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Abstract

We introduce the concepts of enriched n-contraction mapping, enriched n-Chatterjea mapping and enriched
n-Kannan mapping in linear n-normed space. We prove some fixed point theorems for such mappings using
Krasnoselsij iteration process in n-Banach spaces. The results presented in this paper improve the recent
works of Berinde and Pacurar (J. Fixed Point Theory Appl. (2020) 22-38), Berinde and Pacurar (Preprint,
arXiv:1909.03494) and Berinde and Pacurar (Preprint, arXiv:1909.02379, 2019) to linear n-normed spaces.
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1. Introduction and preliminaries

In 1989, Misiak [12] introduced the theory of n-normed spaces which is a generalization of the theory
of 2-normed spaces due to Gähler [8]. Since then, many authors have studied the fixed point theory in
n-normed spaces (e.g., [7], [9], [5], [6]). We will recall some main definitions related to our work as follows.

Definition 1.1. [12] Let Z be a real vector space and n ∈ N. Assume that the function ‖·, ..., ·‖ : Zn → R
holds the following conditions:

(i) ‖z1, ..., zn‖ = 0 ⇔ z1, ..., zn are linearly dependent,

(ii) ‖z1, ..., zn‖ is invariant under any permutation,

(iii) ‖az1, ..., zn‖ = |a| ‖z1, ..., zn‖ for all a ∈ R,

(iv)
∥∥∥z1 − z′1, z2, ..., zn∥∥∥ ≤ ‖z1, z2,..., zn‖+

∥∥∥z′1, z2, ..., zn∥∥∥ .
Then the pair (Z, ‖·, ..., ·‖) is called an n-normed space.
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Example 1.2. [7] Let Z = Rn with the following Euclidean n-norm:

‖z1, ..., zn‖E = abs


∣∣∣∣∣∣∣
z11 · · · z1n
...

. . .
...

zn1 · · · znn

∣∣∣∣∣∣∣
 ,

where zi = (zi1, ..., zin) ∈ Rn for each i = 1, n. Then, the pair (Rn, ‖z1, ..., zn‖) is an n-normed space.

Definition 1.3. [7] (i) Let Z be a n-normed space and {zn} a sequence in Z. We say that {zn} converge
to some z ∈ Z if

lim
n→∞

‖zn − z, z2, z3, . . . , zn‖ = 0,

for all z2, z3, . . . , zn ∈ Z.
(ii) Let Z be a n-normed space and {zn} a sequence in Z. We say that {zn} is a Cauchy sequence if

lim
n,m→∞

‖zn − zm, z2, z3, . . . , zn‖ = 0,

for all z2, z3, . . . , zn ∈ X.
(iii) A n-normed space is said to be complete if every Cauchy sequence is convergent to an element of

Z. A complete n-normed space Z is called n-Banach space.

Recently, some authors (see in [13], [11], [10]) introduced the n-contraction mapping, n-Chatterjea
mapping and n-Kannan mapping in linear n-normed space as follows. They proved some fixed point theorems
for such mappings in n-Banach space.

Definition 1.4. (cited in [13], [11]) Let (Z, ‖·, ..., ·‖) be an n-normed space. Then the mapping R : Z → Z
is said to be an n-contraction if there exists a ∈ [0, 1),

‖Ru−Rv, z2, z3, . . . , zn‖ ≤ a ‖u− v, z2, z3, . . . , zn‖ , (1.1)

for all z2, z3, . . . , zn, u, v ∈ Z. Also, the mapping R : Z → Z is said to be a n-nonexpansive for a = 1.

Definition 1.5. [10] Let (Z, ‖·, ..., ·‖) be an n-normed space. Then the mapping R : Z → Z is said to be
an n-Chatterjea if there exists b ∈ [0, 1/2)

‖Ru−Rv, z2, z3, . . . , zn‖ ≤ b
[
‖u−Rv, z2, z3, . . . , zn‖

+ ‖v −Ru, z2, z3, . . . , zn‖

]
, (1.2)

for all z2, z3, . . . , zn, u, v ∈ Z.

Definition 1.6. [10] Let (Z, ‖·, ..., ·‖) be an n-normed space. Then the mapping R : Z → Z is said to be
an n-Kannan if there exists c ∈ [0, 1/2)

‖Ru−Rv, z2, z3, . . . , zn‖ ≤ c
[
‖u−Ru, z2, z3, . . . , zn‖

+ ‖v −Rv, z2, z3, . . . , zn‖

]
, (1.3)

for all z2, z3, . . . , zn, u, v ∈ Z.

If (Z, ‖·, ..., ·‖) is an n-Banach space and R : Z → Z is a mapping that satisfies any of the above
contractive conditions (1.1), (1.2) and (1.3), then the mapping R has a fixed point in Z [10].

In 2020, Berinde and Pacurar [1] introduced the concept of enriched contraction mapping as follows.
And, they proved strong convergence theorem for the Kransnoselskij iteration used to approximate the fixed
points of enriched contractions. After, some authors (e.g., [3], [2], [4]) introduced the enriched Kannan
mappings, enriched Chatterjea mappings and enriched nonexpansive mappings and they gave convergence
results for Kransnoselskij iteration used to approximate fixed points of such mappings in Banach spaces.
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Definition 1.7. [1] Let (Z, ‖·‖) be a normed space. We say that the mapping R : Z → Z is an enriched
contraction mapping if 0 ≤ a < µ+ 1 and 0 ≤ µ <∞ such that

‖µ (u− v) +Ru−Rv‖ ≤ a ‖u− v‖ , (1.4)

for all u, v ∈ Z. We shall call R a (µ, a)-enriched contraction because of the constants in (1.4).

Definition 1.8. [3] Let (Z, ‖·‖) be a normed space. We say that the mapping R : Z → Z is an enriched
Kannan mapping if 0 ≤ c < 1/2 and 0 ≤ µ <∞ such that

‖µ (u− v) +Rv −Rv‖ ≤ c [‖u−Ru‖+ ‖v −Rv‖] , (1.5)

for all u, v ∈ Z. We shall call R a (µ, c)-enriched Kannan mapping because of the constants in (1.5).

Definition 1.9. [2] Let (Z, ‖·‖) be a normed space. We say that the mapping R : Z → Z is an enriched
Chatterjea mapping if 0 ≤ b < 1/2 and 0 ≤ µ <∞ such that

‖µ (u− v) +Rv −Rv‖ ≤ b
[
‖(µ+ 1) (u− v) + v −Rv‖

+ ‖(µ+ 1) (v − u) + u−Ru‖

]
, (1.6)

for all u, v ∈ Z. We shall call R a (µ, b)-enriched Chatterjea mapping because of the constants in (1.6).

Inspired by the above studies, we define the concept of some enriched contractions in n-normed spaces.
And we give some examples for class of such mappings. We also prove some fixed point theorems for
enriched n-contraction mapping, enriched n-Chatterjea mapping and enriched n-Kannan mapping in n-
Banach spaces.

2. Main Results

Definition 2.1. Let (Z, ‖·, ..., ·‖) be an n-normed space and U be a nonempty closed convex subset of Z.
A mapping R : U → U is said to be an enriched n-contraction mapping if 0 ≤ a < µ + 1 and 0 ≤ µ < ∞
such that

‖µ (u− v) +Ru−Rv, z2, z3, . . . , zn‖ ≤ a ‖u− v, z2, z3, . . . , zn‖ (2.1)

for all z2, z3, . . . , zn, u, v ∈ U.We shall callR a (µ, a)-enriched n-contraction mapping because of the constants
in (2.1). If we take µ = 0 in (2.1), we obtain that n-contraction mapping (1.1).

Example 2.2. Let Z = [0, 1] and let Z be a n-normed space. Also, let R : Z → Z be defined by Ru = 1−u,
for all u ∈ [0, 1]. It is clear that R is n-nonexpansive and R is not an n-contraction. We also know that R is
an enriched n-contraction. Indeed, if R is an enriched n-contraction, then there exists a ∈ [0, 1) such that

|u− v, z2, z3, . . . , zn| ≤ a|u− v, z2, z3, . . . , zn|,

which implies that a contradiction. From the enriched n-contraction condition (2.1), we have that

|(µ− 1)(u− v), z2, z3, . . . , zn| ≤ a|u− v, z2, z3, . . . , zn|,

with a ∈ [0, µ + 1). Taking 0 < µ < 1 and a = 1 − µ, the above inequality holds true for all x, y ∈ [0, 1].
Therefore, for any µ ∈ (0, 1), R is a (µ, 1− µ)-enriched n-contraction and Fix(T ) = {1/2}.

Theorem 2.3. Let (Z, ‖·, ..., ·‖) be a n-Banach space and U be a nonempty closed convex subset of Z and
R : U → U an n-enriched contraction. Then

(i) Fix(R) = {u∗} ;
(ii) The Krasnoselskij iteration process {un} given by

un+1 = (1− γ)un + γRun (2.2)
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converges strongly to u∗, for any u0 ∈ U and 0 < γ < 1.
(iii) The following estimate holds

‖un+i−1 − u∗, z2, z3, . . . , zn‖ ≤
ηi

1− η
‖un − un−1, z2, z3, . . . , zn‖ , (2.3)

where n = 0, 1, 2, . . . ; i = 1, 2, . . . and η = a
1+µ .

Proof. We will divide the proof into two parts.
Case 1: Assume that µ > 0. In this case, let us denote γ = 1

µ+1 . Then, from 0 < γ < 1 and the
n-enriched contractive (2.1), we get∥∥∥∥(1

γ
− 1

)
+Ru−Rv, z2, z3, . . . , zn

∥∥∥∥ ≤ a ‖u− v, z2, z3, . . . , zn‖ ,
We can write the above inequality as follows

‖Rγ (u)−Rγ (v) , z2, z3, . . . , zn‖ ≤ η ‖u− v, z2, z3, . . . , zn‖ , (2.4)

where η = γa and
Rγ (u) = (1− γ)u+ γR(u). (2.5)

Since a ∈ (0, µ+ 1), we know that η ∈ (0, 1) and therefore inequality (2.5) shows that Rγ is a η-contraction.
It is clear that the mappings R and Rγ have the following property:

Fix(Rγ) = Fix(R). (2.6)

From (2.5), the Krasnoselskij iterative process {un} defined by (2.2) is exactly the Picard iteration associated
to Rγ , that is,

un+1 = Rγun. (2.7)

If we take u = un and v = un−1 in (2.4), we obtain that

‖Rγun −Rγun−1, z2, z3, . . . , zn‖ ≤ η ‖un − un−1, z2, z3, . . . , zn‖

which implies that
‖un+1 − un, z2, z3, . . . , zn‖ ≤ η ‖un − un−1, z2, z3, . . . , zn‖ . (2.8)

From (2.8), we write the following two estimates

‖un+m − un, z2, z3, . . . , zn‖ ≤ ηn.
(1− ηm)

1− η
‖u1 − u0, z2, z3, . . . , zn‖ , (2.9)

and

‖un+m − un, z2, z3, . . . , zn‖ ≤ η.
(1− ηm)

1− η
‖un − un−1, z2, z3, . . . , zn‖ , (2.10)

Using (2.9), we get that {un} is Cauchy sequence. Since (U, ‖·, ..., ·‖) is an n-Banach space, there exists
u∗ ∈ U such that

u∗ = lim
n→∞

un. (2.11)

Now, we will show that u∗ is a fixed point of Rγ . We have

‖u∗ −Rγu∗, z2, z3, . . . , zn‖ ≤ ‖u∗ − un+1, z2, z3, . . . , zn‖ (2.12)

+ ‖un+1 −Rγu∗, z2, z3, . . . , zn‖
= ‖u∗ − un+1, z2, z3, . . . , zn‖

+ ‖Rγun −Rγu∗, z2, z3, . . . , zn‖ .
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From (2.4), we get

‖Rγun −Rγu∗, z2, z3, . . . , zn‖ ≤ η ‖un − u∗, z2, z3, . . . , zn‖ .

Using (2.12), we write

‖u∗ −Rγu∗, z2, z3, . . . , zn‖ ≤ ‖u∗ − un+1, z2, z3, . . . , zn‖ (2.13)

+η ‖un − u∗, z2, z3, . . . , zn‖ .

Taking limit as n→∞ in above inequality, we get that ‖u∗ −Rγu∗, z2, z3, . . . , zn‖ = 0, that is, u∗ = Rγu
∗.

So, u∗ ∈ Fix(Rγ).

Next, we prove that u∗ is the unique fixed point of Rγ . Assume that v∗ 6= u∗ is another fixed point of
Rγ . Then, by (2.4)

‖Rγu∗ −Rγv∗, z2, z3, . . . , zn‖ ≤ η ‖u∗ − v∗, z2, z3, . . . , zn‖

and

0 < ‖u∗ − v∗, z2, z3, . . . , zn‖ ≤ η ‖u∗ − v∗, z2, z3, . . . , zn‖ < ‖u∗ − v∗, z2, z3, . . . , zn‖

a contradiction. Hence Fix(Rγ) = {u∗}. Since Fix(R) = Fix(Rγ), we have that Fix(R) = {u∗}.
(ii) Let {un} be the Krasnoselskij iteration as in (2.2). From (2.11), we know that {un} converges

strongly to u∗. Thus, claim (ii) is proven.

(iii) If we take limit as m→∞ in (2.9) and (2.10), we get that

‖un − u∗, z2, z3, . . . , zn‖ ≤ .
ηn

1− η
‖u1 − u0, z2, z3, . . . , zn‖ , (2.14)

and

‖un − u∗, z2, z3, . . . , zn‖ ≤
η

1− η
‖un − un−1, z2, z3, . . . , zn‖ , (2.15)

respectively, where η = a
µ+1 . If we combine with (2.14) and (2.15), we have that the unifying error estimate

(2.3).

Case 2: Assume that µ = 0. In this case, γ = 1, η = a and we proceed like in but with R (= R1) instead
of Rγ , Krasnoselskij iteration (2.2) reduces in fact to the simple Picard iteration associated to R,

un+1 = Run, n ≥ 0.

Definition 2.4. Let (Z, ‖·, ..., ·‖) be an n-normed space and U be a nonempty closed convex subset of Z.
A mapping R : Z → Z is said to be an enriched n-Chatterjea mapping if 0 ≤ µ <∞ and 0 ≤ b < 1/2 such
that

‖µ (u− v) +Ru−Rv, z2, z3, . . . , zn‖ (2.16)

≤ b

[
‖(µ+ 1) (u− v) + v −Rv, z2, z3, . . . , zn‖

+ ‖(µ+ 1) (v − u) + u−Ru, z2, z3, . . . , zn‖

]
for all z2, z3, . . . , zn, u, v ∈ U. We shall also call R a (µ, b)-enriched n-Chatterjea mapping because of the
constants in (2.16). If we take µ = 0 in (2.16), we obtain that n-Chatterjea mapping (1.2).

Example 2.5. Let Z = [0, 1] and let Z be a n-normed space. Also, let R : Z → Z be defined by Ru = 1−u,
for all u ∈ [0, 1]. We know that R is not an n-Chatterjea mapping but is an enriched n-Chatterjea mapping.
Indeed, if R is an n-Chatterjea mapping, then there exists b ∈ [0, 1/2) such that

|u− v, z2, z3, . . . , zn| ≤ b [|u− 1 + v, z2, z3, . . . , zn|+ |v − 1 + u, z2, z3, . . . , zn|]
= 2b|u+ v − 1, z2, z3, . . . , zn|.
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This is a contradiction for u = 0 and v = 1. The enriched n-Chatterjea condition (2.16) is in this case
equivalent to

|(µ− 1)(u− v), z2, z3, . . . , zn| ≤ b[|(µ+ 1)u− (µ− 1)v − 1, z2, z3, . . . , zn| (2.17)

+|(µ+ 1)v − (µ− 1)u− 1, z2, z3, . . . , zn|].

We consider the following inequality

2µ|u− v, z2, z3, . . . , zn| = |[(µ+ 1)u− (µ− 1)v − 1, z2, z3, . . . , zn]

−[(µ+ 1)v − (µ− 1)u− 1, z2, z3, . . . , zn]|
≤ |(µ+ 1)u− (µ− 1)v − 1, z2, z3, . . . , zn|

+|(µ+ 1)v − (µ− 1)u− 1, z2, z3, . . . , zn|,

in order to obtain (2.17). It is necessary to have |µ−1|2µ ≤ b , for a certain b ∈ [0, 1/2).

The only possibility is to have µ < 1 when, by taking 1−µ
2µ = b. We also obtain that µ = 1

b+2 . Therefore,

R is a ( 1
b+2 , b) -enriched n-Chatterjea mapping for any b ∈ [0, 1/2) and Fix(R) = {1/2}.

Theorem 2.6. Let (Z, ‖·, ..., ·‖) be an n-Banach space and U be a nonempty closed convex subset of Z.
Assume that the R : U → U an enriched n-Chatterjea mapping. Then

(i) Fix(R) = {u∗} ;
(ii) The Krasnoselskij iteration process {un} given by

un+1 = (1− γ)un + γRun (2.18)

converges strongly to u∗, for any u0 ∈ U and 0 < γ < 1.
(iii) The following estimate holds

‖un+i−1 − u∗, z2, z3, . . . , zn‖ ≤
ηi

1− η
‖un − un−1, z2, z3, . . . , zn‖ , (2.19)

where n = 0, 1, 2, . . . ; i = 1, 2, . . . and η = b
1−b .

Proof. We will use similar method at the proof of Theorem 2.3. For any γ ∈ (0, 1) consider the averaged
mapping R, given by

R(u) = (1− γ)u+R(u),∀u ∈ U. (2.20)

It easy to see that R possesses the following important property:

Fix(Rγ) = Fix(R).

If µ > 0 in (2.16), then let us take γ = 1
µ+1 . Obviously, we have 0 < γ < 1 and thus the contractive condition

(1.2) reduces∥∥∥∥(1

γ
− 1

)
+Ru−Rv, z2, z3, . . . , zn

∥∥∥∥ ≤ b
 ∥∥∥ 1

γ (u− v) + v +Rv, z2, z3, . . . , zn

∥∥∥
+
∥∥∥ 1
γ (v − u) + u−Ru, z2, z3, . . . , zn

∥∥∥


which is equaivalent to

‖(1− γ) + γ (Ru−Rv) , z2, z3, . . . , zn‖ ≤ b
[
‖(u− v) + γ (v −Rv) , z2, z3, . . . , zn‖

+ ‖(v − u) + γ (u−Ru) , z2, z3, . . . , zn‖

]
.

The above inequality can be written as follows

‖Rγ (u)−Rγ (v) , z2, z3, . . . , zn‖ ≤ b
[
‖u−Rγv, z2, z3, . . . , zn‖

+ ‖v −Rγu, z2, z3, . . . , zn‖

]
(2.21)
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with b ∈ [0, 1/2).
The above inequality shows that R is a Chatterjea n-contraction in the sense of (1.2).
According to (2.20), the iterative process {un} defined by (2.18) is the Picard iteration associated to Rγ ,

that is,
un+1 = Rγun, n ≥ 0.

Taking u = un and v = un−1 in (2.21), we obtain that

‖Rγun −Rγun−1, z2, z3, . . . , zn‖ ≤ b
[
‖un −Rγun−1, z2, z3, . . . , zn‖

+ ‖un−1 −Rγun, z2, z3, . . . , zn‖

]
which implies that

‖un+1 − un, z2, z3, . . . , zn‖ ≤ b
[

‖un − un, z2, z3, . . . , zn‖
+ ‖un−1 − un+1, z2, z3, . . . , zn‖

]
. (2.22)

Using (2.22), we obtain

‖un+1 − un, z2, z3, . . . , zn‖ ≤ b
[
‖un−1 − un, z2, z3, . . . , zn‖

+ ‖un − un+1, z2, z3, . . . , zn‖

]
which yields

‖un+1 − un, z2, z3, . . . , zn‖ ≤
b

1− b
‖un−1 − un, z2, z3, . . . , zn‖ .

Since 0 < b < 1
2 , by denoting η = b

1−b , we have 0 < γ < 1 and therefore the sequence {xn} satisfies

‖un+1 − un, z2, z3, . . . , zn‖ ≤ η ‖un−1 − un, z2, z3, . . . , zn‖ . (2.23)

From (2.23), we obtain the following two estimates

‖un+m − un, z2, z3, . . . , zn‖ ≤ ηn ·
1− ηm

1− η
· ‖u1 − u0, z2, z3, . . . , zn‖ , (2.24)

and

‖un+m − un, z2, z3, . . . , zn‖ ≤ η ·
1− ηm

1− η
· ‖un − un−1, z2, z3, . . . , zn‖ . (2.25)

Using (2.24), we have that {un} is a Cauchy sequence. Since (Z, ‖·, ..., ·‖) is an n-Banach space, there exists
to u∗ ∈ U such that

u∗ = lim
n→∞

un. (2.26)

Now, we will prove that u∗ is a fixed point of Rγ . We have

‖u∗ −Rγu∗, z2, z3, . . . , zn‖ ≤ ‖u∗ − un+1, z2, z3, . . . , zn‖ (2.27)

+ ‖un+1 −Rγu∗, z2, z3, . . . , zn‖
= ‖u∗ − un+1, z2, z3, . . . , zn‖

+ ‖Rγun −Rγu∗, z2, z3, . . . , zn‖ .

From (2.21), we write

‖Rγun −Rγu∗, z2, z3, . . . , zn‖ ≤ b
[
‖un −Rγu∗, z2, z3, . . . , zn‖

+ ‖u∗ −Rγun, z2, z3, . . . , zn‖

]
and therefore, by (2.27) one obtains

(1− b) ‖u∗ −Rγu∗, z2, z3, . . . , zn‖ ≤ (1 + b) ‖u∗ − un+1, z2, z3, . . . , zn‖
+b ‖un − u∗, z2, z3, . . . , zn‖ .
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This implies that

‖u∗ −Rγu∗, z2, z3, . . . , zn‖ ≤
1 + b

1− b
‖u∗ − un+1, z2, z3, . . . , zn‖ (2.28)

+η ‖un − u∗, z2, z3, . . . , zn‖ .

Now, by taking limit as n → ∞ in (2.28) we get ‖u∗ −Rγu∗, z2, z3, . . . , zn‖ = 0, that is, u∗ = Rγu
∗. So,

u∗ ∈ Fix(Rγ).
Next, we prove that u∗ is the unique fixed point of Rγ . Assume that v∗ 6= u∗ is another fixed point of

Rγ . Then, by (2.21)

‖Rγu∗ −Rγv∗, z2, z3, . . . , zn‖ ≤ b
[
‖u∗ −Rγv∗, z2, z3, . . . , zn‖

+ ‖v∗ −Rγu∗, z2, z3, . . . , zn‖

]
which implies that

‖u∗ − v∗, z2, z3, . . . , zn‖ ≤ 2b ‖u∗ − v∗, z2, z3, . . . , zn‖ .
This is a contradiction. Hence Fix(Rγ) = {u∗} and since Fix(R) = Fix(Rγ), we have that Fix(R) = {u∗}.

(ii) Let {un} be the Krasnoselskij iterasyon (2.18), with u0 ∈ U arbitrary. From (2.26), we know that
{un} converges strongly to u∗. Thus, claim (ii) is proven.

(iii) If we take limit as m→∞ in (2.24) and (2.25), we have that

‖un − u∗, z2, z3, . . . , zn‖ ≤
ηn

1− η
‖u1 − u0, z2, z3, . . . , zn‖ , (2.29)

and
‖un − u∗, z2, z3, . . . , zn‖ ≤

η

1− η
‖un − un−1, z2, z3, . . . , zn‖ , (2.30)

respectively, where η = b
1−b . If we merge (2.29) and (2.30), we obtain that the error estimate (2.19).

The remaining case k = 0 is similar to k 6= 0 with the only difference that in this case γ = 1 and hence
we work with T = T1, when Krasnoselskij iteration (2.18) reduces to the simple Picard iteration

un+1 = Run, n ≥ 0.

Finally, we consider the definition of enriched n-Kannan mapping in n-normed space. We will also give
a fixed point theorem without proof for this mapping in n-Banach space.

Definition 2.7. Let (Z, ‖·, ..., ·‖) be an n-normed space and U be a nonempty closed convex subset of X.
A mapping R : U → U is said to be an enriched n-Kannan mapping if 0 ≤ µ <∞) and 0 ≤ γ < 1/2) such
that

‖µ (u− v) +Ru−Rv, z2, z3, . . . , zn‖ ≤ c

[
‖u−Ru, z2, z3, . . . , zn‖

+ ‖v −Rv, z2, z3, . . . , zn‖

]
(2.31)

for all z2, z3, . . . , zn, u, v ∈ U. We shall call Ra (µ, c)-enriched n-Kannan mapping because of the constants
in (2.31). If we take µ = 0 in (2.31), we obtain that n-Kannan mapping (1.3).

Theorem 2.8. Let (Z, ‖·, ..., ·‖) be an n-Banach space and U be a nonempty closed convex subset of Z.
Assume that the R : U → U an enriched n-Kannan mapping. Then

(i) Fix(R) = {u∗} ;
(ii) The Krasnoselskij iteration process {un} given by

un+1 = (1− γ)un + γRun

converges strongly to u∗, for any u0 ∈ U and 0 < γ < 1.
(iii) The following estimate holds

‖un+i−1 − u∗, z2, z3, . . . , zn‖ ≤
ηi

1− η
‖un − un−1, z2, z3, . . . , zn‖ ,

where n = 0, 1, 2, . . . ; i = 1, 2, . . . and η = c
1+µ .
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