Communications in Nonlinear Analysis

Study a semi-linear pseudo-parabolic problem with Neumann and integral conditions by using Galerkin mixed finite element method

Sihem Benamira ${ }^{\text {a,* }}$, Taki-Eddine Oussaeif ${ }^{\text {b }}$, Abdalfeteh Bouziani ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics University Mentouri Constantine 1, Algeria.
${ }^{b}$ Department of Mathematics and Computer science, Oum El Bouaghi University, Algeria

Abstract

In this paper, we establish sufficient conditions for the existence, uniqueness, and continuous dependence of generalized solution of a semi-linear pseudo-parabolic problem with Neumann condition and integral boundary condition of first type. The results are by the application of the method based on a priori estimate "energy inequality" and the finite element method based on the Faedo-Galerkin technique.

Keywords: Nonlocal conditions, Integral condition, Finite element method, A priori estimates, Non-Classical Space,, pseudo-parabolic problem.
2010 MSC: 35A05, 35A07, 35K50, 35Q80.

1. Introduction

In the recent years, a new attention has been given to non-linear partial differential equations problem which involve an integral over the spatial domain of a function of the desired solution on the boundary conditions ; see $[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]$.

The purpose of this paper is to prove the existence and uniqueness of a solution for the following pseudoparabolic problem with Neumann condition and integral boundary condition of first type. The plan of this paper is as follows. In section 2 we give some notations used through out the paper. Section 3 is devoted to statement of the problem. In section 4 we construct an approximate solution using finite element method. in section 5 we give some a priori estimates. Finally in the section 6 , we prove the convergence and we give the existence result where we prove the uniqueness and the continuous dependence of solution.

[^0]
2. Notation

Let $L^{2}(\Omega)$ be the usual space of square integrable functions ; its scalar product is denoted by (.,.) and its associated norm by $\|$.$\| . We denote by C_{0}(\Omega)$ the space of continuous functions with compact support in Ω.

Definition 2.1. We denote by $B_{2}^{m}(\Omega)$ called the Bouziani space, the Hilbert space defined of $C_{0}(\Omega)$ for the scalar product

$$
\begin{equation*}
(z, w)_{B_{2}^{m}(\Omega)}=\int_{\Omega} \Im_{x}^{m} z . \Im_{x}^{m} w d x \tag{2.1}
\end{equation*}
$$

where

$$
\Im_{x}^{m} z=\int_{\Omega} \frac{(x-\xi)^{m-1}}{(m-1)!} z(\xi) d \xi
$$

by the norm of the function z from $B_{2}^{m}(\Omega)$, the nonnegative number

$$
\begin{equation*}
\|z\|_{B_{2}^{m}(\Omega)}=\left(\int_{\Omega}\left(\Im_{x}^{m} z\right)^{2} d x\right)^{\frac{1}{2}}<\infty \tag{2.2}
\end{equation*}
$$

then the inequality

$$
\begin{equation*}
\|z\|_{B_{2}^{m}(\Omega)}^{2} \leq \frac{(\beta-\alpha)^{2}}{2}\|z\|_{B_{2}^{m-1}(\Omega)}^{2}, m \geq 1 \tag{2.3}
\end{equation*}
$$

holds for every $z \in B_{2}^{m-1}(\Omega)$, and the embedding

$$
\begin{equation*}
B_{2}^{m-1}(\Omega) \hookrightarrow B_{2}^{m}(\Omega) \tag{2.4}
\end{equation*}
$$

is continuous.
Remark 2.2. If $m=0$, the space $B_{2}^{0}(\Omega)$ coincides with $L^{2}(\Omega)$.
Definition 2.3. We denote by $L_{0}^{2}(\Omega)$ the space consisting of elements $z(x)$ of the space $L^{2}(\Omega)$ verifying

$$
\int_{\Omega} x^{k} z(x) d x=0(k=0,1)
$$

Let X be a space with a norm denoted by $\|\cdot\|_{X}$
Definition 2.4. (i) Denote by $L^{2}(I, X)$ the set of all measurable abstract functions $u(., t)$ from I into X such that

$$
\begin{equation*}
\|u\|_{L^{2}(I, X)}=\left(\int_{I}\|u(., t)\|_{x}^{2} d t\right)^{\frac{1}{2}}<\infty \tag{2.5}
\end{equation*}
$$

(ii) Let $C(\bar{I} ; X)$ be the set of all continuous functions $u(., t): \bar{I} \longrightarrow X$ with

$$
\|u\|_{C(\bar{I} ; X)}=\max \|u(., t)\|_{X}<\infty
$$

Lemma 2.5. Let be $v:[0, T] \rightarrow H$ be a Bochner integrable function and let $A \subset[0, T]$, any measurable subset, so:
i) the function $\|v(.)\|_{H}:[0, T] \rightarrow H$ is Lebesgue integrable and we have,

$$
\begin{equation*}
\left\|\int_{A} v(t) d t\right\|_{H} \leq \int_{A}\|v(t)\|_{H} d t \tag{2.6}
\end{equation*}
$$

ii) for each $\varphi \in H$, the function $(v(.), \varphi)_{H}:[0, T] \rightarrow \mathbb{R}$ is Lebesgue integrable and we have,

$$
\begin{equation*}
\left(\int_{A} v(t) d t, \varphi\right)_{H}=\int_{A}(v(t), \varphi)_{H} d t . \tag{2.7}
\end{equation*}
$$

Lemma 2.6. Let M be a linear closed subspace from a Hilbert space H. So for every $h \in H$, there exists a unique $u \in M$ such that:

$$
\begin{equation*}
\|h-u\|_{H}=\min _{v \in M}\|h-v\|_{H}, \tag{2.8}
\end{equation*}
$$

the element u is called the orthogonal projection of h on M relatively to the inner product (.,.) and we note $u=P_{M} h$. Furthermore, we have the following Pythagorean relation

$$
\begin{equation*}
\|h\|_{H}^{2}=\left\|P_{M} h\right\|_{H}^{2}+\left\|h-P_{M} h\right\|_{H}^{2} . \tag{2.9}
\end{equation*}
$$

Theorem 2.7 (Cauchy- Schwarz inequality). Let be f and g two functions of $L^{2}(\Omega)$; so

$$
f . g \in L^{1}(\Omega),
$$

and

$$
\begin{equation*}
\int_{\Omega}|f \cdot g| \leq\|f\|_{L^{2}} \cdot\|g\|_{L^{2}} \tag{2.10}
\end{equation*}
$$

Theorem 2.8 (The Cauchy inequality). Let be $a, b \in \mathbb{R}$, and every $\varepsilon>0$, we have

$$
|a b| \leq \frac{\varepsilon}{2} a^{2}+\frac{1}{2 \varepsilon} b^{2} .
$$

Lemma 2.9 (Gronwall lemma). Let $h(t)$ and $y(t)$ be two real integrable functions on the interval $I, h(\tau)$ nondeceasing, and c a positive constant if

$$
y(t) \leq h(t)+c \int_{0}^{t} y(\tau) d \tau \quad \forall t \in I,
$$

then

$$
y(t) \leq h(t) e^{c t} \quad \forall t \in I .
$$

Definition 2.10. We call a nonlinear differential system the system of the form

$$
\begin{equation*}
\dot{X}(t)=F[X(t)] \tag{2.11}
\end{equation*}
$$

t is a real

$$
X(t)=\left(\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\cdot \\
\cdot \\
\cdot \\
x_{n}(t)
\end{array}\right), \quad F(t)=\left(\begin{array}{c}
f_{1}(t) \\
f_{2}(t) \\
\cdot \\
\cdot \\
\cdot \\
f_{n}(t)
\end{array}\right)
$$

where f_{i} are continuous functions.
Definition 2.11. Let be

$$
X(t): \begin{array}{lll}
I \subset \mathbb{R} & \longrightarrow & \mathbb{R}^{n} \tag{2.12}\\
x & \longrightarrow & x(t)
\end{array}
$$

X is the solution of the system (2.11), if X is derivable and continuous function, for every each $t \in I$, $X(t) \in I$ and $\dot{X}(t)=F(X(t))$.

Theorem 2.12 (The unicity of solution). We suppose that F is derivable continuous function on $E \subset \mathbb{R}^{n}$. So for every each initial condition for $t_{0} \in I$ and $X_{0} \in E$ the solution of the system (2.11) if it exists it is unique.

Theorem 2.13 (Local existence of solution). Let be $t_{0} \in \mathbb{R}$ and $X_{0} \in \mathbb{R}^{n}$. If F is derivable continuous on X_{0}, it exists $h>0$ such that the solution of the system (2.11) verifying $X\left(t_{0}\right)=X_{0}$ exists on the interval $\left[t_{0}, t_{0}+h\right]$.

Theorem 2.14 (Global existence of solution). If F is derivable continuous function on \mathbb{R}^{n} and if the solution of the system (2.11) verifying $X(0)=X_{0}$ is bounded on the interval which it exists so the solution exists on $I=[0,+\infty]$.

See artical [22].

3. Statement of the problem

Let be the problem

$$
\begin{equation*}
\frac{\partial u(x, t)}{\partial t}-\alpha \frac{\partial^{2} u(x, t)}{\partial x^{2}}-\beta \frac{\partial}{\partial t}\left(\frac{\partial^{2} u(x, t)}{\partial x^{2}}\right)-(u(x, t))^{p}=f(x, t), \tag{3.1}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
u(x, 0)=u^{0} \tag{3.2}
\end{equation*}
$$

and the boundary conditions

$$
\left\{\begin{array}{c}
\frac{\partial u}{\partial x}(1, t)=0 \tag{3.3}\\
\int_{0}^{1} u(x, t) d x=0
\end{array}\right.
$$

with $t \in[0, T], T<\infty, \alpha \in \mathbb{R}_{+}^{*}, p \in \mathbb{N}^{*}, x \in[0,1]$.
Through the paper, we will make the following assumptions:
$\left(H_{1}\right): f \in L^{2}\left(0, T ; B_{2}^{1}(0,1)\right)$,
$\left(H_{2}\right): u^{0} \in V$ where V is defined in the following way

$$
\begin{equation*}
V=\left\{v \in L^{2}(0,1): \int_{0}^{1} v(x, t) d x=\frac{\partial v}{\partial x}(1, t)=0\right\} . \tag{3.4}
\end{equation*}
$$

Consequently V is a Hilbert space for (.,.). Moreover for a given function $w(x, t)$, the notation $w(t)$ is used for the same function considered as an abstract function of the variable t.
$\left(H_{3}\right): f(t, w) \in L^{2}(0,1)$ for each $(t, w) \in I \times L^{2}(0,1)$ and the following Lipschitz condition

$$
\left\|f(t, w)-f\left(t^{\prime}, w^{\prime}\right)\right\|_{B_{2}^{1}(0,1)} \leq M\left[\left|t-t^{\prime}\right|\left(1+\|w\|_{B_{2}^{1}(0,1)}+\left\|w^{\prime}\right\|_{B_{2}^{1}(0,1)}\right)+\left\|w-w^{\prime}\right\|_{B_{2}^{1}(0,1)}\right] .
$$

Definition 3.1. A weak solution of problem (3.1) - (3.3) means a function

$$
u:[0, T] \longrightarrow L^{2}(0,1)
$$

such that
(i) $u \in L^{2}\left(0, T ; B_{2}^{1}(0,1)\right)$,
(ii) u has a strong derivative $\frac{d u}{d t} \in L^{2}\left(0, T ; B_{2}^{1}(0,1)\right)$,
(iii) $u(0)=u^{0}$,
(iv) The identity :

$$
\left(\frac{d u(t)}{\partial t}, v\right)_{B_{2}^{1}(0,1)}+\alpha(u(t), v)+\beta\left(\frac{\partial u}{\partial t}, v\right)-\left(u^{p}(x, t), v\right)_{B_{2}^{1}(0,1)}=(f(x, t), v)_{B_{2}^{1}(0,1)}
$$

4. Construction of an approximate solution

Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}, \ldots$ be a Hilbertian basis of V, such that we devise $[\alpha, \beta]$ on $N+1$ parts $\left(N \in \mathbb{N}^{*}\right)$ and we pose

$$
h=\frac{1}{N+1} \quad, \quad t_{i}=i h \quad, \quad i=0,1,2, \ldots, N+1
$$

We define functions $\left(\varphi_{i}\right)$ by

$$
\varphi_{i}(x)= \begin{cases}\frac{x-x_{i-1}}{x_{i}-x_{i-1}}, & x_{i-1} \leq x \leq x_{i} \\ \frac{x-x_{i}}{x_{i+1}-x_{i}}, & x_{i} \leq x \leq x_{i+1} \\ 0, & \text { ailleurs }\end{cases}
$$

For every each functions $\left(\varphi_{i}\right)$ are of degree 1 with $\varphi_{i}\left(x_{j}\right)=\delta_{i j}$.
Let $\left(V_{n}\right)$ the subspace from V generated by the first n elements of the basis.
We have to find for each $n \in \mathbb{N}^{*}$, the approximate solution which has the following form

$$
\begin{equation*}
u_{n}(x, t)=\sum_{i=1}^{n} g_{i n}(t) \varphi_{i}(x), \quad(x, t) \in(0,1) \times[0, T] \tag{4.1}
\end{equation*}
$$

where $g_{i n} \in H^{1}(0, T)$ are unknown functions for the moment.
As we have that $u^{0} \in V$ and V_{n} is a closed subspace from V, we can define in a unique way u_{n}^{0} by

$$
\begin{equation*}
u_{n}^{0}=P_{V_{n}} u^{0} \tag{4.2}
\end{equation*}
$$

where $P_{V_{n}}$ is define in lemma (2.1). By the virtue of the density of $\cup V_{n}$ in V it follows that

$$
\begin{equation*}
u_{n}^{0} \longrightarrow u^{0} \text { in } V \text { if } n \longrightarrow \infty \tag{4.3}
\end{equation*}
$$

We note by $\left(g_{i n}^{0}\right)$ the coordinates of u_{n}^{0} in the basis $\left(\varphi_{i}\right)_{i=1}^{n}$ of V_{n} that is

$$
\begin{equation*}
u_{n}^{0}=\sum_{i=1}^{n} g_{i n}^{0} \varphi_{i} \tag{4.4}
\end{equation*}
$$

so, we have to find

$$
\begin{equation*}
u_{n} \in H^{1}\left(0, T ; V_{n}\right) \tag{4.5}
\end{equation*}
$$

solution of the differential system

$$
\begin{gather*}
\left(\frac{d u_{n}}{d t}, \varphi_{j}\right)_{B_{2}^{1}(0,1)}+\alpha\left(u_{n}, \varphi_{j}\right)-\beta\left(\frac{d u_{n}}{d t}, \varphi_{j}\right)-\left(u_{n}^{p}, \varphi_{j}\right)_{B_{2}^{1}(0,1)}=\left(f(x, t), \varphi_{j}\right)_{B_{2}^{1}(0,1)} \tag{4.6}\\
u_{n}(0)=u_{n}^{0} \tag{4.7}
\end{gather*}
$$

By replacing $\left(u_{n}\right)$ by (4.1) and by using the following notations

$$
\begin{array}{lll}
\alpha_{i j}=\left(\varphi_{i}, \varphi_{j}\right)_{B_{2}^{1}(\Omega)} & , & A=\left(\alpha_{i j}\right)_{1 \leq i, j \leq n} \\
B_{i j}=\left(\varphi_{i}, \varphi_{j}\right) & , & B=\left(B_{i j}\right)_{1 \leq i, j \leq n} \\
C_{j}=\left(u_{n}^{p}, \varphi_{j}\right)_{B_{2}^{1}(0,1)} & , & C=\left(C_{j}\right)_{1 \leq j \leq n} \\
F_{j}(t)=\left(f, \varphi_{j}\right)_{B_{2}^{1}(0,1)} & , & \overrightarrow{F(t)}=\left(F_{j}(t)\right)_{j=1}^{n}
\end{array}
$$

and

$$
\overrightarrow{g_{n}(t)}=\left(g_{i_{n}}(t)\right)_{i=1}^{n} \quad, \quad \overrightarrow{g_{n}^{0}}=\left(g_{i_{n}}^{0}\right)_{i=1}^{n}
$$

The system (4.6) can be written as follows

$$
\begin{equation*}
(A-\beta B) \frac{\overrightarrow{d g_{n}}}{d t}+\alpha B \overrightarrow{g_{n}}+C \overrightarrow{g_{n}^{p}}=\overrightarrow{F(t)}, \tag{4.8}
\end{equation*}
$$

which is a nonlinear differential system.
We easily prove that $(A-\beta B)$ is regular matrix, and by virtue Definition (2.10), (2.11) and Theorems (2.12), (2.13) and (2.14), so the system (4.8) has a unique solution $\overrightarrow{g_{n}} \in\left[H^{1}(0, T)\right]^{n}$.

Lemma 4.1. For every $n \geq 1$, problem (4.5) - (4.8) has a unique solution $u_{n} \in H^{1}\left(0, T ; V_{n}\right)$ which has the form (4.1).

5. A-priori estimates for approximations

Lemma 5.1. For every $n \in \mathbb{N}^{*}$ functions $u_{n} \in H^{1}\left(0, T ; V_{n}\right)$ solutions of (4.6) verify

$$
\begin{equation*}
\int_{0}^{t}\left\|u_{n}\right\|^{2} d \tau \leq K T \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{t}\left\|\frac{d u_{n}}{d t}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau \leq \frac{L}{\beta} \tag{5.2}
\end{equation*}
$$

where K and L are two positive constants.
Proof. Multiplying the integral identity (4.6) by $g_{j n}(t)$ and summing up for $j=1, \ldots, n$ and integrating the resulting over $(0, t)$, we obtain

$$
\begin{align*}
& \frac{1}{2}\left\|u_{n}\right\|_{B_{2}^{1}(0,1)}^{2}+\alpha \int_{0}^{t}\left\|u_{n}\right\|^{2} d \tau+\frac{\beta}{2}\left\|u_{n}\right\|^{2} \tag{5.3}\\
& =\int_{0}^{t}\left(f, u_{n}\right)_{B_{2}^{1}(0,1)} d \tau+\int_{0}^{t}\left(u_{n}^{p}, u_{n}\right)_{B_{2}^{1}(0,1)} d \tau+\frac{1}{2}\left\|u_{n}^{0}\right\|_{B_{2}^{1}(0,1)}^{2}+\frac{\beta}{2}\left\|u_{n}^{0}\right\|^{2} .
\end{align*}
$$

We have

$$
\begin{equation*}
\left\|u_{n}^{0}\right\|_{B_{2}^{1}(0,1)}^{2} \leq\left\|u^{0}\right\|_{B_{2}^{1}(0,1)}^{2} \leq \frac{1}{2}\left\|u^{0}\right\|^{2} \tag{5.4}
\end{equation*}
$$

so

$$
\begin{align*}
& \left\|u_{n}\right\|_{B_{2}^{1}(0,1)}^{2}+2 \alpha \int_{0}^{t}\left\|u_{n}\right\|^{2} d \tau+\beta\left\|u_{n}\right\|^{2} \\
& =2 \int_{0}^{t}\left(f, u_{n}\right)_{B_{2}^{1}(0,1)} d \tau+2 \int_{0}^{t}\left(u_{n}^{p}, u_{n}\right)_{B_{2}^{1}(0,1)} d \tau+\left(\frac{1}{2}+\beta\right)\left\|u^{0}\right\|^{2}, \tag{5.5}
\end{align*}
$$

hence, thanks to the Cauchy inequality (5.5)

$$
\begin{align*}
& \left\|u_{n}\right\|_{B_{2}^{1}(0,1)}^{2}+2 \alpha \int_{0}^{t}\left\|u_{n}\right\|^{2} d \tau+\beta\left\|u_{n}\right\|^{2} \\
& \leq \int_{0}^{t}\|f\|_{B_{2}^{1}(0,1)}^{2} d \tau+\int_{0}^{t}\left\|u_{n}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau+\int_{0}^{t}\left\|u_{n}^{p}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau \tag{5.6}\\
& +\int_{0}^{t}\left\|u_{n}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau+\left(\frac{1}{2}+\beta\right)\left\|u^{0}\right\|^{2},
\end{align*}
$$

but we have

$$
\left\|u_{n}\right\|_{B_{2}^{1}(0,1)}^{2} \leq \frac{1}{2}\left\|u_{n}\right\|^{2}
$$

we get

$$
\begin{align*}
& \left\|u_{n}\right\|_{B_{2}^{1}(0,1)}^{2}+(2 \alpha-1) \int_{0}^{t}\left\|u_{n}\right\|^{2} d \tau+\beta\left\|u_{n}\right\|^{2} \\
& \leq \int_{0}^{t}\|f\|_{B_{2}^{1}(0,1)}^{2} d \tau+\left(\frac{1}{2}+\beta\right)\left\|u^{0}\right\|^{2}+\int_{0}^{t}\left\|u_{n}^{p}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau \tag{5.7}
\end{align*}
$$

we have that

$$
\begin{align*}
\int_{0}^{t}\left\|u_{n}^{p}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau & =\int_{0}^{t}\left\|u_{n}^{p-1} \cdot u_{n}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau \\
& \leq \frac{1}{2} \int_{0}^{t}\left\|u_{n}^{p-1}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau+\frac{1}{2} \int_{0}^{t}\left\|u_{n}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau \tag{5.8}\\
& \leq \frac{1}{2} \int_{0}^{t}\left\|u_{n}^{p-1}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau+\frac{1}{4} \int_{0}^{t}\left\|u_{n}\right\|^{2} d \tau
\end{align*}
$$

substituting (5.8) in (5.7) we have

$$
\begin{align*}
& \left\|u_{n}\right\|_{B_{2}^{1}(0,1)}^{2}+\left(2 \alpha-\frac{5}{4}\right) \int_{0}^{t}\left\|u_{n}\right\|^{2} d \tau \\
& \leq \int_{0}^{t}\|f\|_{B_{2}^{1}(0,1)}^{2} d \tau+\left(\frac{1}{2}+\beta\right)\left\|u^{0}\right\|^{2}+\int_{0}^{t}\left\|u_{n}^{p-1}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau \tag{5.9}
\end{align*}
$$

But

$$
\begin{align*}
\int_{0}^{t}\left\|u_{n}^{p-1}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau & =\int_{0}^{t}\left\|u_{n}^{p-2} \cdot u_{n}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau \\
& \leq \frac{1}{2} \int_{0}^{t}\left\|u_{n}^{p-2}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau+\frac{1}{2} \int_{0}^{t}\left\|u_{n}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau \tag{5.10}\\
& \leq \frac{1}{2} \int_{0}^{t}\left\|u_{n}^{p-2}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau+\frac{1}{4} \int_{0}^{t}\left\|u_{n}\right\|^{2} d \tau
\end{align*}
$$

Since (5.10) so (5.9) can be written

$$
\begin{align*}
& \left\|u_{n}\right\|_{B_{2}^{1}(0,1)}^{2}+\left(2 \alpha-1-\frac{1}{2}-\frac{1}{2}\right) \int_{0}^{t}\left\|u_{n}\right\|^{2} d \tau \\
& \leq \int_{0}^{t}\|f\|_{B_{2}^{1}(0,1)}^{2} d \tau+\left(\frac{1}{2}+\beta\right)\left\|u^{0}\right\|^{2}+\int_{0}^{t}\left\|u_{n}^{p-2}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau \tag{5.11}
\end{align*}
$$

after p iteration we get

$$
\begin{align*}
& \left\|u_{n}\right\|_{B_{2}^{1}(0,1)}^{2}+\left(2 \alpha-1-\frac{p}{2}\right) \int_{0}^{t}\left\|u_{n}\right\|^{2} d \tau \\
& \leq \int_{0}^{t}\|f\|_{B_{2}^{1}(0,1)}^{2} d \tau+\left(\frac{1}{2}+\beta\right)\left\|u^{0}\right\|^{2}+\int_{0}^{t}\left\|\left(u_{n}\right)^{0}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau \tag{5.12}
\end{align*}
$$

so

$$
\begin{align*}
& \left\|u_{n}\right\|_{B_{2}^{1}(0,1)}^{2}+\left(2 \alpha-1-\frac{p}{2}\right) \int_{0}^{t}\left\|u_{n}\right\|^{2} d \tau+\beta\left\|u_{n}\right\|^{2} \\
& \leq \int_{0}^{t}\|f\|_{B_{2}^{1}(0,1)}^{2} d \tau+\left(\frac{1}{2}+\beta\right)\left\|u^{0}\right\|^{2}+\frac{T}{2} \tag{5.13}
\end{align*}
$$

Let be

$$
\begin{equation*}
K=\int_{0}^{t}\|f\|_{B_{2}^{1}(0,1)}^{2} d \tau+\left(\frac{1}{2}+\beta\right)\left\|u^{0}\right\|^{2}+\frac{T}{2} \tag{5.14}
\end{equation*}
$$

we get

$$
\begin{equation*}
\left\|u_{n}\right\|_{B_{2}^{1}(0,1)}^{2} \leq K \tag{5.15}
\end{equation*}
$$

so,

$$
\int_{0}^{t}\left\|u_{n}\right\|_{B_{2}^{1}(0,1)}^{2} \leq K T
$$

and

$$
\begin{equation*}
\int_{0}^{t}\left\|u_{n}\right\|^{2} d \tau \leq \frac{K}{2 \alpha-1-\frac{p}{2}} \tag{5.16}
\end{equation*}
$$

$$
\left\|u_{n}\right\|^{2} \leq \frac{K}{\beta}
$$

on the other hand multiplying (4.6) by $\frac{d g_{j n}}{d t}$ and sum up for $j=1, \ldots, n$ we obtain

$$
\begin{align*}
& \left\|\frac{d u_{n}}{d t}\right\|_{B_{2}^{1}(0,1)}^{2}+\frac{\alpha}{2} \frac{d}{d t}\left\|u_{n}\right\|^{2}+\beta\left\|\frac{d u_{n}}{d t}\right\|^{2} \tag{5.17}\\
& =\left(f, \frac{d u_{n}}{d t}\right)_{B_{2}^{1}(0,1)}+\left(u_{n}^{p}, \frac{d u_{n}}{d t}\right)_{B_{2}^{1}(0,1)}
\end{align*}
$$

integrating (5.17) over ($0, t$)

$$
\begin{align*}
& 2 \int_{0}^{t}\left\|\frac{d u_{n}}{d t}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau+\alpha\left\|u_{n}\right\|^{2}+2 \beta \int_{0}^{t}\left\|\frac{d u_{n}}{d t}\right\|^{2} d \tau \\
& =2 \int_{0}^{t}\left(f, \frac{d u_{n}}{d t}\right)_{B_{2}^{1}(0,1)} d \tau+2 \int_{0}^{t}\left(u_{n}^{p}, \frac{d u_{n}}{d t}\right)_{B_{2}^{1}(0,1)} d \tau+\alpha\left\|u_{n}^{0}\right\|^{2}, \tag{5.18}
\end{align*}
$$

by reference by the inequaliy (5.4) we get

$$
\begin{align*}
& 2 \int_{0}^{t}\left\|\frac{d u_{n}}{d t}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau+\alpha\left\|u_{n}\right\|^{2}+2 \beta \int_{0}^{t}\left\|\frac{d u_{n}}{d t}\right\|^{2} d \tau \\
& =2 \int_{0}^{t}\left(f, \frac{d u_{n}}{d t}\right)_{B_{2}^{1}(0,1)} d \tau+2 \int_{0}^{t}\left(u_{n}^{p}, \frac{d u_{n}}{d t}\right)_{B_{2}^{1}(0,1)} d \tau+\alpha\left\|u^{0}\right\|^{2} \tag{5.19}
\end{align*}
$$

applying the Cauchy inequality

$$
\begin{align*}
& \alpha\left\|u_{n}\right\|^{2}+2 \beta \int_{0}^{t}\left\|\frac{d u_{n}}{d t}\right\|^{2} d \tau \tag{5.20}\\
& \leq \int_{0}^{t}\|f\|_{B_{2}^{1}(0,1)}^{2} d \tau+\alpha\left\|u^{0}\right\|^{2}+\int_{0}^{t}\left\|u_{n}^{p}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau
\end{align*}
$$

but we have

$$
\begin{aligned}
\int_{0}^{t}\left\|u_{n}^{p}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau & =\int_{0}^{t}\left\|u_{n}^{p-1} \cdot u_{n}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau \\
& \leq \frac{1}{2} \int_{0}^{t}\left\|u_{n}^{p-1}\right\|_{B_{1}^{1}(0,1)}^{2} d \tau+\frac{1}{2} \int_{0}^{t}\left\|u_{n}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau \\
& \leq \frac{1}{2} \int_{0}^{t}\left\|u_{n}^{p-1}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau+\frac{1}{2} K T \quad \text { see equation (5.15) } \\
& \leq \frac{1}{2} \int_{0}^{t}\left\|u_{n}^{p-2} \cdot u_{n}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau+\frac{1}{2} K T \\
& \leq \frac{1}{2}\left[\frac{1}{2} \int_{0}^{t}\left\|u_{n}^{p-2}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau+\frac{1}{2} \int_{0}^{t}\left\|u_{n}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau\right]+\frac{1}{2} K T \\
& \leq \frac{1}{2} \cdot \frac{1}{2} \int_{0}^{t}\left\|u_{n}^{p-2}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau+\frac{1}{2} \cdot \frac{1}{2} \cdot K T+\frac{1}{2} K T,
\end{aligned}
$$

after p iteration we get

$$
\begin{equation*}
\int_{0}^{t}\left\|u_{n}^{p}\right\|_{B_{2}^{1}(0,1)}^{2} d \tau \leq T\left(\frac{1}{2^{p+1}}\left\|u_{0}\right\|^{2}+K\left(\frac{1}{2^{p}}+\frac{1}{2}\right)\right) \tag{5.21}
\end{equation*}
$$

substituting (5.21) in (5.20) we get

$$
\begin{align*}
& \alpha\left\|u_{n}\right\|^{2}+2 \beta \int_{0}^{t}\left\|\frac{d u_{n}}{d t}\right\|^{2} d \tau \\
& \leq \int_{0}^{t}\|f\|_{B_{2}^{1}(0,1)}^{2} d \tau+\alpha\left\|u^{0}\right\|^{2}+T\left(\frac{1}{2^{p+1}}\left\|(u)^{0}\right\|^{2}+K\left(\frac{1}{2^{p}}+\frac{1}{2}\right)\right) \tag{5.22}
\end{align*}
$$

Let be

$$
\begin{equation*}
L=\int_{0}^{t}\|f\|_{B_{2}^{1}(0,1)}^{2} d \tau+\alpha\left\|u^{0}\right\|^{2}+T\left(\frac{1}{2^{p+1}}+K\left(\frac{1}{2^{p}}+\frac{1}{2}\right)\right) \tag{5.23}
\end{equation*}
$$

so we have

$$
\begin{equation*}
\int_{0}^{t}\left\|\frac{d u_{n}}{d t}\right\|^{2} d \tau \leq \frac{L}{2 \beta} \tag{5.24}
\end{equation*}
$$

6. Convergence and existence result

Theorem 6.1. There exist a function $u \in L^{2}(0, T ; V)$ with

$$
\frac{d u}{d t} \in L^{2}\left(0, T ; B_{2}^{1}(0,1)\right)
$$

and a subsequence $\left(u_{n_{k}}\right)_{k} \subseteq\left(u_{n}\right)_{n}$ such that

$$
\begin{equation*}
u_{n_{k}} \rightharpoonup u \text { in } L^{2}(0, T ; V) \tag{6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d u_{n_{k}}}{d t} \rightharpoonup \frac{d u}{d t} \text { in } L^{2}\left(0, T ; B_{2}^{1}(0,1)\right) \tag{6.2}
\end{equation*}
$$

when $n \longrightarrow \infty$.
Proof. See article [3].
Theorem 6.2. The limit function u from Theorem (6.1) is the unique weak solution to problem (3.1) - (3.3) in the sense of definition (3.1).
Proof. One: Existence. We have to show that the limit function u satisfies all conditions $(i)-(i v)$ of definition (3.1) . Obviously, in light of properties of function u the first two conditions are already seen. On the other hand, from $u(t)=u^{0}+\int_{0}^{t} \Psi(s) d s, t \in[0, T]$, written in the proof of Theorem (6.1), we have directly $u(0)=u^{0}$, so the initial condition is also fulfilled, now we have to see that integral identity obeyed by u, for this, writing (4.6) for $n=n_{k}$ and integrating on $[0, t]$, it comes

$$
\begin{align*}
& \int_{0}^{t}\left(\frac{\partial u_{n_{k}}(s)}{\partial s}, \varphi_{j}\right)_{B_{2}^{1}(0,1)} d s+\alpha \int_{0}^{t}\left(u_{n_{k}}(s), \varphi_{j}\right) d s \\
& +\beta \int_{0}^{t}\left(\frac{\partial u_{n_{k}}(s)}{\partial s}, \varphi_{j}\right) d s-\int_{0}^{t}\left(u_{n_{k}}^{p}(s), \varphi_{j}\right)_{B_{2}^{1}(0,1)} d s \tag{6.3}\\
& =\int_{0}^{t}\left(f(x, s), \varphi_{j}\right)_{B_{2}^{1}(0,1)} d s ; \quad \forall t \in[0, T], \quad j=1, \ldots, n_{k}
\end{align*}
$$

By performing a limit process $k \longrightarrow \infty$ in (6.3), we get owing (6.1) and (6.2)

$$
\begin{align*}
& \int_{0}^{t}\left(\frac{\partial u(s)}{\partial s}, \varphi_{j}\right)_{B_{2}^{1}(0,1)} d s+\alpha \int_{0}^{t}\left(u(s), \varphi_{j}\right) d s \\
& -\int_{0}^{t}\left(u^{p}(s), \varphi_{j}\right)_{B_{2}^{1}(0,1)} d s \tag{6.4}\\
& +\beta \int_{0}^{t}\left(\frac{\partial u(s)}{\partial s}, \varphi_{j}\right) d s \\
& =\int_{0}^{t}\left(f(x, s), \varphi_{j}\right)_{B_{2}^{1}(0,1)} d s ; \quad \forall t \in[0, T], \quad j=1, \ldots, n_{k}
\end{align*}
$$

Differentiating this latter with respect to t we get

$$
\begin{align*}
& \left(\frac{\partial u(t)}{\partial t}, \varphi_{j}\right)_{B_{2}^{1}(0,1)}+\alpha\left(u(t), \varphi_{j}\right)+\beta\left(\frac{\partial u(t)}{\partial t}, \varphi_{j}\right) \\
& -\left(u^{p}(t), \varphi_{j}\right)_{B_{2}^{1}(0,1)} \tag{6.5}\\
& =\left(f(x, t), \varphi_{j}\right)_{B_{2}^{1}(0,1)} \quad \forall t \in[0, T], j \geq 1 .
\end{align*}
$$

From where $(i v)$ is obtained due the density of $\cup_{n} V_{n}$ in V. Thus, u weakly solves problem (3.1) - (3.2) . Two : Uniqueness. Writing the problem (3.1) - (3.3) in the form

$$
\begin{equation*}
\frac{\partial u(x, t)}{\partial t}-\alpha \frac{\partial^{2} u(x, t)}{\partial t^{2}}=f(x, t, u(x, t)), \tag{6.6}
\end{equation*}
$$

which

$$
\begin{equation*}
f(x, t, u(x, t))=(u(x, t))^{p}+\beta \frac{\partial}{\partial x}\left(\frac{\partial^{2} u(x, t)}{\partial x^{2}}\right)+f(x, t) . \tag{6.7}
\end{equation*}
$$

Let us ($\tilde{u}, \stackrel{i}{u})$ two weak solutions of (6.6) we get

$$
\begin{equation*}
\left(\frac{d \tilde{u}(t)}{\partial t}, v\right)_{B_{2}^{1}(0,1)}+\alpha(\tilde{u}(t), v)=(f(\tilde{u}, x, t), v)_{B_{2}^{1}(0,1)}, \tag{6.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{d \grave{u}(t)}{\partial t}, v\right)_{B_{2}^{1}(0,1)}+\alpha(\stackrel{\circ}{u}(t), v)=(f(\stackrel{\circ}{u}, x, t), v)_{B_{2}^{1}(0,1)}, \tag{6.9}
\end{equation*}
$$

subtructing the identity (6.9) from (6.8) we get for $v=\dot{u}-\tilde{u}$

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|(\stackrel{\circ}{u}-\tilde{u}) t\|_{B_{2}^{1}(0,1)}+\alpha\|(\check{u}-\tilde{u}) t\|=f(t, \check{u})_{B_{2}^{1}(0,1)}-f(t, \tilde{u})_{B_{2}^{1}(0,1)}, \tag{6.10}
\end{equation*}
$$

integrating (6.10) and putting $u(t)=\check{u}-\tilde{u}$ we have

$$
\begin{align*}
\|u(t)\|_{B_{2}^{1}(0,1)}^{2}+2 \alpha \int_{0}^{t}\|u(\tau)\|^{2} d \tau & =2 \int_{0}^{t}(f(\tau, \check{u})-f(\tau, \tilde{u}), u)_{B_{2}^{1}(0,1)} d \tau \\
& \leq 2 \int_{0}^{t}\|f(\tau, \check{u})-f(\tau, \tilde{u})\|_{B_{2}^{1}(0,1)} \cdot\|u(\tau)\|_{B_{2}^{1}(0,1)} d \tau, \tag{6.11}\\
& \leq 2 M \int_{0}^{t}\|u(\tau)\|_{B_{2}^{1}(0,1)}^{2} d \tau
\end{align*}
$$

From where Gronwalls lemma yields $\|u(\tau)\|_{B_{2}^{1}(0,1)}^{2}=0 \Longrightarrow \check{u}=\tilde{u}$; So, we have the uniqueness of the solution.

Proposition 6.3. The sequence $\left(u_{n}\right)_{n}$ totally converges to u in $L^{2}(0, T ; V)$.
Proof. The key point is to reason by absurdity, so we suppose that (u_{n}) is not converging to u in $L^{2}(0, T ; V)$ then

$$
\begin{align*}
& \exists \varepsilon \geq 0, \exists v \in L^{2}(0, T ; V), \exists\left(u_{\xi}\right)_{\xi} \subset\left(u_{n}\right)_{n}: \\
& \quad\left|\int_{0}^{T}\left(u_{\xi}(t)-u(t), v(t)\right) d t\right| \geq \varepsilon, \forall v, \tag{6.12}
\end{align*}
$$

but $\left(u_{\xi}\right)_{\xi}$ is bounded in $L^{2}(0, T ; V)$, consequently we can construct a subsequence $\left(u_{\xi_{j}}\right)$ which weakly converges in $L^{2}(0, T ; V)$ towards a certain element $w \in L^{2}(0, T ; V)$, and while reasoning exactly as for the function u from the theorem (6.1), we prove that u is another solution for the problem (3.1) - (3.3), which implies,taking into account uniqueness in the problem in question, that w is none other than u, so

$$
\lim _{\xi \rightarrow \infty} \int_{0}^{T}\left(u_{\xi}(t)-u(t), v(t)\right) d t=0
$$

which is in contradiction with (6.12), thus

$$
u_{n} \rightharpoonup u \text { in } L^{2}(0, T ; V)
$$

Theorem 6.4. Let be $u^{0}, u_{*}^{0} \in V, f, f_{*} \in L^{2}\left(O, T ; B_{2}^{1}(0,1)\right)$, and let u and u_{*} be the corresponding weak solutions satisfying assumptions $\left(H_{1}\right)-\left(H_{3}\right)$, if the following inequality

$$
\begin{equation*}
\left\|f(t, v)-f_{*}(t, w)\right\|_{B_{2}^{1}(0,1)} \leq a(t)+b\|v-w\|_{B_{2}^{1}(0,1)}, \quad \forall t \in I, \forall v, w \in V \tag{6.13}
\end{equation*}
$$

holds for some continuous nonnegative $a(t) \in I$ and some constant $b \geq 0$ we have the estimate

$$
\begin{equation*}
\left\|u-u_{*}\right\|_{B_{2}^{1}(0,1)}^{2} \leq\left(\left\|u^{0}-u_{*}^{0}\right\|_{B_{2}^{1}(0,1)}^{2}+\int_{0}^{t} a^{2}(\tau) d \tau\right) e^{(2 b+1) t} \tag{6.14}
\end{equation*}
$$

Proof. We take the difference identities (6.8) - (6.9) corresponding to u, u_{*} and f, f_{*}

$$
\begin{gather*}
\left\|u-u_{*}\right\|_{B_{2}^{1}(0,1)}^{2}+2 \alpha \int_{0}^{t}\left\|u(\tau)-u_{*}(\tau)\right\|^{2} d \tau \\
\leq\left\|u^{0}-u_{*}^{0}\right\|_{B_{2}^{1}(0,1)}^{2} \tag{6.15}\\
+2 \int\left\|f(\tau, u)-f_{*}\left(\tau, u_{*}\right)\right\|_{B_{2}^{1}(0,1)} \cdot\left\|u(\tau)-u_{*}(\tau)\right\|_{B_{2}^{1}(0,1)} d \tau
\end{gather*}
$$

applying the elementary algebraic inequality

$$
2 \alpha \beta \leq \alpha^{2}+\beta^{2} ; \quad \forall \alpha, \beta \in \mathbb{R}
$$

to the second term in the right hand side, we derive

$$
\begin{gather*}
\left\|u-u_{*}\right\|_{B_{2}^{1}(0,1)}^{2}+2 \alpha \int_{0}^{t}\left\|u(\tau)-u_{*}(\tau)\right\|^{2} d \tau \\
\leq\left\|u^{0}-u_{*}^{0}\right\|_{B_{2}^{1}(0,1)}^{2} \tag{6.16}\\
+\int_{0}^{t} a^{2}(\tau) d \tau+(2 b+1) \int_{0}^{1}\left\|u(\tau)-u_{*}(\tau)\right\|_{B_{2}^{1}(0,1)}^{2} d \tau
\end{gather*}
$$

from which the estimate (6.14) follows by means of Gromwell's lemma.

References

[1] A.Bouziani, On a class of nonlinear reaction-Diffusion systems with nonlocal boundary conditions, A. Analysis, 2004, 9(2004) 793-813. 1
[2] A.Bouziani, N.Merazga, S.Benamira, Galerkin method applied to a parabolic evolution problem with nonlocal boundary conditions, Nonlinear Analysis, 69(2008), 1515-1524 1
[3] N.Boudiba, Existence global pour des systems de réaction-diffusion avec controle de masse, ph.D.thesis, Université de Rennes, France, 1999. 1
[4] A. Bouziani, N.Merazga, On a time-discretisation method for a semilinear heat equation with purely integral condition in a nonclassical function, Nonlinear Analysis, 66(2007), 604-623. 1
[5] A.Bouziani, Mixed problem with boundary integral conditions for a certain parabolic equation, J. Appl. Math. Stochatic.Anal., 9(1996), 323-330. 1
[6] A.Bouziani Mixed problems with boundary integral conditions for certain partial differential equations, Ph.D. thesis, Constantine. 1
[7] A.Bouziani, on a class of parabolic equation with a non local boundary conditions, Acad. Roy.Belg. Bull. CI. .Sci., 30(1-6)(2002), 61-77. 1
[8] A.Bouziani, On the solvability of parabolic and hyperbolic problems with a boundary integral condition, Int. J. Math. Math. Sci.,31(4) (2002), 201-213. 1
[9] M.Dehghan, A finite difference method for a non-local boundary value problem for two dimensional heat equation, Appl. Math. Compute., 112(1) (2000), 133-142. 1
[10] M.Dehghan, Fully explicit finite-differenc emethod for two-dimensional diffusion with an integral condition, nonlinear Anal., 48(5) (2002), 637-650. 1
[11] M.Dehghan, Fully explicit finite-difference methods for two-dimensional diffusion with an integral condition, Nonlinear Anal., 48(5) (2002), 637-650. 1
[12] S.L.Hollis, R.H.Martin Jr, and M.pierre, Global existence and boudeness in reaction-diffusion systems, Siam J.Math.Anal., 18(3) (1987), 744-761. 1
[13] S.L.Hollis and J.Morgan, Interior estimates for a class of reaction-diffusion systems from L^{1} a priori estimates in Mathematics, vol; 80,BSBB.G.Teubner Verlagsgesellschaft,Leipzig, 1985. 1
[14] R.H.Martin Jr. and M.Pierre, Nonlinear reaction-diffusion systems, Nonlinear Equations in the applied sciences (W.F.Ames, C.Rogers, and Kapell, eds) , Math, sci.Engrg, vol.185, Academic Press, Massachusetts, 1992, 363398. 1
[15] T. E Oussaeif, A Bouziani, Solvability of nonlinear viscosity Equation with a boundary integral condition, J. Nonlinear Evol. Equ. Appl., 3 (2015), 31-45. 1
[16] T. E Oussaeif, A Bouziani; Solvability of Nonlinear Goursat Type Problem for Hyperbolic Equation with Integral Condition; Khayyam J. Math., 4(2), 2012, 198-213. 1
[17] T. E Oussaeif, A Bouziani, A priori estimates for weak solution for a time-fractional nonlinear reaction-diffusion equations with an integral condition; Chaos, Solitons \& Fractals, 103 (2017), 79-89. 1
[18] S. Dhelis, A Bouziani, T. E Oussaeif, Study of Solution for a Parabolic Integrodifferential Equation with the Second Kind Integral Condition, Int. J. Anal. Appl., 16(4) (2018), 569-593. 1
[19] B.Nur-eddin and N.I.Yurchuk, A mixed problem with an integral condition for a parabolic equations with a Bessel operator, Differ. Uravn., 27(12) (1991), 2094-2098. 1
[20] C.V.Pao, Dynamics of reaction-diffusion equations with nonlocal boundary conditions, Quart Appl. Math., 53(1) (1995), 173-186. 1
[21] C.V.Pao, Asymptotic behavior of solutions of reaction-diffusion equations with nonlocal boundary conditions, J. Comput. Appl.Math., 88(1) (1998), 225-238. 1
[22] C.V.Pao, Numerical solutions of reaction-diffusion equations with nonlocal boundary conditions, J.Comput.Appl.Math., 136(1-2) (2001), 227-243. 1
[23] N.I.Yurchuk, A mixed problem with an integral condition for some parabolic equations, Differ. Urvan., 22(12) (1986), 21117-2126.
[24] Françoise Truc Systemes differentiels non lineaires October 2010.

[^0]: *Corresponding author
 Email addresses: s.benamira@yahoo.fr (Sihem Benamira), takieddine.oussaeif@gmail.com, taki_maths@live.fr (Taki-Eddine Oussaeif), aefbouziani@yahoo.fr (Abdalfeteh Bouziani)

