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Abstract

The classification of positive solutions for a class of nonlinear differential systems is investigated. Necessary
and sufficient conditions are established for the existence of certain solutions. Sufficient conditions for
the nonexistence of certain solutions are also discussed. In particular, some sufficient conditions for the
nonexistence are optimal in some sense.
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1. Introduction

In this paper we consider the classification of positive solutions for the system of first order nonlinear
differential equations

x′(t) = F (t, y(t))

y′(t) = G(t, x(t)),
(1.1)

where F,G : [a,∞)×R→ R are continuous functions. rF (t, r) > 0 and rG(t, r) > 0 for all r 6= 0 and t ≥ a.
There exist two continuous functions a(t), b(t) : [a,∞) → (0,∞), two continuous and increasing functions
f(r), g(r) : R→ R, and two real numbers α > 1, β > 1 such that for t ≥ a

a(t)f(y) ≤ F (t, y) ≤ αa(t)f(y),

b(t)g(x) ≤ G(t, x) ≤ βb(t)g(x).
(1.2)

Remark 1.1. Many nonseparable functions F and G satisfy (1.2); for example, let F (t, y) = 2ty + sin(ty)
where t ≥ 1. Then rF (t, r) > 0 for all r 6= 0 and ty ≤ F (t, y) ≤ 3ty.
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A pair of functions (x(t), y(t)) is called a solution of system (1.1) with maximal existence interval [a, αxy),
a < αxy ≤ ∞, if both x(t) and y(t) are differentiable and satisfy system (1.1) on [a, αxy). A solution
(x(t), y(t)) is said to be eventually positive if there exists a b ≥ a such that both x(t) and y(t) are positive
on [b, αxy). Note that there are some general conditions to guarantee that the solutions can be extended to
[a,∞) [12]. We restrict our discussions to solutions of system (1.1) that can be extended to [a,∞).

Classification, existence, asymptotic behavior, and other properties of solutions of some special cases of
system (1.1)–second order nonlinear differential equations–have been studied in details; see [1, 2, 4, 6, 9, 10,
11, 13] and many other publications. The investigation for nonlinear differential systems can be found in
[3, 7, 8] and other literatures, but all these discussions focus on separable nonlinear differential systems

x′(t) = a(t)f(y(t))

y′(t) = b(t)g(x(t)).
(1.3)

In this paper, we discuss the classification of all eventually positive solutions of system (1.1) and provide
results of existence and nonexistence of certain solutions. Our results completely extend all the results of [8]
to the nonseparable differential system (1.1), and moreover, we establish some nonexistence theorems for
certain solutions and show that some sufficient conditions for the nonexistence are optimal in some sense.

The following assumptions are imposed for the discussions:

(H1A) There exists a real number K > 0 such that

|f(uv)| ≤ K|f(u)||f(v)|, ∀u, v ∈ R.

(H1B) There exists a real number M > 0 such that

|g(uv)| ≤M |g(u)||g(v)|, ∀u, v ∈ R.

(H2A) There exists a real number r0 > 0 such that∫ ±∞
±r0

dr

f(g(r))
=∞.

(H2B) There exists a real number r0 > 0 such that∫ ±∞
±r0

dr

g(f(r))
=∞.

Define four classes of solutions of system (1.1) below. We will show that all eventually positive solutions
belong to one of the four classes.

S(c, c) =
{

(x, y) : lim
t→∞

x(t) = c1 > 0, lim
t→∞

y(t) = c2 > 0
}
,

S(c,∞) =
{

(x, y) : lim
t→∞

x(t) = c1 > 0, lim
t→∞

y(t) =∞
}
,

S(∞, c) =
{

(x, y) : lim
t→∞

x(t) =∞, lim
t→∞

y(t) = c2 > 0
}
,

S(∞,∞) =
{

(x, y) : lim
t→∞

x(t) =∞, lim
t→∞

y(t) =∞
}
.

Let

A =

∫ ∞
a

a(t)dt, B =

∫ ∞
a

b(t)dt.

There are four possible cases for A and B: A = ∞ and B = ∞, A = ∞ and B < ∞, A < ∞ and B = ∞,
and A <∞ and B <∞. In the following sections we will consider the classification with each of these four
cases as in [8].



Lianwen Wang, Commun. Nonlinear Anal. 2 (2020), 110–119 112

2. The Case A = ∞ And B = ∞

Theorem 2.1. Suppose that A =∞ and B =∞. Then any eventually positive solutions of (1.1) belong to
S(∞,∞).

Proof. Let (x, y) be an eventually positive solution of system (1.1). Then x′(t) > 0 and y′(t) > 0 for t ≥ b.
So, x(t) ≥ x(b) and y(t) ≥ y(b) for t ≥ b. Therefore, we have

x(t) = x(b) +

∫ t

b
F (s, y(s))ds ≥

∫ t

b
a(s)f(y(s))ds ≥ f(y(b))

∫ t

b
a(s)ds,

and

y(t) = y(b) +

∫ t

b
G(s, x(s))ds ≥

∫ t

b
b(s)g(x(s))ds ≥ g(x(b))

∫ t

b
b(s)ds.

This implies that (x, y) ∈ S(∞,∞).

Remark 2.2. Theorem 2.1 extends [8] Theorem 2.1 to nonseparable differential system (1.1).

3. The Case A = ∞ And B < ∞

Theorem 3.1. Suppose that A =∞ and B <∞. Then any eventually positive solutions of (1.1) belong to
either S(∞,∞) or S(∞, c).

Proof. Let (x, y) be an eventually positive solution of system (1.1). Then x′(t) > 0 and y′(t) > 0 for t ≥ b.
So, x(t) ≥ x(b) and y(t) ≥ y(b) for t ≥ b. Note that

x(t) = x(b) +

∫ t

b
F (s, y(s))ds ≥

∫ t

b
a(s)f(y(s))ds ≥ f(y(b))

∫ t

b
a(s)ds.

So, x(t)→∞ as t→∞ and (x, y) ∈ S(∞,∞) or S(∞, c).

Theorem 3.2. Suppose that A =∞ and B <∞. If S(∞, c) 6= ∅, then∫ ∞
a

b(t)g
(
f(c)

∫ t

a
a(s)ds

)
dt <∞ (3.1)

for some c > 0.

Proof. Let (x, y) be an eventually positive solution of system (1.1). Then x′(t) > 0 and y′(t) > 0 for t ≥ b.
So, x(t) ≥ x(b) and y(t) ≥ y(b) for t ≥ b. Note that

x(t) = x(b) +

∫ t

b
F (s, y(s))ds ≥

∫ t

b
a(s)f(y(s))ds ≥ f(y(b))

∫ t

b
a(s)ds,

and

y(t) = y(b) +

∫ t

b
G(s, x(s))ds

≥
∫ t

b
b(s)g(x(s))ds

≥
∫ t

b
b(s)g

(
f(y(b))

∫ t

b
a(ξ)dξ

)
ds.

Therefore, ∫ ∞
b

b(t)g
(
f(y(b))

∫ t

b
a(s)ds

)
dt <∞.
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Theorem 3.3. Suppose that A =∞ and B <∞. If∫ ∞
a

b(t)g
(
αf(c)

∫ t

a
a(s)ds

)
dt <∞ (3.2)

for some c > 0, then S(∞, c) 6= ∅.

Proof. Take a large T > a such that∫ ∞
a

b(t)g
(
αf(c)

∫ t

a
a(s)ds

)
dt <

c

2β
.

Let CB[T,∞) be the Banach space of all bounded and continuous functions defined on [T,∞) with the
supremum norm and let X be a subset of CB[T,∞) defined as

X = {y ∈ CB[T,∞) :
c

2
≤ y(t) ≤ c, t ≥ T}.

Clearly, X is a convex and bounded subset of CB[T,∞). Define an operator J : X → CB[T,∞) as

(Jy)(t) = c−
∫ ∞
t

G
(
s,

∫ s

T
F (ξ, y(ξ))dξ

)
ds, t ≥ T.

In the following we will show that J maps X into X, it is continuous, and JX is precompact.
First of all, J maps X into X because for any y ∈ X

c ≥ (Jy)(t) ≥ c−
∫ ∞
T

G
(
t,

∫ t

T
F (ξ, y(ξ))dξ

)
dt

≥ c− β
∫ ∞
T

b(t)g
(
αf(c)

∫ t

a
a(s)ds

)
dt

≥ c/2.

Let yn, y ∈ X such that ‖yn − y‖ → 0 as n→∞. Since F and G are continuous, for each s ≥ T , we have

G
(
s,

∫ s

T
F (ξ, yn(ξ))dξ

)
−G

(
s,

∫ s

T
F (ξ, y(ξ))dξ

)
→ 0, n→∞.

Also, ∣∣∣G(s, ∫ s

T
F (ξ, yn(ξ))dξ

)
−G

(
s,

∫ s

T
F (ξ, y(ξ))dξ

)∣∣∣ ≤ 2βb(s)g
(
αf(c)

∫ s

T
a(ξ)dξ

)
.

By the Lebesgue’s Dominated Convergence Theorem, we have

lim
n→∞

‖Jyn − Jy‖ = lim
n→∞

sup
t≥T
|(Jyn)(t)− (Jy)(t)‖

≤ lim
n→∞

∫ ∞
T

∣∣∣G(t,∫ t

T
F (s, yn(s))ds

)
−G

(
t,

∫ t

T
F (s, y(s))ds

)∣∣∣dt
= 0.

Thus, J is continuous.
JX is equicontinuous because for any t1, t2 ≥ T and t2 > t1

|(Jy)(t2)− (Jy)(t1)| =
∫ t2

t1

G
(
t,

∫ t

T
F (s, y(s))ds

)
dt

≤ β
∫ t2

t1

b(t)g
(
αf(c)

∫ t

T
a(s)ds

)
dt.



Lianwen Wang, Commun. Nonlinear Anal. 2 (2020), 110–119 114

Also JX is uniformly bounded. The precompactness of JX follows from Arzelà–Ascoli Theorem.

By Schauder’s fixed-point theorem, J has a fixed point in X, let it be ȳ. Define

x̄ =

∫ t

T
F (s, ȳ(s))ds.

It is easy to check that (x̄, ȳ) is a class S(∞, c) solution of system (1.1).

Combining Theorem 3.2 and Theorem 3.3, we have

Corollary 3.4. Suppose that A =∞ and B <∞. Then S(∞, c) 6= ∅ for system (1.3) if and only if

∫ ∞
a

b(t)g
(
f(c)

∫ t

a
a(s)ds

)
dt <∞

for some c > 0.

Corollary 3.5. Suppose that A =∞, B <∞, and (H1B) hold. Then S(∞, c) 6= ∅ for system (1.1) if and
only if ∫ ∞

a
b(t)g

(∫ t

a
a(s)ds

)
dt <∞. (3.3)

Proof. We will show that (3.1), (3.2), and (3.3) are equivalent under assumption (H1B). Indeed, if (3.2) is
satisfied, then (3.1) is satisfied since

∫ ∞
a

b(t)g
(
f(c)

∫ t

a
a(s)ds

)
dt ≤

∫ ∞
a

b(t)g
(
αf(c)

∫ t

a
a(s)ds

)
dt.

If (3.1) is true, so is (3.3) because

∫ ∞
a

b(t)g
(∫ t

a
a(s)ds

)
dt

=

∫ ∞
a

b(t)g
( 1

f(c)
f(c)

∫ t

a
a(s)ds

)
dt

≤Mg
( 1

f(c)

)∫ ∞
a

b(t)g
(
f(c)

∫ t

a
(s)ds

)
dt.

If (3.3) holds, so does (3.2) since

∫ ∞
a

b(t)g
(
αf(c)

∫ t

a
a(s)ds

)
dt ≤Mg(αf(c))

∫ ∞
a

b(t)g
(∫ t

a
a(s)ds

)
dt.

The next result provides the condition for the emptiness of class S(∞,∞).

Theorem 3.6. Suppose that A =∞, B <∞, (H1A), and (H2A) are satisfied. In addition, let (3.3) hold.
Then S(∞,∞) = ∅.
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Proof. Let (x, y) be an eventually positive solution of system (1.1) that belongs to class S(∞,∞). Then
x′(t) > 0 and y′(t) > 0 for t ≥ b. Note that

y(t) = y(b) +

∫ t

b
G(s, x(s))ds

≤ y(b) + β

∫ t

b
b(s)g(x(s))ds

≤ y(b) + βg(x(t))

∫ t

b
b(s)ds

= g(x(t))
( y(b)

g(x(t))
+ β

∫ t

b
b(s)ds

)
≤ g(x(t))

( y(b)

g(x(b))
+ β

∫ t

b
b(s)ds

)
.

Choose L > 1 such that
y(b)

g(x(b))
+ β

∫ t

b
b(s)ds ≤ L

∫ t

b
b(s)ds,

we have

y(t) ≤ Lg(x(t))

∫ t

b
b(s)ds.

Applying (H1A) we have

x′(t) = F (t, y(t)) ≤ αa(t)f
(
Lg(x(t)

)
≤ αK2f(L)a(t)f(g(x(t)))f

(∫ t

b
b(s)ds

)
.

Then
x′(t)

f(g(x(t)))
≤ αK2f(L)a(t)f(g(x(t)))f

(∫ t

b
b(s)ds

)
.

Integrating from b to t yields∫ x(t)

x(b)

dr

f(g(r))
≤ αK2f(L)

∫ t

b
a(s)f

(∫ s

b
b(σ)dσ

)
ds.

Note that limt→∞ x(t) =∞, taking the limit as t→∞ we have∫ ∞
x(b)

dr

f(g(r))
≤ αK2f(L)

∫ ∞
b

a(t)f
(∫ t

b
b(s)ds

)
dt <∞,

which contradicts (H2A). Therefore, S(∞,∞) = ∅.

Remark 3.7. (H2A) in Theorem 3.6 is sharp. For example, consider the differential system on t ≥ 1

x′(t) =
1

t
1
3

y
1
3 (t)

y′(t) =
1

t5
x5(t).

(3.4)

Here, a(t) = 1

t
1
3

, b(t) = 1
t5

, f(r) = r
1
3 , and g(r) = r5. Clearly, A =∞ and B <∞. Moreover,∫ ∞

1

dr

f(g(r))
=

∫ ∞
1

dr

r
5
3

<∞,
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and ∫ ∞
1

b(t)g
(∫ t

1
a(s)ds

)
dt <

(3

2

)5 ∫ ∞
1

dt

t
5
3

<∞.

However, (x, y) = (t, t) is a S(∞,∞) solution of system (3.4).

Remark 3.8. Theorem 3.1 extends [8] Theorem 3.1 to system (1.1). By Corollary 3.4, Theorem 3.2 and
Theorem 3.3 extend [8] Theorem 3.2 to system (1.1).

4. The Case A < ∞ And B = ∞

Because of the symmetric feature of x and y in system (1.1), with the same arguments in the previous
section, we have the following results.

Theorem 4.1. Suppose that A <∞ and B =∞. Then any eventually positive solutions of (1.1) belong to
either S(∞,∞) or S(c,∞).

Theorem 4.2. Suppose that A <∞ and B =∞. If S(c,∞) 6= ∅, then∫ ∞
a

a(t)f
(
g(c)

∫ t

a
b(s)ds

)
dt <∞

for some c > 0.

Theorem 4.3. Suppose that A <∞ and B =∞. If∫ ∞
a

a(t)f
(
βg(c)

∫ t

a
b(s)ds

)
dt <∞

for some c > 0, then S(c,∞) 6= ∅.

Combining Theorem 4.2 and Theorem 4.3, we obtain

Corollary 4.4. Suppose that A <∞ and B =∞. Then S(c,∞) 6= ∅ for system (1.3) if and only if∫ ∞
a

a(t)f
(
g(c)

∫ t

a
b(s)ds

)
dt <∞ (4.1)

for some c > 0.

Corollary 4.5. Suppose that A <∞, B =∞, and (H1A) hold. Then S(c,∞) 6= ∅ for system (1.1) if and
only if ∫ ∞

a
a(t)f

(∫ t

a
b(s)ds

)
dt <∞. (4.2)

Theorem 4.6. Suppose that A <∞, B =∞, (H1B), and (H2B) are satisfied. In addition, let (4.2) hold.
Then S(∞,∞) = ∅.

Remark 4.7. (H2B) in Theorem 4.6 is sharp. This can be explained from Remark 3.7 by switching x and y
in the example.

Remark 4.8. Theorem 4.1 extends [8] Theorem 4.1 to system (1.1). By Corollary 4.4, Theorem 4.1 and
Theorem 4.2 extend [8] Theorem 4.2 to system (1.1).
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5. The Case A < ∞ And B < ∞

Theorem 5.1. Suppose that A <∞ and B <∞. Then all eventually positive solutions of (1.1) belong to
either S(∞,∞) or S(c, c).

Proof. Let (x, y) be an eventually positive solution of system (1.1). Then x′(t) > 0 and y′(t) > 0 for t ≥ b.
If limt→∞ x(t) = c1 > 0, then x(t) ≤ c1 for t ≥ b and

y(t) = y(b) +

∫ t

b
G(s, x(s))ds

≤ y(b) + β

∫ t

b
b(s)g(x(s))ds

≤ y(b) + βg(c1)

∫ t

b
b(s)ds

≤ y(b) + βg(c1)B <∞,

which implies that limt→∞ y(t) = c2 > 0. Similarly, if limt→∞ y(t) = c2 > 0, then limt→∞ x(t) = c1 > 0.

Theorem 5.2. The solution class S(c, c) 6= ∅ if and only if A <∞ and B <∞.

Proof. Let (x, y) be an eventually positive class S(c, c) solution of system (1.1). Then x′(t) > 0 and y′(t) > 0
for t ≥ b, also, limt→∞ x(t) = c1 > 0 and limt→∞ y(t) = c2 > 0. In view of

x(t) = x(b) +

∫ t

b
F (s, y(s))ds

≥
∫ t

b
a(s)f(y(s))ds

≥ f(y(b))

∫ t

b
a(s)ds,

we have A <∞. The proof of B <∞ is similar.
Conversely, for two real numbers c > 0 and d > 0, we have∫ ∞

a
a(t)f(2c)dt <∞,

∫ ∞
a

b(t)g(2d)dt <∞.

Pick T > b large enough such that∫ ∞
T

a(t)f(2c)dt <
d

α
,

∫ ∞
T

b(t)g(2d)dt <
c

β
.

Let CB[T,∞)×CB[T,∞) be the space of all continuous and bounded function pairs with the usual pointwise
ordering ≤. Define a subset of CB[T,∞)× CB[T,∞) as

X = {(x, y) ∈ CB[T,∞)× CB[T,∞) : d ≤ x(t) ≤ 2d, c ≤ y(t) ≤ 2c, t ≥ T}.

Clearly, for any subset Ω of X, inf Ω ∈ X and sup Ω ∈ X. Consider an operator J : X → CB[T,∞) ×
CB[T,∞) with

(Jx)(t) = d+

∫ t

T
F (s, y(s))ds

(Jy)(t) = c+

∫ t

T
G(s, x(s))ds.
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The operator J satisfies all the assumptions of Knaster’s fixed-point theorem [5]: J maps X into X and
preserve the order. Indeed, if (x, y) ∈ X, then

d ≤ (Jx)(t) ≤ d+ α

∫ ∞
T

a(t)f(y(t))dt ≤ d+ α

∫ ∞
T

a(t)f(2c)dt ≤ 2d,

and

c ≤ (Jy)(t) ≤ c+ β

∫ ∞
T

b(t)g(x(t))dt ≤ c+ β

∫ ∞
T

b(t)g(2d)dt ≤ 2c.

By Knaster’s fixed-point theorem, J has a fixed-point in X, let it be (x̄, ȳ) ∈ X. Then

x̄′(t) = d+

∫ t

T
F (s, ȳ(s))ds

ȳ′(t) = c+

∫ t

T
G(s, x̄(s))ds.

It is easy to check that (x̄, ȳ) is a class S(c, c) solution of system (1.1).

Theorem 5.3. Suppose that A < ∞ and B < ∞. Then the solution class S(∞,∞) = ∅ if one of the
following two conditions is satisfied:
(1): (H1A) and (H2A),
(2): (H1B) and (H2B).

Proof. Note that A <∞ and B <∞ imply (3.3) and (4.2). The rest proof is similar to that of Theorem 3.6
and Theorem 4.6.

Remark 5.4. (H2A) and (H2B) are sharp in Theorem 5.3. For example, consider the differential system on
t ≥ 1

x′(t) =
1

t3
y3(t)

y′(t) =
1

t5
x5(t).

(5.1)

Here, a(t) = 1
t3

, b(t) = 1
t5

, f(r) = r3, and g(r) = r5. Clearly, A <∞ and B <∞. Moreover,∫ ∞
1

dr

f(g(r))
=

∫ ∞
1

dr

g(f(r))
=

∫ ∞
1

dr

r15
<∞.

However, (x, y) = (t, t) is a class S(∞,∞) solution of system (5.1).

Remark 5.5. Theorem 5.1 and Theorem 5.2 extend Theorem 5.1 and Theorem 5.2 in [8] to nonseparable
differential system (1.1), respectively.
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[4] Z. Došlá and K. Fujimoto, Asymptotic problems for nonlinear ordinary differential equations with ϕ-Laplacian,
J. Math. Anal. Appl., 484 (2020), Article ID 123674. 1
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