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Abstract

Focusing on the dynamics of the most recent outbreak of COVID-19, we formulate an age distributed
model with five different components in terms of nonlinear partial differential equations. The model has been
analyzed by studying the stability of the equilibrium points and their reproduction number. To explore the
disease effect on different ages more efficiently, we apply the recent estimated data in the formulated model
and analyze it numerically. From the model’s numerical solution profiles, we observed more susceptibility
and infection among the older population. Also studied the effectiveness of isolation in controlling illness
and death.
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1. Introduction

Epidemiology is the branch of science where infectious diseases are analyzed by modelling them math-
ematically. Modelling an epidemic helps us to study the behavior of the disease elaborately. It also helps
us to understand the characteristics of the transmission of the disease and how it affects the population
of a region and how severely it can affect the population. This population models can also be formulated
focusing on a specific characteristic like age, gender etc. The age structured population model is constructed
to study the behavior of the disease towards different aged individuals. Different diseases affect different
aged population severely. It shows which part of the population is at high risk. For example, diseases like
chicken pox and malaria highly affect the children whereas diseases like tuberculosis and AIDS affect the
adults [21, 4].
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Coronavirus is an infectious disease which has spread globally and affected millions of life. It has been
declared a pandemic by WHO after spreading in many countries since the first outbreak in China. It is
a respiratory illness. The virus is transmitted through air or direct contact with patient. It attacks the
respiratory system and may lead to pneumonia in severe cases. According to WHO situation report, 80%
of the cases shows mild symptoms that gets recovered without any serious treatment. But rest of the 20%
cases needs oxygen therapy as the virus damages the alveoli and makes it difficult to breathe. Also patients
with chronic diseases like heart disease, diabetes, cancer etc faces critical situations.

To understand the disease characteristic we studied the SEIR model of COVID-19 in [17] with case study
of Italy. Also we have studied COVID-19 epidemic models with different compartments like SEIQR model
in [13] where the basic reproduction number and sensitivity analysis of the disease is discussed in details.
We have seen some thorough discussion of Bangladesh case study with simple SIR model in [27]. SIR models
with aged structure has been formulated and applied in case of various infectious diseases in [11]. Also for
understanding the controlling strategies we studied the dynamical analysis of SEIRV model with quarantine
and isolation policies in [2] and the SEIQR model with combination of quarantine and social distancing effect
in [7]. The effect of the control on the economy has also been discussed in [15] using epidemiological models
with behavioural dynamics from evolutionary game theory. A two-body exportation-importation model
SEIQJR is formulated in [14] to demonstrate the consequences of border restrictions, medical resources,
public counter compliancy etc. to control the spread of the disease. The dispersal effect to reduce the
infection of COVID-19 in Bangladesh has been analyzed in [16]. The formulation of age structured model
of cholera with vaccination and demographic movements are analyzed in [19]. We have also studied the age
structured model with vertical transmission in [12].

The demography of COVID-19 based on age can be very useful for the pandemic event. By an age
structured model we can identify which portion of the population is mostly affected by the virus. The data
in [34] shows that 80 years or older population has nearly 15% fatality rate where children under 9 years old
has 0% fatality rate. Therefore the older people are at more risk than other individuals. According to the
recent data USA has 16% of older population that are 65 years or older and Italy has 22.8% [25]. These two
countries are dealing with the most cases of deaths due to the virus. Since the pandemic is still ongoing, so
it is still early to give any conclusion depending on this results. Therefore we take the help of mathematical
modelling to understand the situation more elaborately.

Studying the age structured model can play a crucial role since the disease is affecting different aged
population differently. The human body has an immune system that protects the body from any virus and
fight with it by creating antibodies. Therefore, immune system can also fight against the coronavirus. But
the virus is seen to damage our respiratory system if our immunity power is not strong enough. As a result,
children and younger population with stronger immune system may not be affected by the virus as much as
the elderly population or patients with lower immunity power. This less affected cases are identified as the
mild cases. Due to weaker immune system the elders and individuals with chronic diseases are most likely
to be at higher risk of getting infected easily and going into a critical condition. To Mathematically analyze
this we formulate a model.

2. Age Structured Model Formulation

The age structured models of epidemics have specific groups of population depending on the disease.
Most of the cases we have studied the age structured population model with 3 compartments and disease
like AIDS, cholerae etc. can be modeled applying this model [21]. We studied the SIR, SIS age structured
model formulations and its application in influenza disease transmission in [23] and the analysis of linear
age-dependent population models and their optimal control in [3]. We have also studied the formulation
of SEIR and MSEIR models for epidemics with continuous age structures along with their analysis and
application in niger measles in [9, 22]. The application of SEIR model for chikunguniya with numerical
simulations are discussed in [1]. Also an SEIRUS model is formulated to apply in age structured population
of Nigeria to analyze disease control of AIDS [24].
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Now by observing the characteristics of the coronavirus we consider 5 groups of individuals to model
the age distribution. These are: s(t, a), e(t, a), i(t, a), q(t, a) and r(t, a). s(t, a) is the susceptible population,
e(t, a) is the exposed population who are infected with the virus but asymptomatic, i(t, a) is the infected
population and they are symptomatic, q(t, a) is the isolated population and r(t, a) is the recovered population
of age a at time t, where a ∈ [0, a†) and t ≥ 0 and a† is the maximum age limit. The age structured COVID-19
model then can be written as,

st(t, a) + sa(t, a) = −
(
α(t, a) + δ1(a)

)
s(t, a)

et(t, a) + ea(t, a) = α(t, a)s(t, a)− (β(a) + δ1(a))e(t, a)

it(t, a) + ia(t, a) = β(a)e(t, a)−
(
µ(a) + ν(a) + δ1(a) + δ2(a)

)
i(t, a)

qt(t, a) + qa(t, a) = ν(a)i(a, t)−
(
γ(a) + δ1(a) + δ2(a)

)
q(t, a)

rt(t, a) + ra(t, a) = µ(a)i(t, a) + γ(a)q(t, a)− δ1(a)r(t, a)

(2.1)

where the parameters,

• α(t, a) is the infection rate

• δ1(a) is the natural death rate of age a population

• β(a) is the rate at which the exposed individuals is transmitted to infected individuals

• µ(a) is the natural recovery rate for a aged population

• ν(a) is the rate of isolating the infected individuals and

• γ(a) is the recovery rate of the isolated population.

• δ2(a) is the disease induced death rate.

Now the model can be described by the following diagram:

Figure 1: Diagram of the age structured model.

The model (2.1) is associated with the initial conditions,{
s(t, 0) =

∫ a†
0 b(a)n(t, a)da, e(t, 0) = i(t, 0) = q(t, 0) = r(t, 0) = 0

s(0, a) = s0(a), e(0, a) = e0(a), i(0, a) = i0(a), q(0, a) = q0(a), r(0, a) = r0(a)
(2.2)

Here, we consider that all newly born population are susceptible and b(a) is the birth rate, s0(a), e0(a),
i0(a), q0(a) and r0(a) are the initial amount of susceptible, exposed, infected, quarantined and recovered
population of age a.



Shahidul Islam et al., Commun. Nonlinear Anal. 1 (2022), 1–16 4

Now we define the total susceptible population at time t, S(t) =
∫ a†

0 s(t, a)da. Similarly,
E(t) =

∫ a†
0 e(t, a)da, I(t) =

∫ a†
0 i(t, a)da, Q(t) =

∫ a†
0 q(t, a)da and R(t) =

∫ a†
0 r(t, a)da.

Let, s(t, a) + e(t, a) + i(t, a) + q(t, a) + r(t, a) = n(t, a) be the age distributed population and the total
population N(t) = S(t) + E(t) + I(t) +Q(t) +R(t) =

∫ a†
0 n(t, a)da.

The age-specific transmission rate of the susceptible individual is defined as,

α(t, a) =

∫
0

a†

e(t, ω)f(a, ω)dω (2.3)

where e(t, ω) is the exposed population and f(a, ω) = f∗1 (a)f2(ω) denotes the rate of transmission from
exposed individual of age ω to susceptible individual of age a. hieme [30] suggested a specific form of f∗1 (a)
such that f∗1 (a) = κ(a)f1(a) is sufficiently concentrated in one particular age class, the endemic equilibrium
can be destabilized even if it uniquely exists. So, we can concentrate where the solution is stable. Here κ(a)
is defined as in [20],

κ(a) =
B

b0
ae−kay(t, a), B > 0, a ≥ 0 and k > δ∞1 = ess. sup

a≥0
δ1 (2.4)

where κ(a) ∈ (0, a†). Also let us define the probability of survival till age a [23],

π(a) = e−
∫ a
0 δ1(τ)dτ (2.5)

Now for the steady state of age distributed population as assumed in [22] , we let∫ a†

0
b(a)e−

∫ a
0 δ1(τ)dτda = 1 (2.6)

from which we can write,
P ∗(a) = n(0, a) = b0e

−
∫ a
0 δ1(τ)dτ (2.7)

Now these conditions from (2.6) and (2.7) implies the following initial conditions for (2.1),
s0(a) ≥ 0, e0(a) ≥ 0, i0(a) ≥ 0, q0(a) ≥ 0, r0(a) ≥ 0 and P ∗(a) = n(0, a) = s0(a)+e0(a)+i0(a)+q0(a)+r0(a).
Using this in (2.7) we have,

b0(a) =
s0(a) + e0(a) + i0(a) + q0(a) + r0(a)

e−
∫ a†
0 δ1(τ)dτ

2.1. Normalization

To normalize the model in (2.1) we let,

x(t, a) =
s(t, a)

P ∗(a)
, y(t, a) =

e(t, a)

P ∗(a)
, z(t, a) =

i(t, a)

P ∗(a)
, u(t, a) =

q(t, a)

P ∗(a)
, v(t, a) =

r(t, a)

P ∗(a)

And the age-specific transmission rate, α∗(t, a) =
∫

0
a†κ(a)y(t, a)P ∗(a)da, where we defined κ(a) previously

in (2.4). So, α∗(t, a) becomes,

α∗(t, a) = B

∫
0

a†

ae−kay(t, a)da (2.8)

This specific function for transmission rate is concentrated in one specific age class and will be used in
analyzing the stability of endemic equilibrium later in this paper.
So (2.1) becomes, 

xt(t, a) + xa(t, a) = −α∗(t, a)x(t, a)

yt(t, a) + ya(t, a) = α∗(t, a)x(t, a)− β(a)y(t, a)

zt(t, a) + za(t, a) = β(a)y(t, a)−
(
µ(a) + ν(a)

)
z(t, a)

ut(t, a) + ua(t, a) = ν(a)z(a, t)− γ(a)u(t, a)

vt(t, a) + va(t, a) = µ(a)z(t, a) + γ(a)u(t, a)

(2.9)
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with the initial conditions,

x(t, 0) = 1, y(t, 0) = z(t, 0) = u(t, 0) = v(t, 0) = 0

x(0, a) = x0(a), y(0, a) = y0(a), z(0, a) = z0(a), u(0, a) = u0(a), v(0, a) = v0(a)

3. Basic Reproduction Number and Stability Analysis

3.1. Basic Reproduction Number

To determine the basic reproduction number of the system (2.1) we follow the method described in [23]
for SIR model. At first since the system at equilibria is time independent so, it is converted into an age
specific SIR model. From this age specific system the disease free equilibrium (DFE) is obtained by setting
i(a) = 0, r(a) = 0 and infection force λ̂ = 0. Then to find endemic equilibria the infection force λ̂ is set
non-zero. While finding the endemic equilibrium, it is obtained that s(a) is an arbitrary constant and the
infective i(a) gives an implicit expression containing λ̂. Finally, replacing i(a) in the definition of λ̂ the
basic reproduction number of the SIR model is generated. Now following this method for system (2.1) we
generate the expression of R0 here.
First we determine the equilibriums to formulate the reproduction number. The equilibria are time-
independent solutions of the system (2.1). Here we consider the maximum age, a† = ∞ Therefore, we
can write the model as, 

sa(a) = −
(
α(a) + δ1(a)

)
s(a)

ea(a) = α(a)s(a)− (β(a) + δ1(a))e(a)

ia(a) = β(a)e(a)−
(
µ(a) + ν(a) + δ1(a)

)
i(a)

qa(a) = ν(a)i(a)−
(
γ(a) + δ1(a)

)
q(a)

ra(a) = µ(a)i(a) + ν(a)q(a)− δ1(a)r(a)

(3.1)

and the associated conditions are,

s(0) =

∫ ∞
0

b(a)n(a)da, e(0) = i(0) = q(0) = r(0) = 0

Then for time independent age-specific transmission rate we define, α(a) = α̂f1(a) where,

α̂ =

∫ ∞
0

f2(ω)e(ω)dω

Now for the disease free equilibrium (DFE) let, e = i = q = r = α̂ = 0 and so we get,

s(a) = s(0)π(a)

Then for the endemic equilibrium, let α̂ 6= 0, then

s(a) = s(0)e−
∫ a
0 (α̂f1(s)+δ1(s))ds

To determine the value of s(0), adding all the equations of (3.1),

na = −δ1(a)n(a)

Solving which we obtain,
n(a) = n(0)π(a)

where we can define, n(0) =
∫ a†
0 n0(a)da
π(a) = φ0. So we get,

s(0) = φ0

∫ ∞
0

b(a)π(a)da = φ0
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Since from (2.6) we have,
∫∞

0 b(a)π(a)da = 1. Therefore, s(0) is also a constant and we can write,

s(a) = φ0e
−

∫ a
0 (α̂f1(s)+δ1(s))ds (3.2)

Now solving the equation of exposed population using the integrating factor e
∫ a
0 (δ1(σ)+β(σ))dσ and the bound-

ary condition e(0) = 0.

e(a) = α̂

∫ a

0
f1(η)s(η)e−

∫ a
η [δ1(σ)+β(σ)]dσdη (3.3)

From equation (3.2) we have, s(η) = φ0e
−

∫ η
0 α̂f1(s)dse−

∫ η
0 δ1(s)ds = φ0π(a)e−

∫ η
0 α̂f1(s)ds, using which in (3.3)

we get,

e(a) = φ0α̂π(a)

∫ a

0
f1(η)e−

∫ η
0 α̂f1(s)dse−

∫ a
η [δ1(σ)+β(σ)]dσdη

Since, e(a) is not explicit in the equation, so we replace e(a) from α̂ =
∫∞

0 f2(ω)e(ω)dω. Hence we find,

α̂ = φ0α̂

∫ ∞
0

f2(a)π(a)

[ ∫ a

0
f1(η)e−

∫ η
0 α̂f1(s)dse−

∫ a
η β(σ)dσdη

]
da

⇒1 = φ0

∫ ∞
0

f2(a)π(a)

[ ∫ a

0
f1(η)e−

∫ η
0 α̂f1(s)dse−

∫ a
η β(σ)dσdη

]
da

Let

G(α̂) = φ0

∫ ∞
0

f2(a)π(a)

[ ∫ a

0
f1(η)e−

∫ η
0 α̂f1(s)dse−

∫ a
η β(σ)dσdη

]
da

In our consideration, f(a) > 0 which implies that, G(α̂) is a strictly decreasing function. So, if G(α̂) = 1 has
a positive solution then it is unique [23]. Also, limα̂→∞G(α̂) = 0. So, the existence of a positive solution of
G(α̂) = 1 depends on G(0).

Therefore, we define the reproduction number:

R0 = φ0

∫ ∞
0

f2(a)π(a)

[ ∫ a

0
f1(η)e−

∫ a
η β(σ)dσdη

]
da (3.4)

Hence, it is clear from the above equations that, G(α̂) = 1 has a unique positive solution when R0 > 1. So,
for R0 > 1 the model described in (2.1) has a unique Endemic equilibrium.

3.2. Stability Analysis of the Disease Free Equilibrium

From the previous section we have observed that the system (2.1) has a disease free equilibrium which
is, (s0(a), e0(a), i0(a), q0(a), r0(a)) = (s(a) = s(0)π(a), 0, 0, 0, 0).

Now to analyze the stability, we linearize the equations of (2.1) for perturbation, as done in [23, 22] and
let

s(a, t) = s̄(a, t) + s0(a),

e(a, t) = ē(a, t) + e0(a),

i(a, t) = ī(a, t) + i0(a),

q(a, t) = q̄(a, t) + q0(a),

r(a, t) = r̄(a, t) + r0(a)

where (s̄, ē, ī, q̄, r̄) be the perturbations in DFE. Then the system (2.1) becomes,

s̄t(t, a) + s̄a(t, a) = −α(t, a)s0(a)

ēt(t, a) + ēa(t, a) = α(t, a)s0(a)− β(a)ē(t, a)

īt(t, a) + īa(t, a) = β(a)ē(t, a)−
(
µ(a) + ν(a)

)̄
i(t, a)

q̄t(t, a) + q̄a(t, a) = ν(a)̄i(a, t)− γ(a)q̄(t, a)

r̄t(t, a) + r̄a(t, a) = µ(a)̄i(t, a) + γ(a)q̄(t, a)

(3.5)
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where,

α(t, a) = α̂f1(a)

s̄(t, 0) =

∫ ∞
0

b(a)n̄(a)da, ē(t, 0) = ī(t, 0) = q̄(t, 0) = r̄(t, 0) = 0

Let the solution of (3.5) are,

s̄(t, a) = s̄(a)eλt

ē(t, a)) = ē(a)eλt

ī(t, a) = ī(a)eλt

q̄(t, a) = q̄(a)eλt

r̄(t, a) = r̄(a)eλt

Then we get the following system using these equations where we use a dependent functions instead of
a and t dependent functions since its more convenient [23].

s̄a(a) = −λs̄(a)− ᾱ
ēa(a) = −λē(a) + ᾱ− β(a)ē(t, a)

īa(a) = −λī(a) + β(a)ē(t, a)−
(
µ(a) + ν(a)

)̄
i(t, a)

q̄a(a) = −λq̄(a) + ν(a)̄i(a, t)− γ(a)q̄(t, a)

r̄a(a) = −λr̄(a) + µ(a)̄i(t, a) + γ(a)q̄(t, a)

(3.6)

where,

ᾱ = ¯̂αf1(a)

s̄(t, 0) =

∫ ∞
0

b(a)n̄(a)da, ē(t, 0) = ī(t, 0) = q̄(t, 0) = r̄(t, 0) = 0

Now by applying the previous method, we solve the first two equation of (3.6), we get

H(λ) = φ0

∫ ∞
0

f2(a)π(a)

[ ∫ a

0
f1(η)e−

∫ a
η (β(s)+λ)dsdη

]
da

From where we can have, H(0) = R0.
We observe that, H ′(λ) < 0, H(λ) is a decreasing function when λ > 0 and increasing function when

λ < 0. Also the equation in RHS of H(λ) has a unique negative real solution if and only if H(0) = R0 < 1
and a unique positive real solution of R0 > 1 or R0 = 1. Then from [23, 22] we can see that, every complex
solution λ = ε1 ± iε2, we have |H(λ)| < 1 which means that the DFE is locally asymptotically stable if
R0 < 1 and if R0 > 1 the DFE is unstable.

3.3. Stability Analysis of the Endemic Equilibrium

To analyze the behavior of the endemic equilibrium point we take first two equations from the normalized
equations in (2.9), {

xt(t, a) + xa(t, a) = −α∗(t, a)x(t, a)

yt(t, a) + ya(t, a) = α∗(t, a)x(t, a)− β(a)y(t, a)
(3.7)
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where t > 0, a > 0 and the initial conditions are,{
x(t, 0) = 1, y(t, 0) = 0, x(0, a) = x0(a), y(0, a) = y0(a)

α∗(t, a) = B
∫

0
a†ae−kay(t, a)da, t > 0, a ≥ 0.

(3.8)

Since the rest of the equation does not affect the dynamics of the equation (3.7) so we can only remove them
to analyze the stability. To reduce the system of PDEs in a four-dimensional system of ODEs we apply the
method described in [20] and let 

X(t) =
∫ a†

0 e−kax(t, a)da

Y (t) =
∫ a†

0 e−kay(t, a)da

L(t) = B
∫ a†

0 ae−kax(t, a)da

Λ(t) = B
∫ a†

0 ae−kay(t, a)da

(3.9)

Differentiating the equations in (3.9) we get the following ODEs:
dX(t)
dt = 1− [k + Λ(t)]X(t)

dY (t)
dt = X(t)Λ(t)− (k + β)Y (t)

dL(t)
dt = BX(t)− [k + Λ(t)]L(t)

dΛ(t)
dt = BY (t) + L(t)Λ(t)− (k + β)Λ(t)

(3.10)

with the initial conditions, X(0) = X0, Y (0) = Y0, L(0) = L0, Λ(0) = Λ0, where t > 0 and (X0, Y0, L0,Λ0) ∈
R4

+. Then the endemic equilibrium E1 = (X∗, Y ∗, L∗,Λ∗) can be derived easily by solving the following sys-
tem of equations:

1− [k + Λ∗(t)]X∗(t) = 0

X∗(t)Λ∗(t)− (k + β)Y ∗(t) = 0

BX∗(t)− [k + Λ∗(t)]L∗(t) = 0

BY ∗(t) + L∗(t)Λ∗(t)− (k + β)Λ∗(t) = 0

We get the following equations from the above system,

X∗ = 1
k+Λ∗

Y ∗ = Λ∗

(k+β)(k+Λ∗)

L∗ = B
(k+Λ∗)2

Λ∗ = Λ∗

(k+β)

[
B

(k+β)(k+Λ∗) + B
(k+Λ∗)2

] (3.11)

Then from the last equation of (3.11) we get,

F (Λ∗) =
B

(k + β)

[
1

(k + β)(k + Λ∗)
+

1

(k + Λ∗)2

]
= 1 (3.12)

where F (Λ∗) is clearly a decreasing function for Λ∗ > 0 and therefore we can have reproduction number R0

by letting R0 = F (0), so

R0 =
B(2k + β)

k2(k + β)2
(3.13)

Now the equation (3.12) has a unique positive root Λ∗, by which we can say that, there exists a unique
endemic equilibrium point E1.
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Next to analyze the stability of the equilibrium we write the Jacobian matrix of the system (3.10) at E1

as follows:

J =


−(k + Λ∗) 0 0 −X∗

Λ∗ −(k + β) 0 X∗

B 0 −(k + Λ∗) −L∗
0 B Λ∗ L∗ − (k + β)


Then by equating the characteristic polynomial of the matrix it is shown in [20] that the endemic equilibrium
E1 is asymptotically stable if and only if a1a2a3 > a0a

2
3 + a2

1 where,

a0 =
B

X∗
(1− kX∗) + 2(k + β)B(1− kX∗)

a1 =
2B

(k + β)X∗
+ 3B(1− kX∗) +B + (k + β)BX∗(1− kX∗)

a2 =
1

X∗2
+

4B

k + β
+ 2BX∗ + (1− kX∗)BX∗

a3 =
2

X∗
+

2BX∗

k + β
+BX∗2

and these a0, a1, a2 and a3 are the coefficients of the eigenvalue λ in the characteristic polynomial.

4. Numerical Results and Discussions

To solve the system numerically we estimate the parameter values first. Considering the normalized
system described in (2.9), the parameter values are estimated from the collected data [28, 26, 29, 6]. Since
the recent data of Bangladesh was not available so data of Belgium (till 31st December,2020) is collected here.

Table 1: Parameter values.

β

Age Normalized

0-9 0.03213

10-19 0.1454

20-29 0.2268

30-39 0.1987

40-49 0.1969

50-59 0.176

60-69 0.1204

70-79 0.1219

80+ 0.2801

γ

Age Normalized

0-9 0.071

10-19 0.0681

20-29 0.0656

30-39 0.063

40-49 0.0618

50-59 0.0592

60-69 0.0567

70-79 0.0544

80+ 0.0497

µ

Age Normalized

0-9 0.069

10-19 0.068

20-29 0.065

30-39 0.062

40-49 0.06

50-59 0.059

60-69 0.056

70-79 0.054

80+ 0.051

ν

Age Normalized

0-9 0

10-19 0.012

20-29 0.02

30-39 0.02

40-49 0.07

50-59 0.10

60-69 0.171

70-79 0.207

80+ 0.06

For α∗(t, a) value in equation (2.8) we assumed R0 = 2.5, k = 0.25 and y = 365
15days = 24 years from which

we determine the value of B as shown in [20],

B =
k2(k + y)2

2k + y
R0 = 3.7504

We also assumed the death rate, δ2 = 0.26e0.01a for the calculations. The initial populations used in the
calculation are given in the following tables [33].

Table 2: Initial population.
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Initial Susceptible Population

Age Normalized

0-9 0.9998

10-19 0.9997

20-29 0.997

30-39 0.9966

40-49 0.9958

50-59 0.9954

60-69 0.8438

70-79 0.9937

80+ 0.9764

Initial Exposed Population

Age Normalized

0-9 2.29× 10−4

10-19 3.67× 10−4

20-29 3.34× 10−3

30-39 3.87× 10−3

40-49 4.89× 10−3

50-59 5.45× 10−3

60-69 4.18× 10−3

70-79 7.14× 10−3

80+ 2.83× 10−2

Initial Infected Population

Age Normalized

0-9 2.07× 10−4

10-19 3.34× 10−4

20-29 3.01× 10−3

30-39 3.37× 10−3

40-49 4.18× 10−3

50-59 4.62× 10−3

60-69 3.66× 10−3

70-79 6.27× 10−3

80+ 2.36× 10−2

Initial Isolated Population

Age Normalized

0-9 0

10-19 3.9× 10−6

20-29 6.04× 10−5

30-39 6.7× 10−5

40-49 2.92× 10−4

50-59 4.62× 10−4

60-69 6.27× 10−4

70-79 1.3× 10−3

80+ 9.43× 10−3

Initial Recovered Population

Age Normalized

0-9 1.36× 10−4

10-19 2.18× 10−4

20-29 1.96× 10−3

30-39 2.16× 10−3

40-49 2.64× 10−3

50-59 2.77× 10−3

60-69 2.16× 10−3

70-79 3.72× 10−3

80+ 1.26× 10−2

Using these parameter values and initial data we have formulated the solution graphs using finite difference
method [18] to analyze them in details. The graphs of susceptible, exposed, infected, quarantined and
recovered population over age and time for different age groups 15-20, 25-30, 35-40, 45-50, 55-60, 65-70,
75-80, 85-90 are discussed here.
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From Figure 2, we observe the followings:

• In the first graph, as we go from top to bottom of an age group the value at which the susceptible
population becomes stable over time decreases. From the graph we can see that the susceptible
population density decreases fast for higher age group in comparison to a lower age group which
indicates low susceptibility among young population and high susceptibility among the adults.

• By observing the density of exposed population, the value at which the exposed population shows
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Figure 2: The solution profile of densities of x(t, a), y(t, a), z(t, a), u(t, a) and v(t, a) for different age groups
encoded by different colors.

fluctuation decreases over time. We see that elder people get more exposed at the beginning and over
time the population decreases since they start getting infected at a higher rate.

• The solution profile of infected population over time shows that initially, the quantity of population
with more age is higher than the younger age and the opposite scenario is observed over the time. Due
to high fatality rate and hospitalization rate of higher age population the older population quickly
decreases in numbers here.

• The solution graphs of isolated population clearly shows that the isolated population density decrease
fast for higher age group in comparison to a lower age group due to higher removal rate among higher
age group. It shows that the older population has lower immunity power and low survival chances.

• We can also observe that the solution profile of z(t, a) initially after reaching to a peak value it drops
down drastically as the isolation rate increases that exact time and the graph of u(t, a) reaches its
peak. Then infected population increases again as isolation drops down. Therefore when isolation rate
is high, infection drops down and when isolation rate is low the infection spreads more.

• From the last graph we observe that, as we go from top to bottom of an age group the value at which
the recovered population shows fluctuation over time increases. It also shows that the older population
has the higher recovery profile. But in reality this is not true. In the 1st graph we see that the young
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population has the least susceptibility of being infected. So, a very small amount of population flows
through the compartments and so the quantity remains low in recovered population. Since a large
number of older population is infected over time, therefore we see a large older population in the last
compartment.

4.1. Effect of Controlled Isolation on Infection and Death

Now we turn our attention to the best preventive strategies to minimize the infection by applying non-
pharmaceutical control interventions in absence of effective vaccine. Introducing several optimal control
strategies have great impact to prevent the older people from being infected and thus to combat the spread
of the pandemic COVID-19. One such time variant control policy in the form of home-quarantine has been
shown effective in [8]. Moreover, the impact of developing self-immunity, specially for the aged people by
taking physical exercise and immune boosting foods has been shown promising to reduce the infection [5].
To show the effectiveness of control measures, we consider the isolation as parametric control strategy in
reducing the disease burden. Contagious diseases are known to be less infectious if we can implement better
isolation measure. Same is also seen in this case. Here in our age structured model with partial differential
equations (PDEs), the isolation rate is considered to be ν(a).
Let us introduce a control parameter p which represents the strictness of the isolation effort. Thus we
redefine the isolation rate as

ν∗(a) = p× ν(a),

where the allowed value of p is in the range [0, 5] to respect the trivial conditions imposed on rates of the
model. Now taking different values of the control parameter p from the interval [0, 5], we solve our model
numerically and the results obtained from this simulation is presented in Figure 3.

The set of images in Figure 3 exhibits the decrease of infected population with the increase of control
parameter, p. The first graph shows us the dynamics of infected population without any isolation (since
isolation rate is assumed zero). Then sequentially increasing the rate we observe the reduction of the peak
value of the infected population. It has been found in calculations from the above graph that the infected
population without any isolation shown in Figure 3 can be decreased up to 16.55% in peak values and
30.73% in stable values.

Similarly, the isolation effect on disease induced death has been calculated. The set of images of Figure 4
exhibits the decrease of death of infected population with the increase of control parameter, p. Calculating
from the peak values of the graph, the infected population’s death without any isolation shown in Figure
can be decreased up to 16.59% in peak values and 32.05% in stable values.

5. Conclusions

Age-stratified mathematical model with age specific transmission of five compartments for COVID-19 has
been structured and analyzed in this paper. Then the basic reproduction number R0 has been determined
of the model and then we observed that when R0 < 1, the DFE is asymptotically stable and when R0 > 1,
the DFE is unstable. Similarly, the endemic equilibrium’s stability is also analyzed. After that, the model
is solved numerically and also examined with the real world data. We used the age distributed data of
Belgium. From obtained solution graphs we noticed that the older population are more susceptible and get
infected by the virus more significantly. We also observe the relation between the infection and isolation
from these graphs and how they change with each other. When the isolation rate gets higher the number
of infected population drops down and when isolation process slows down the infection spreads and number
of patient rises. To analyze this effect more thoroughly, we then study the number of infected population
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(a) ν∗(a) = 0
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(b) ν∗(a) = 1 ∗ ν(a)
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(c) ν∗(a) = 2 ∗ ν(a)
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(d) ν∗(a) = 3 ∗ ν(a)
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(e) ν∗(a) = 4 ∗ ν(a)
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(f) ν∗(a) = 5 ∗ ν(a)

Figure 3: Effect of controlled isolation on infected population
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(b) ν∗(a) = 1 ∗ ν(a)
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(c) ν∗(a) = 2 ∗ ν(a)
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(d) ν∗(a) = 3 ∗ ν(a)
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(e) ν∗(a) = 4 ∗ ν(a)
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(f) ν∗(a) = 5 ∗ ν(a)

Figure 4: Effect of controlled isolation on disease induced death of infected population



Shahidul Islam et al., Commun. Nonlinear Anal. 1 (2022), 1–16 15

and deaths for different scenarios by changing the isolation control parameter. For that analysis, we used
the Belgium data and we calculated that by increasing the isolation parameter five time it’s current value,
the peak value of the infected population can be reduced up to 16.55% and the peak of the death numbers
can be dropped down by 16.59%. So, our findings suggest that the age-structured model can be effectively
applied to measure the COVID-19 situation at different ages demographically and can also be used to make
important decisions on controlling this global pandemic by adopting proposed control strategies based on
the disease dynamics.
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