Convergence Result

In this section, we show that the UI iteration scheme (1.10) converges faster than the iteration process
(1.9) for contraction mappings.

Theorem 3.1. Let Θ be a contraction mapping defined on a nonempty closed convex subset ϑ of a Banach
space $ with a contraction factor δ ∈ (0, 1) and F (Θ) 6= φ. If {xk} is a sequence defined by (1.10),
then {xk} converges faster than the iteration process (1.9).

Proof. Let q ∈ F (Θ). From (1.10), we have

‖wn − q‖ = ‖Θ((1− ck)xk + ckΘxk)− q‖
≤ δ((1− ck)‖xk − q‖+ ck‖Θxk − q‖)
≤ δ((1− ck) + ckδ)‖xk − q‖
≤ δ(1− (1− δ)ck)‖xk − q‖
≤ δ‖xk − q‖ (3.1)

Using (1.10) and (3.1), we have

‖zn − q‖ = ‖Θ((1− ak)Θxk + akΘwk)− q‖
≤ δ((1− ak)δ‖xk − q‖+ akδ‖wk − q‖)
≤ δ2(1− (1− δ)ak)‖xk − q‖
≤ δ2‖xk − q‖ (3.2)

Using (1.10) , (3.1) and (3.2), we have

‖yn − q‖ = ‖Θ((1− bk)Θwk + bkΘzk)− q‖
≤ δ((1− bk)δ‖wk − q‖+ bkδ‖zk − q‖)
≤ δ2((1− bk)δ‖xk − q‖+ bkδ

2‖xk − q‖)
≤ δ3(1− (1− δ)bk)‖xk − q‖
≤ δ3‖xk − q‖ (3.3)
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Using (1.10) and (3.3), we have

‖xk+1 − q‖ = ‖Θyk − q‖
≤ δ‖yk − q‖
≤ δ(δ3‖xk − q‖)
= δ4‖xk − q‖
·
·
·
≤ δ4k‖x1 − q‖ (3.4)

Let pk = δ4k‖x1 − q‖ (3.5)

Also from (1.9), we have

‖zk − q‖ = ‖Θ((1− ak)xk + akΘxk)− q‖
≤ δ((1− ak‖xk − q‖+ ak‖Θxk − q‖)
≤ δ((1− ak) + akδ)‖xk − q‖
≤ δ(1− (1− δ)ak)‖xk − q‖
≤ δ‖xk − q‖ (3.6)

Using (1.9) and (3.6), we have

‖yk − q‖ = ‖Θ((1− bk)Θxk + bkΘzk)− q‖
≤ δ((1− bk)δ‖xk − q‖+ bkδ‖zk − q‖)
≤ δ2(1− (1− δ)bk)‖xk − q‖
≤ δ2‖xk − q‖ (3.7)

Using (1.9) and (3.7), we have

‖xk+1 − q‖ = ‖Θyk − q‖
≤ δ‖yk − q‖
≤ δ(δ2‖xk − q‖)
= δ3‖xk − q‖
·
·
·
≤ δ3k‖x1 − q‖ (3.8)

Let rk = δ2k‖x1 − q‖ (3.9)

So from (3.5) and (3.9), we have that

pk
rk

=
δ4k‖x1 − q‖
δ3k‖x1 − q‖

= δk −→ 0, as k →∞

Hence (1.10) converges faster than (1.9).
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3.2. NUMERICAL EXAMPLE

We now show the comparison between the rate of convergence of the UI iteration process (1.10) and
other well known iteration algorithms in literature.

Example 3.2. Let ϑ = [1, 15] and Θ : [1, 15] −→ [1, 15] defined by Θ(υ) = 1
3υ + 3

4
For Table 1 , we use the following parameters:

Choose αk = 7k
10 , βk = 13k

20 , γk = 4k
5 , and the initial value t1 = 5.

Obviously, the fixed point of Θ is p = 1.125, with a contraction constant δ = 1
3 .

Table 1 shows the behavior of the UI iteration process (1.10) in comparison with the iteration processes
of Noor [21], Agarwal et al. (S-iteration) [25], Abbas and Nazir [20], Thakur et al. [2], M-iterations [19],
Piri et al. [14] and Garodia and Uddin [3] to the fixed point of Θ in 30-iterations with ‖tn − p‖ < 10−15

as the stop criterion.

TABLE 1

n NOOR AGARWAL et al. ABBAS-NAZIR THAKUR et al. UI ITERATION

1 5.0000000000 5.0000000000 5.0000000000 5.0000000000 5.0000000000

2 2.6953796296 2.0248611111 1.5027407407 1.4249537037 1.1370520119

3 1.7614108855 1.3339677469 1.1618227270 1.1482186385 1.1250374841

4 1.3829114040 1.1735269546 1.1285895340 1.1267972946 1.1250001166

5 1.2295209846 1.1362690372 1.1253499131 1.1251391239 1.1250000004

6 1.1673580968 1.1276169209 1.1250341100 1.1250107692 1.1250000000

7 1.1421660109 1.1256077072 1.1250033251 1.1250008336 1.1250000000

8 1.1319566849 1.1251411231 1.1250003241 1.1250000645 1.1250000000

9 1.1278192610 1.1250327719 1.1250000316 1.1250000050 1.1250000000

10 1.1261425316 1.1250076104 1.1250000031 1.1250000004 1.1250000000

11 1.1254630215 1.1250017673 1.1250000003 1.1250000000 1.1250000000

12 1.1251876438 1.1250004104 1.1250000000 1.1250000000 1.1250000000

13 1.1250760444 1.1250000953 1.1250000000 1.1250000000 1.1250000000

14 1.1250308177 1.1250000221 1.1250000000 1.1250000000 1.1250000000

15 1.1250124892 1.1250000051 1.1250000000 1.1250000000 1.1250000000

16 1.1250050613 1.1250000012 1.1250000000 1.1250000000 1.1250000000

17 1.1250020512 1.1250000003 1.1250000000 1.1250000000 1.1250000000

18 1.1250008313 1.1250000001 1.1250000000 1.1250000000 1.1250000000

19 1.1250003369 1.1250000000 1.1250000000 1.1250000000 1.1250000000

20 1.1250001365 1.1250000000 1.1250000000 1.1250000000 1.1250000000

21 1.1250000553 1.1250000000 1.1250000000 1.1250000000 1.1250000000

.. ............ ............ ............ ............ ............

28 1.1250000001 1.1250000000 1.1250000000 1.1250000000 1.1250000000

29 1.1250000000 1.1250000000 1.1250000000 1.1250000000 1.1250000000

30 1.1250000000 1.1250000000 1.1250000000 1.1250000000 1.1250000000
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TABLE 1 CONTD.

n M-ITERATION PIRI et al. GARODIA-UDDIN UI ITERATION

1 5.0000000000 5.0000000000 5.0000000000 5.0000000000

2 1.3546296296 1.2551234568 1.1918158436 1.1370520119

3 1.1386076818 1.1293695778 1.1261520921 1.1250374841

4 1.1258063811 1.1251467315 1.1250198653 1.1250001166

5 1.1250477855 1.1250049273 1.1250003425 1.1250000004

6 1.1250028317 1.1250001655 1.1250000059 1.1250000000

7 1.1250001678 1.1250000056 1.1250000001 1.1250000000

8 1.1250000099 1.1250000002 1.1250000000 1.1250000000

9 1.1250000006 1.1250000000 1.1250000000 1.1250000000

10 1.1250000000 1.1250000000 1.1250000000 1.1250000000

.. ............ ............ ............ ............

30 1.1250000000 1.1250000000 1.1250000000 1.1250000000

For Table 2 we use the following parameters:
Choose αk = 3k

8k+4 , βk = 1
k+4 , γk = k

(2k+6)2
, and the initial value t1 = 10.

TABLE 2

n M-ITERATION PIRI et al. GARODIA-UDDIN UI ITERATION

1 10.000000000 10.000000000 10.000000000 10.000000000

2 1.8481481481 1.7799793827 1.4185864609 1.1912742958

3 1.1839231824 1.1733378019 1.1347118885 1.1254949050

4 1.1298011482 1.1285673537 1.1253212709 1.1250036957

5 1.1253912047 1.1252632725 1.1250106277 1.1250000276

6 1.1250318759 1.1250194296 1.1250003516 1.1250000002

7 1.1250025973 1.1250014339 1.1250000116 1.1250000000

8 1.1250002116 1.1250001058 1.1250000004 1.1250000000

9 1.1250000172 1.1250000078 1.1250000000 1.1250000000

10 1.1250000014 1.1250000006 1.1250000000 1.1250000000

11 1.1250000001 1.1250000000 1.1250000000 1.1250000000

12 1.1250000000 1.1250000000 1.1250000000 1.1250000000

.. ............ ............ ............ ............

28 1.1250000000 1.1250000000 1.1250000000 1.1250000000

29 1.1250000000 1.1250000000 1.1250000000 1.1250000000

30 1.1250000000 1.1250000000 1.1250000000 1.1250000000
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TABLE 2 CONTD.

n NOOR AGARWAL et al. ABBAS-NAZIR THAKUR et al. UI ITERATION

1 10.000000000 10.000000000 10.000000000 10.000000000 10.000000000

2 7.5031929630 3.9717844444 2.6841862963 2.6841862963 1.1912742958

3 5.7088135744 2.0381472308 1.3989224683 1.3989224683 1.1254949050

4 4.4192476038 1.4179051642 1.1731235109 1.1731235109 1.1250036957

5 3.4924757053 1.2189535623 1.1334544810 1.1334544810 1.1250000276

6 2.8264328883 1.1551369622 1.1264853083 1.1264853083 1.1250000002

7 2.3477681437 1.1346668659 1.1252609434 1.1252609434 1.1250000000

8 2.0037663289 1.1281007869 1.1250458433 1.1250458433 1.1250000000

9 1.7565426722 1.1259946222 1.1250080539 1.1250080539 1.1250000000

10 1.5788705383 1.1253190394 1.1250014149 1.1250014149 1.1250000000

11 1.4511829717 1.1251023365 1.1250002486 1.1250002486 1.1250000000

12 1.3594177954 1.1250328259 1.1250000437 1.1250000437 1.1250000000

13 1.2934689502 1.1250105294 1.1250000077 1.1250000077 1.1250000000

14 1.2460735181 1.1250033775 1.1250000013 1.1250000013 1.1250000000

15 1.2120118604 1.1250010834 1.1250000002 1.1250000002 1.1250000000

16 1.1875327815 1.1250003475 1.1250000000 1.1250000000 1.1250000000

17 1.1699404109 1.1250001115 1.1250000000 1.1250000000 1.1250000000

18 1.1572973085 1.1250000358 1.1250000000 1.1250000000 1.1250000000

19 1.1482110947 1.1250000115 1.1250000000 1.1250000000 1.1250000000

20 1.1416811088 1.1250000037 1.1250000000 1.1250000000 1.1250000000

21 1.1369882063 1.1250000012 1.1250000000 1.1250000000 1.1250000000

22 1.1336155598 1.1250000004 1.1250000000 1.1250000000 1.1250000000

23 1.1311917412 1.1250000001 1.1250000000 1.1250000000 1.1250000000

24 1.1294498163 1.1250000000 1.1250000000 1.1250000000 1.1250000000

.. ............ ............ ............ ............ ............

28 1.1261870233 1.1250000000 1.1250000000 1.1250000000 1.1250000000

29 1.1258530776 1.1250000000 1.1250000000 1.1250000000 1.1250000000

30 1.1256130810 1.1250000000 1.1250000000 1.1250000000 1.1250000000
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4. Convergence of The Iteration Process

In this section, we consider the convergence of the four-step UI iteration process defined in (1.10) for a
monotone generalized α-nonexpansive mapping Θ in an ordered Banach space ($,≤).

Lemma 4.1. Let ϑ be a nonempty closed convex subset of an ordered Banach space ($,≤) and Θ : ϑ −→ ϑ
be a monotone generalized α-nonexpansive mapping. Then for all x, y ∈ ϑ, with x ≤ y

(i) ‖Θx−Θy‖ ≤ 4
1−α‖x−Θx‖+ ‖x− y‖ ,

(ii) Θ is monotone quasi-nonexpansive if F (Θ) 6= 0 and p ∈ F (Θ)
with x ≤ p or p ≤ x.

Proof. (i) From Lemma 2.5(iii a), we have for all x, y ∈ ϑ either

(a) ‖Θx−Θy‖ ≤ α‖Θx− y‖+ α‖Θy − x‖+ (1− 2α)‖x− y‖ or

(b) ‖Θ2x−Θy‖ ≤ α‖Θ2x− y‖+ α‖Θx−Θy‖+ (1− 2α)‖Θx− y‖

In the first case, since ‖Θx−Θ2x‖ ≤ ‖x−Θx‖, we have

‖Θx−Θy‖ ≤ α‖Θx− y‖+ α‖Θy − x‖+ (1− 2α)‖x− y‖
≤ α(‖Θx−Θ2x‖+ ‖Θ2x− y‖) + α(‖Θx−Θy‖+ ‖x−Θx‖)

+(1− 2α)‖x− y‖
≤ 2α‖x−Θx‖+ α‖Θ2x− y‖+ α‖Θx−Θy‖+ (1− 2α)‖x− y‖
≤ 2α‖x−Θx‖+ α(‖Θ2x− x‖+ ‖x− y‖) + α‖Θx−Θy‖+ (1− 2α)‖x− y‖
≤ 2α‖x−Θx‖+ α(‖Θ2x−Θx‖+ ‖Θx− x‖) + α‖Θx−Θy‖

+α‖x− y‖+ (1− 2α)‖x− y‖
≤ 2α‖x−Θx‖+ 2α‖Θx− x‖+ α‖Θx−Θy‖+ (1− α)‖x− y‖
= 4α‖x−Θx‖+ α‖Θx−Θy‖+ (1− α)‖x− y‖ (4.1)

which implies that

‖Θx−Θy‖ ≤ 4α

1− α
‖x−Θx‖+ ‖x− y‖ (4.2)

In the other case of Lemma 2.5 (iii b), we further have

‖Θx−Θy‖ ≤ ‖x−Θx‖+ ‖x−Θy‖
≤ ‖x−Θx‖+ (‖x−Θ2x‖+ ‖Θ2x−Θy‖)
≤ ‖x−Θx‖+ (‖x−Θx‖+ ‖Θx−Θ2x‖) + (α‖Θ2x− y‖+ α‖Θx−Θy‖

+(1− 2α)‖Θx− y‖)
≤ 3‖x−Θx‖+ α(‖Θ2x−Θx‖+ ‖Θx− y‖) + α‖Θx−Θy‖

+(1− 2α)‖Θx− y‖
= 3‖x−Θx‖+ α‖Θ2x−Θx‖+ α‖Θx−Θy‖+ α‖Θx− y‖

+(1− 2α)‖Θx− y‖
≤ 3‖x−Θx‖+ α‖x−Θx‖+ α‖Θx−Θy‖+ (1− α)‖Θx− y‖
≤ 3‖x−Θx‖+ α‖x−Θx‖+ α‖Θx−Θy‖

+(1− α)(‖Θx− x‖+ ‖x− y‖)
≤ 4‖x−Θx‖+ α‖Θx− Ty‖+ (1− α)‖x− y‖ (4.3)



U. E. Udofia, D. I. Igbokwe, Commun. Nonlinear Anal. 1 (2022), 1–18 11

which implies

‖Θx−Θy‖ ≤ 4

1− α
‖x−Θx‖+ ‖x− y‖. (4.4)

The desired conclusion follows from (4.2) and (4.4) for all x, y ∈ K and α ∈ [0, 1)

(ii) By the definition of monotone generalized α-nonexpansive mapping, we have

‖Θx− p‖ = ‖Θx−Θp‖
≤ α‖Θx− p‖+ α‖Θp− x‖+ (1− 2α)‖x− p‖
≤ α‖Θx− p‖+ (1− α)‖x− p‖ (4.5)

where p ∈ F (Θ), and so ‖Θx− p‖ ≤ ‖x− p‖, that is Θ is monotone quasi nonexpansive.

Theorem 4.2. Let ϑ be a nonempty closed convex subset of a uniformly convex ordered Banach space
($,≤) and Θ : ϑ→ ϑ be a monotone generalized α-nonexpansive mapping. Suppose that the sequence {xk}
defined by (1.10) is bounded and lim inf

k→∞
‖xk −Θxk‖ = 0. Then F≥(Θ) 6= 0.

Proof. Since {xk} is a bounded sequence and lim inf
k→∞

‖xk − Θxk‖ = 0, then there exists a subsequence

{xki} of {xk} such that

lim
k→∞

‖xki −Θxki‖ = 0 (4.6)

The asymptotic center of {xki} with respect to ϑ is denoted by A(ϑ, {xki}) = {x∗} such that xki ≤ x∗

for all k ∈ ℵ such that x∗ is unique. From the definition of asymptotic radius, we have

r(Θx∗, {xki}) = lim sup
k→∞

‖xki −Θx∗‖ (4.7)

Using Lemma 4.1(i) and (4.6), we further obtain

r(Θx∗, {xki}) ≤ lim sup
k→∞

[‖xki − Txki‖+ ‖Θxki −Θx∗‖]

= lim sup
k→∞

‖Θxki −Θx∗‖

≤ lim sup
k→∞

[
4

1− α
‖xki −Θxki‖+ ‖xki − x

∗‖]

= r(x∗, {xki}) (4.8)

It follows from the uniqueness of x∗ that Θx∗ = x∗ which shows that F (Θ) 6= 0.

Theorem 4.3. Let ϑ be a nonempty closed convex subset of uniformly convex ordered Banach space ($,≤)
and Θ : ϑ → ϑ be a monotone generalized α-nonexpansive mapping. Assume {xn} defined by (1.10) is
bounded and there exists x1 ≤ ϑ such that x1 ≤ Θx1 (or Θx1 ≤ x1) . Let F≥(Θ) 6= 0 (or F≤(Θ) 6= 0)
and x1 ≤ p, for every p ∈ F (Θ). Then the following assertions hold:

(1) ‖xk+1 − p‖ ≤ ‖xk − p‖ and the limit lim sup
k→∞

‖xk − p‖ exists for all p ∈ F≥(Θ);

(2) lim inf
k→∞

‖xk −Θxk‖ = 0, provided lim sup
k→∞

bk(1− bk) > 0.

(3) lim
k→∞

‖xk −Θxk‖ = 0, provided lim inf
k→∞

bk(1− bk) > 0.



U. E. Udofia, D. I. Igbokwe, Commun. Nonlinear Anal. 1 (2022), 1–18 12

Proof. (1) By Lemma 4.1(ii) and (1.10), we obtain that

‖wk − p‖ = ‖Θ((1− ck)xk + ckΘxk)− p‖
≤ (1− ck)‖xk − p‖+ ck‖Θxk − p‖
≤ ‖xk − p‖ (4.9)

Also, from (1.10) and (4.9)

‖zk − p‖ = ‖Θ((1− ak)Θxk + akΘwk)− p‖
≤ (1− ak)‖xk − p‖+ ak‖wk − p‖
≤ ‖xk − p‖ (4.10)

Again, from (1.10) , (4.9) and (4.10) we have

‖yk − p‖ = ‖Θ((1− bk)Θwk + bkΘzk)− p‖
≤ (1− bk)‖wk − p‖+ bk‖zk − p‖
≤ ‖xk − p‖ (4.11)

Further, from (1.10) and (4.11) we have that

‖xk+1 − p‖ = ‖Θyk − p‖
≤ ‖yk − p‖
≤ ‖xk − p‖ (4.12)

Thus, the sequence {‖xk − p‖} is nonincreasing and bounded, hence lim
k→∞

‖xk − p‖ exists.

Now,

‖xk+1 − p‖2 = ‖Θyk − p‖2

≤ ‖yk − p‖2

= ‖Θ[(1− bk)Θwk + bkΘzk]− p‖2

≤ (1− bk)‖Θwk − p‖2 + bk‖Θzk − p‖2 − bk(1− bk)f(‖xk −Θxk‖)
≤ (1− bk)‖xk − p‖2 + bk‖xk − p‖2 − bk(1− bk)f(‖xk −Θxk‖)
= ‖xk − p‖2 − bk(1− bk)f(‖xk −Θxk‖) (4.13)

which implies that

bk(1− bk)f(‖xk −Θxk‖) ≤ ‖xk − p‖2 − ‖xk+1 − p‖2. (4.14)

Letting k →∞, it follows from (1) that

lim sup
k→∞

bk(1− bk)f(‖xk −Θxk‖) = 0 (4.15)

(2) By condition (2) lim sup
k→∞

bk(1− bk) > 0 , and since

(lim sup
k→∞

bk(1 − bk))(lim inf
k→∞

f(‖xk − Θxk‖)) ≤ lim sup
k→∞

bk(1 − bk)f(‖xk − Θxk‖), then by (4.15), we

have lim inf
k→∞

f(‖xk −Θxk‖) = 0 ,

and by the property of f lim inf
k→∞

f(‖xk −Θxk‖) = 0.
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(3) Again by the assumption of (3), lim inf
k→∞

bk(1− bk) > 0 , and since

(lim inf
k→∞

bk(1 − bk))(lim sup
k→∞

f(‖xk − Θxk‖)) ≤ lim sup
k→∞

bk(1 − bk)f(‖xk − Θxk‖), then by (4.15), we

have lim
k→∞

f(‖xk−Θxk‖) = lim sup
k→∞

f(‖xk−Θxk‖) = 0, and by property of f lim
k→∞

‖xk−Θxk‖ = 0.

This completes the proof.

Theorem 4.4. Let ϑ be a nonempty closed convex subset of a uniformly convex ordered Banach space
($,≤) and Θ : ϑ→ ϑ be a monotone generalized α-nonexpansive mapping. Assume that $ satisfies Opials
condition and the sequence {xk} defined by the iteration process (1.10) is bounded and there exists x1 ≤ ϑ
such that x1 ≤ Θx1 (or Θx1 ≤ x1) . Let F≥(Θ) 6= 0 (or F≤(Θ) 6= 0) and x1 ≤ q, for every q ∈ F (Θ)
and lim inf

k→∞
bk(1− bk) > 0, then the sequence {xk} converges weakly to a fixed point q of Θ.

Proof. By the boundedness of {xk} , there exists a subsequence {xki} ⊂ {xk} weakly converging to a
point q ∈ ϑ and x1 ≤ xki ≤ q.

From Lemma (4.1) (i) and Theorem (4.3) (3) we can obtain

lim sup
k→∞

‖Θxki −Θq‖ ≤ lim sup
k→∞

[
4

1− α
‖xki −Θxki‖+ ‖xki − q‖]

= lim sup
k→∞

‖xki − q‖ (4.16)

Arguing by contradiction, we suppose that q 6= Tq. It follows from the Opial property of $ that

lim sup
k→∞

‖xki − q‖ < lim sup
k→∞

‖xki −Θq‖

≤ lim sup
k→∞

‖xki −Θxki‖+ lim sup
k→∞

‖Θxki −Θq‖

≤ lim sup
k→∞

‖xki − q‖ (4.17)

This is a contradiction.Therefore, we conclude q = Θq; that is, q ∈ F (Θ).

Next, we show the uniqueness of the fixed point:
Now, suppose there exists another subsequence {xkj} ⊂ {xn} which converges weakly to w 6= q, then we
have that w ∈ F (Θ). Note that lim

k→∞
‖xk − w‖ exists and

lim
k→∞

‖xk − q‖ = lim sup
i→∞

‖xki − q‖

< lim sup
i→∞

‖xki − w‖ = lim
k→∞

‖xk − w‖

= lim sup
j→∞

‖xkj − w‖

< lim sup
j→∞

‖xkj − q‖ = lim
k→∞

‖xk − q‖ (4.18)

This is a contradiction again. Consequently, w = q and {xk} converges weakly to q ∈ F≥(Θ).

Theorem 4.5. Let ϑ be a nonempty closed convex subset of a uniformly convex ordered Banach space ($,≤)
and Θ : ϑ→ ϑ be a monotone generalized α-nonexpansive mapping. Assume the sequence {xk} defined by
the iteration process (1.10) is bounded and there exists x1 ≤ ϑ such that x1 ≤ Θx1 (or Θx1 ≤ x1) . Let
F≥(Θ) 6= 0 (or F≤(Θ) 6= 0) and x1 ≤ p, for every p ∈ F (Θ) and If lim sup

k→∞
bk(1 − bk) > 0 , then the

sequence {xk} converges strongly to a fixed point p ∈ F≥(Θ) .
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Proof. If {xk} converges strongly to a point p ∈ F≥(Θ), then lim
k→∞

‖xk − p‖ = 0.

Since 0 ≤ d(xk, F≥(Θ)) ≤ ‖xk − p‖, then, lim inf
k→∞

d(xk, F≥(Θ)) = 0.

Conversely, suppose that lim inf
k→∞

d(xk, F≥(Θ)) = 0.

From (4.12), lim
k→∞

d(xk, F≥(Θ)) exists. Thus,

lim
k→∞

d(xk, F≥(Θ)) = 0 (4.19)

By Theorem (4.3), we have that {xk} is bounded with xk ≤ p.
WLOG, let {xkj} be a subsequence of {xk} such that ‖xkj − pj‖ ≤ 1/2j for all j ≥ 1, where
{pj} is a sequence in F≥(Θ). Combining with (4.12), we have

‖xkj+1
− pj‖ ≤ ‖xkj − pj‖ ≤ 1/2j (4.20)

It follows from (4.20) that

‖pj+1 − pj‖ ≤ ‖pj+1 − xkj+1
‖+ ‖xkj+1

− pj‖

≤ 1

2j+1
+

1

2j
≤ 1

2j−1
→ 0 as j →∞ (4.21)

This shows that {pj} is a Cauchy sequence in F≥(Θ).
By Lemma (2.6), F≥(Θ) is closed, so {pj} converges to some q ∈ F≥(Θ).
Moreover, by the triangle inequality, we have

‖xkj+1
− q‖ ≤ ‖xkj − pj‖+ ‖pj − q‖ (4.22)

Taking j −→∞ implies that xkj converges strongly to q.
From (4.12) again, lim

k→∞
‖xk − q‖ exists, and the sequence {xk} converges strongly to q ∈ F≥(Θ).

Theorem 4.6. Let ϑ be a nonempty compact, closed, convex subset of a uniformly convex ordered Ba-
nach space ($,≤) and Θ : ϑ → ϑ be a monotone generalized α-nonexpansive mapping. Assume the
sequence {xk} defined by the iteration process (1.10) is bounded and there exists x1 ≤ ϑ such that
x1 ≤ Θx1 (or Θx1 ≤ x1) . Let F≥(Θ) 6= 0 (or F≤(Θ) 6= 0) and x1 ≤ p, for every p ∈ F (Θ). Then,
the sequence {xk} generated by (1.10) converges strongly to a fixed point p ∈ F≥(Θ) if and only if
lim inf
k→∞

d(xk, F≥(Θ)) = 0 , where d(xk, F≥(Θ)) denotes the distance from x to F≥(Θ).

Proof. Following the compactness of ϑ, there exists a subsequence {xki} ⊂ {xk} such that {xki} con-
verges strongly to a point p ∈ ϑ. Since {xk} be bounded, it follows that x1 ≤ xki ≤ p for all i ≥ 1.
By Theorem (4.2), we have that F≥(Θ) 6= 0. It follows from Theorem (4.3) that {xk} is bounded and
lim inf
k→∞

‖xk −Θxk‖ = 0

WLOG, we can assume that lim
k→∞

‖xki −Θxki‖ = 0.

On the other hand, Lemma (4.1)(i) guarantees that

‖Θxki −Θp‖ ≤ [
4

1− α
‖xki −Θxki‖+ ‖xki − p‖] (4.23)

By the boundedness of the sequence {xki},
lim
i→∞
‖xki − p‖ = 0 and lim

i→∞
‖xki −Θxki‖ = 0,

and we have that

lim sup
i→∞

‖Θxki −Θp‖ ≤ 0 (4.24)
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which implies that lim
i→∞
‖Θxki −Θp‖ = 0

Therefore, we have

lim sup
i→∞

‖xki −Θp‖ ≤ lim sup
i→∞

(‖xki −Θxki‖+ ‖Θxki −Θp‖) = 0, (4.25)

which implies that p ∈ F≥(Θ).
By Theorem 4.3(1), lim

k→∞
‖xk − p‖ exists and so lim

k→∞
‖xk − p‖ = 0

Theorem 4.7. Let ϑ be a nonempty closed convex subset of a uniformly convex ordered Banach space
($,≤) and Θ : ϑ→ ϑ be a monotone generalized α-nonexpansive mapping. Assume that $ satisfies Opials
condition and the sequence {xk} defined by the iteration process (1.10) is bounded and there exists x1 ∈ ϑ
such that Θx1 ≤ x1 . Let F≤(Θ) 6= 0 and x1 ≤ p, for every p ∈ F (Θ) and lim inf

k→∞
bk(1− bk) > 0, then

the sequence {xk} converges weakly to a fixed point p of Θ.

Theorem 4.8. Let ϑ be a nonempty closed convex subset of a uniformly convex ordered Banach space
($,≤) and Θ : ϑ → ϑ be a monotone generalized α-nonexpansive mapping. Assume the sequence {xk}
defined by the iteration process (1.10) is bounded and there exists x1 ∈ ϑ such that Θx1 ≤ x1 . Let
F≤(Θ) 6= 0 and x1 ≤ p, for every p ∈ F (Θ) and If lim sup

k→∞
bk(1 − bk) > 0 , then the sequence {xk}

converges strongly to a fixed point p ∈ F≤(Θ).

Corollary 4.9. Let ϑ be a nonempty closed convex subset of a uniformly convex Banach space $ and
Θ : ϑ → ϑ be a generalized α-nonexpansive mapping. Assume that $ satisfies Opials condition and the
sequence {xk} defined by the iteration process (1.10) is bounded. Let F (Θ) 6= 0 and for every p ∈ F (Θ)
and lim inf

k→∞
bk(1− bk) > 0, then the sequence {xk} converges weakly to a fixed point p of Θ.

Corollary 4.10. Let ϑ be a nonempty closed convex subset of a uniformly convex Banach space $ and
Θ : ϑ → ϑ be a generalized α-nonexpansive mapping. Assume that $ satisfies Opials condition and the
sequence {xk} defined by the iteration process (1.10) is bounded. Let F (Θ) 6= 0 and for every p ∈ F (Θ)
and lim sup

k→∞
bk(1− bk) > 0, then the sequence {xk} converges strongly to a fixed point p of Θ.

Corollary 4.11. Let ϑ be a nonempty compact, closed, convex subset of a uniformly convex Banach space
$ and Θ : ϑ → ϑ be a generalized α-nonexpansive mapping. Assume the sequence {xk} defined by the
iteration process (1.10) is bounded. Let F (Θ) 6= 0 and for every p ∈ F (Θ). Then, the sequence {xk}
generated by (1.10) converges strongly to a fixed point p ∈ F (Θ) if and only if lim inf

k→∞
d(xk, F (Θ)) = 0 ,

where d(xk, F (Θ)) denotes the distance from x to F (Θ).
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5. APPLICATION

In this section, we will use our UI iteration process (1.10) to find the solution of split feasibility problem.
Let H1 and H2 be two real Hilbert spaces, C and Q be a nonempty, closed and convex subsets of H1 and
H2, respectively and let A : H1 → H2 be a bounded linear operator. Then, the split feasibility problem
(SFP) can be mathematically described as finding a point x ∈ C such that

x ∈ C, Ax ∈ Q. (5.1)

We assume that the solution set Ω of the SFP (5.1) is nonempty. Let

Ω = {x ∈ C : Ax ∈ Q} = C ∩A−1Q.

Then, Ω is a nonempty, closed and convex set. Censor and Elfving [33] solved the class of inverse problems
with the help of SFP. In 2002, Byrne [4] introduced the famous CQ-algorithm for solving the SFP. In this,
the iterative step xk is calculated as follows:

xk+1 = PC [I − γA∗(I − PQ)A]xk, k ≥ 0 (5.2)

where 0 < γ < 2
‖A2‖ , PC and PQ denote the projections onto sets C and Q respectively and

A∗ : H∗2 → H∗1 is the adjoint of A.
We have the following important lemma due to Feng et al. [23]

Lemma 5.1. Let operator Θ = PC [I−γA∗(I−PQ)A] , where 0 < γ < 2
‖A2‖ . Then Θ is a nonexpansive

map.

Also, since we have assumed that solution set Ω of SFP is nonempty, it is easy to see that any x∗ ∈ C is
the solution of SFP if and only if it solves the following fixed point equation:

PC [I − γA∗(I − PQ)A]x = x, x ∈ C.

So, the solution set Ω is equal to the fixed point set of Θ , i.e, F (Θ) = Ω = C ∩A−1Q 6= φ. For details, one
can refer to ([12] , [13]).

Now, we present our main results.

Theorem 5.2. If {xk} is the sequence generated by the iterative algorithm (1.10) with Θ = PC [I−γA∗(I−
PQ)A] then, {xk} converges weakly to the solution of SFP (5.1)

Proof. By Lemma (5.1), Θ is a nonexpansive map and every nonexpansive mapping is a generalized 0-
nonexpansive mapping, so the result follows from Theorem (4.4) .

Theorem 5.3. If {xk} is the sequence generated by the iterative algorithm (1.10) with Θ = PC [I−γA∗(I−
PQ)A] then, {xk} converges strongly to the solution of SFP (5.1) if and only if lim inf

k→∞
d(xk,Ω) = 0.

Proof. Proof follows from Theorem (4.5) .
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