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Abstract

In this paper, we establish sufficient conditions for the existence, uniqueness, and continuous dependence
of generalized solution of a semi-linear pseudo-parabolic problem with Neumann condition and integral
boundary condition of first type. The results are by the application of the method based on a priori
estimate ”energy inequality” and the finite element method based on the Faedo-Galerkin technique.
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1. Introduction

In the recent years, a new attention has been given to non-linear partial differential equations problem
which involve an integral over the spatial domain of a function of the desired solution on the boundary
conditions ; see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

The purpose of this paper is to prove the existence and uniqueness of a solution for the following pseudo-
parabolic problem with Neumann condition and integral boundary condition of first type. The plan of this
paper is as follows. In section 2 we give some notations used through out the paper. Section 3 is devoted to
statement of the problem . In section 4 we construct an approximate solution using finite element method.
in section 5 we give some a priori estimates. Finally in the section 6, we prove the convergence and we give
the existence result where we prove the uniqueness and the continuous dependence of solution.
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2. Notation

Let L2 (Ω) be the usual space of square integrable functions ; its scalar product is denoted by (., .) and
its associated norm by ‖.‖. We denote by C0 (Ω) the space of continuous functions with compact support
in Ω.

Definition 2.1. We denote by Bm
2 (Ω) called the Bouziani space, the Hilbert space defined of C0 (Ω) for

the scalar product

(z, w)Bm
2 (Ω) =

∫
Ω
=mx z.=mx wdx, (2.1)

where

=mx z =

∫
Ω

(x− ξ)m−1

(m− 1)!
z (ξ) dξ,

by the norm of the function z from Bm
2 (Ω) , the nonnegative number

‖z‖Bm
2 (Ω) =

(∫
Ω

(=mx z)
2 dx

) 1
2

<∞, (2.2)

then the inequality

‖z‖2Bm
2 (Ω) ≤

(β − α)2

2
‖z‖2

Bm−1
2 (Ω)

, m ≥ 1, (2.3)

holds for every z ∈ Bm−1
2 (Ω) , and the embedding

Bm−1
2 (Ω) ↪→ Bm

2 (Ω) , (2.4)

is continuous .

Remark 2.2. If m = 0, the space B0
2 (Ω) coincides with L2 (Ω) .

Definition 2.3. We denote by L2
0 (Ω) the space consisting of elements z (x) of the space L2 (Ω) verifying∫

Ω
xkz (x) dx = 0 (k = 0, 1) .

Let X be a space with a norm denoted by ‖.‖X
Definition 2.4. (i) Denote by L2 (I,X) the set of all measurable abstract functions u (., t) from I into X
such that

‖u‖L2(I,X) =

(∫
I
‖u (., t)‖2x dt

) 1
2

<∞. (2.5)

(ii)Let C
(
Ī;X

)
be the set of all continuous functions u (., t) : Ī −→ X with

‖u‖C(Ī;X) = max ‖u (., t)‖X <∞.

Lemma 2.5. Let be v : [0, T ] → H be a Bochner integrable function and let A ⊂ [0, T ] , any measurable
subset, so:

i) the function ‖v (.)‖H : [0, T ]→ H is Lebesgue integrable and we have,∥∥∥∥∫
A
v (t) dt

∥∥∥∥
H

≤
∫
A
‖v (t)‖H dt, (2.6)

ii) for each ϕ ∈ H, the function (v (.) , ϕ)H : [0, T ]→ R is Lebesgue integrable and we have,(∫
A
v (t) dt, ϕ

)
H

=

∫
A

(v (t) , ϕ)H dt. (2.7)
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Lemma 2.6. Let M be a linear closed subspace from a Hilbert space H. So for every h ∈ H, there exists a
unique u ∈M such that:

‖h− u‖H = min
v∈M
‖h− v‖H , (2.8)

the element u is called the orthogonal projection of h on M relatively to the inner product (., .) and we note
u = PMh. Furthermore, we have the following Pythagorean relation

‖h‖2H = ‖PMh‖2H + ‖h− PMh‖2H . (2.9)

Theorem 2.7 (Cauchy- Schwarz inequality). Let be f and g two functions of L2 (Ω) ; so

f.g ∈ L1 (Ω) ,

and ∫
Ω
|f.g| ≤ ‖f‖L2 . ‖g‖L2 . (2.10)

Theorem 2.8 (The Cauchy inequality). Let be a, b ∈ R, and every ε > 0, we have

|ab| ≤ ε

2
a2 +

1

2ε
b2.

Lemma 2.9 (Gronwall lemma). Let h (t) and y (t) be two real integrable functions on the interval I, h (τ)
nondeceasing, and c a positive constant if

y (t) ≤ h (t) + c

∫ t

0
y (τ) dτ ∀t ∈ I,

then

y (t) ≤ h (t) ect ∀t ∈ I.

Definition 2.10. We call a nonlinear differential system the system of the form

·
X (t) = F [X (t)] (2.11)

t is a real

X (t) =



x1 (t)
x2 (t)
.
.
.

xn (t)

 , F (t) =



f1 (t)
f2 (t)
.
.
.

fn (t)

 ,

where fi are continuous functions.

Definition 2.11. Let be

X (t) :
I ⊂ R −→ Rn
x −→ x (t)

, (2.12)

X is the solution of the system (2.11) , if X is derivable and continuous function, for every each t ∈ I,

X (t) ∈ I and
·
X (t) = F (X (t)) .

Theorem 2.12 (The unicity of solution). We suppose that F is derivable continuous function on E ⊂ Rn
. So for every each initial condition for t0 ∈ I and X0 ∈ E the solution of the system (2.11) if it exists it is
unique.
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Theorem 2.13 (Local existence of solution). Let be t0 ∈ R and X0 ∈ Rn . If F is derivable continuous on
X0, it exists h > 0 such that the solution of the system (2.11) verifying X (t0) = X0 exists on the interval
[t0, t0 + h] .

Theorem 2.14 (Global existence of solution). If F is derivable continuous function on Rn and if the
solution of the system (2.11) verifying X (0) = X0 is bounded on the interval which it exists so the solution
exists on I = [0,+∞] .

See artical [22] .

3. Statement of the problem

Let be the problem

∂u (x, t)

∂t
− α∂

2u (x, t)

∂x2
− β ∂

∂t

(
∂2u (x, t)

∂x2

)
− (u (x, t))p = f (x, t) , (3.1)

with the initial condition

u (x, 0) = u0, (3.2)

and the boundary conditions 
∂u

∂x
(1, t) = 0∫ 1

0 u (x, t) dx = 0
, (3.3)

with t ∈ [0, T ], T <∞ , α ∈ R∗+, p ∈ N∗, x ∈ [0, 1] .

Through the paper, we will make the following assumptions:

(H1) : f ∈ L2
(
0, T ;B1

2 (0, 1)
)
,

(H2) : u0 ∈ V where V is defined in the following way

V =

{
v ∈ L2 (0, 1) :

∫ 1

0
v (x, t) dx =

∂v

∂x
(1, t) = 0

}
. (3.4)

Consequently V is a Hilbert space for (., .). Moreover for a given function w (x, t) , the notation w (t)
is used for the same function considered as an abstract function of the variable t.

(H3) : f (t, w) ∈ L2 (0, 1) for each (t, w) ∈ I × L2 (0, 1) and the following Lipschitz condition∥∥f (t, w)− f
(
t′, w′

)∥∥
B1

2(0,1)
≤M

[∣∣t− t′∣∣ (1 + ‖w‖B1
2(0,1) +

∥∥w′∥∥
B1

2(0,1)

)
+
∥∥w − w′∥∥

B1
2(0,1)

]
.

Definition 3.1. A weak solution of problem (3.1)− (3.3) means a function

u : [0, T ] −→ L2 (0, 1)

such that

(i) u ∈ L2
(
0, T ;B1

2 (0, 1)
)
,

(ii) u has a strong derivative
du

dt
∈ L2

(
0, T ;B1

2 (0, 1)
)
,

(iii) u (0) = u0,

(iv) The identity :(
du (t)

∂t
, v

)
B1

2(0,1)

+ α (u (t) , v) + β

(
∂u

∂t
, v

)
− (up (x, t) , v)B1

2(0,1) = (f (x, t) , v)
B1

2(0,1)
.
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4. Construction of an approximate solution

Let ϕ1, ϕ2, ..., ϕN , ... be a Hilbertian basis of V , such that we devise [α, β] on N + 1 parts (N ∈ N∗) and
we pose

h =
1

N + 1
, ti = ih , i = 0, 1, 2, ..., N + 1.

We define functions (ϕi) by

ϕi (x) =


x− xi−1

xi − xi−1
, xi−1 ≤ x ≤ xi,

x− xi
xi+1 − xi

, xi ≤ x ≤ xi+1,

0, ailleurs.

For every each functions (ϕi) are of degree 1 with ϕi (xj) = δij .
Let (Vn) the subspace from V generated by the first n elements of the basis.
We have to find for each n ∈ N∗, the approximate solution which has the following form

un (x, t) =

n∑
i=1

gin (t)ϕi (x) , (x, t) ∈ (0, 1)× [0, T ] , (4.1)

where gin ∈ H1 (0, T ) are unknown functions for the moment.
As we have that u0 ∈ V and Vn is a closed subspace from V, we can define in a unique way u0

n by

u0
n = PVnu

0, (4.2)

where PVn is define in lemma (2.1) . By the virtue of the density of ∪Vn in V it follows that

u0
n −→ u0 in V if n −→∞. (4.3)

We note by
(
g0
in

)
the coordinates of u0

n in the basis (ϕi)
n
i=1 of Vn that is

u0
n =

n∑
i=1

g0
inϕi, (4.4)

so, we have to find
un ∈ H1 (0, T ;Vn) (4.5)

solution of the differential system(
dun
dt

, ϕj

)
B1

2(0,1)

+ α (un, ϕj)− β
(
dun
dt

, ϕj

)
− (upn, ϕj)B1

2(0,1) = (f (x, t) , ϕj)B1
2(0,1) , (4.6)

un (0) = u0
n, (4.7)

By replacing (un) by (4.1) and by using the following notations

αij = (ϕi, ϕj)B1
2(Ω) , A = (αij)1≤i,j≤n ,

Bij = (ϕi, ϕj) , B = (Bij)1≤i,j≤n ,

Cj = (upn, ϕj)B1
2(0,1) , C = (Cj)1≤j≤n,

Fj (t) = (f, ϕj)B1
2(0,1) ,

−−→
F (t) = (Fj (t))nj=1 ,

and −−−→
gn (t) = (gin (t))ni=1 ,

−→
g0
n =

(
g0
in

)n
i=1

.



Sihem, Taki-Eddine, Abdalfeteh, Commun. Nonlinear Anal. 2 (2020), 44–55 49

The system (4.6) can be written as follows

(A− βB)

−−→
dgn
dt

+ αB−→gn + C
−→
gpn =

−−→
F (t), (4.8)

which is a nonlinear differential system.
We easily prove that (A− βB) is regular matrix, and by virtue Definition (2.10), (2.11) and Theorems

(2.12) , (2.13) and (2.14), so the system (4.8) has a unique solution −→gn ∈
[
H1 (0, T )

]n
.

Lemma 4.1. For every n ≥ 1, problem (4.5)− (4.8) has a unique solution un ∈ H1 (0, T ;Vn) which has the
form (4.1) .

5. A-priori estimates for approximations

Lemma 5.1. For every n ∈ N∗ functions un ∈ H1 (0, T ;Vn) solutions of (4.6) verify∫ t

0
‖un‖2 dτ ≤ KT, (5.1)

and ∫ t

0

∥∥∥∥dundt
∥∥∥∥2

B1
2(0,1)

dτ ≤ L

β
, (5.2)

where Kand L are two positive constants.

Proof. Multiplying the integral identity (4.6) by gjn (t) and summing up for j = 1, ..., n and integrating the
resulting over (0, t) , we obtain

1

2
‖un‖2B1

2(0,1) + α
∫ t

0 ‖un‖
2 dτ +

β

2
‖un‖2

=
∫ t

0 (f, un)B1
2(0,1) dτ +

∫ t
0 (upn, un)B1

2(0,1) dτ +
1

2

∥∥u0
n

∥∥2

B1
2(0,1)

+
β

2

∥∥u0
n

∥∥2
.

(5.3)

We have ∥∥u0
n

∥∥2

B1
2(0,1)

≤
∥∥u0
∥∥2

B1
2(0,1)

≤ 1

2

∥∥u0
∥∥2
, (5.4)

so
‖un‖2B1

2(0,1) + 2α
∫ t

0 ‖un‖
2 dτ + β ‖un‖2

= 2
∫ t

0 (f, un)B1
2(0,1) dτ + 2

∫ t
0 (upn, un)B1

2(0,1) dτ +

(
1

2
+ β

)∥∥u0
∥∥2
,

(5.5)

hence, thanks to the Cauchy inequality (5.5)

‖un‖2B1
2(0,1) + 2α

∫ t
0 ‖un‖

2 dτ + β ‖un‖2

≤
∫ t

0 ‖f‖
2

B1
2(0,1)

dτ +
∫ t

0 ‖un‖
2

B1
2(0,1)

dτ +
∫ t

0 ‖u
p
n‖2

B1
2(0,1)

dτ

+
∫ t

0 ‖un‖
2

B1
2(0,1)

dτ +

(
1

2
+ β

)∥∥u0
∥∥2
,

(5.6)

but we have

‖un‖2B1
2(0,1) ≤

1

2
‖un‖2 ,

we get

‖un‖2B1
2(0,1) + (2α− 1)

∫ t
0 ‖un‖

2 dτ + β ‖un‖2

≤
∫ t

0 ‖f‖
2

B1
2(0,1)

dτ +

(
1

2
+ β

)∥∥u0
∥∥2

+
∫ t

0 ‖u
p
n‖2

B1
2(0,1)

dτ,
(5.7)
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we have that ∫ t
0 ‖u

p
n‖2

B1
2(0,1)

dτ =
∫ t

0

∥∥∥up−1
n · un

∥∥∥2

B1
2(0,1)

dτ

≤ 1

2

∫ t
0

∥∥∥up−1
n

∥∥∥2

B1
2(0,1)

dτ +
1

2

∫ t
0 ‖un‖

2

B1
2(0,1)

dτ

≤ 1

2

∫ t
0

∥∥∥up−1
n

∥∥∥2

B1
2(0,1)

dτ +
1

4

∫ t
0 ‖un‖

2 dτ,

(5.8)

substituting (5.8) in (5.7) we have

‖un‖2B1
2(0,1) +

(
2α− 5

4

)∫ t
0 ‖un‖

2 dτ

≤
∫ t

0 ‖f‖
2

B1
2(0,1)

dτ +

(
1

2
+ β

)∥∥u0
∥∥2

+
∫ t

0

∥∥∥up−1
n

∥∥∥2

B1
2(0,1)

dτ.
(5.9)

But ∫ t
0

∥∥∥up−1
n

∥∥∥2

B1
2(0,1)

dτ =
∫ t

0

∥∥∥up−2
n · un

∥∥∥2

B1
2(0,1)

dτ

≤ 1

2

∫ t
0

∥∥∥up−2
n

∥∥∥2

B1
2(0,1)

dτ +
1

2

∫ t
0 ‖un‖

2

B1
2(0,1)

dτ

≤ 1

2

∫ t
0

∥∥∥up−2
n

∥∥∥2

B1
2(0,1)

dτ +
1

4

∫ t
0 ‖un‖

2 dτ.

(5.10)

Since (5.10) so (5.9) can be written

‖un‖2B1
2(0,1) +

(
2α− 1− 1

2
− 1

2

)∫ t
0 ‖un‖

2 dτ

≤
∫ t

0 ‖f‖
2

B1
2(0,1)

dτ +

(
1

2
+ β

)∥∥u0
∥∥2

+
∫ t

0

∥∥∥up−2
n

∥∥∥2

B1
2(0,1)

dτ,
(5.11)

after p iteration we get

‖un‖2B1
2(0,1) +

(
2α− 1− p

2

) ∫ t
0 ‖un‖

2 dτ

≤
∫ t

0 ‖f‖
2

B1
2(0,1)

dτ +

(
1

2
+ β

)∥∥u0
∥∥2

+
∫ t

0

∥∥∥(un)0
∥∥∥2

B1
2(0,1)

dτ,
(5.12)

so
‖un‖2B1

2(0,1) +
(

2α− 1− p

2

) ∫ t
0 ‖un‖

2 dτ + β ‖un‖2

≤
∫ t

0 ‖f‖
2

B1
2(0,1)

dτ +

(
1

2
+ β

)∥∥u0
∥∥2

+
T

2
.

(5.13)

Let be

K =

∫ t

0
‖f‖2

B1
2(0,1)

dτ +

(
1

2
+ β

)∥∥u0
∥∥2

+
T

2
, (5.14)

we get
‖un‖2B1

2(0,1) ≤ K, (5.15)

so, ∫ t

0
‖un‖2B1

2(0,1) ≤ KT

and ∫ t

0
‖un‖2 dτ ≤

K

2α− 1− p

2

, (5.16)
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‖un‖2 ≤
K

β

on the other hand multiplying (4.6) by
dgjn
dt

and sum up for j = 1, ..., n we obtain

∥∥∥∥dundt
∥∥∥∥2

B1
2(0,1)

+ α
2

d

dt
‖un‖2 + β

∥∥∥∥dundt
∥∥∥∥2

=

(
f,
dun
dt

)
B1

2(0,1)

+

(
upn,

dun
dt

)
B1

2(0,1)

,

(5.17)

integrating (5.17) over (0, t)

2
∫ t

0

∥∥∥∥dundt
∥∥∥∥2

B1
2(0,1)

dτ + α ‖un‖2 + 2β
∫ t

0

∥∥∥∥dundt
∥∥∥∥2

dτ

= 2
∫ t

0

(
f,
dun
dt

)
B1

2(0,1)

dτ + 2
∫ t

0

(
upn,

dun
dt

)
B1

2(0,1)

dτ + α
∥∥u0

n

∥∥2
,

(5.18)

by reference by the inequaliy (5.4) we get

2
∫ t

0

∥∥∥∥dundt
∥∥∥∥2

B1
2(0,1)

dτ + α ‖un‖2 + 2β
∫ t

0

∥∥∥∥dundt
∥∥∥∥2

dτ

= 2
∫ t

0

(
f,
dun
dt

)
B1

2(0,1)

dτ + 2
∫ t

0

(
upn,

dun
dt

)
B1

2(0,1)

dτ + α
∥∥u0
∥∥2
,

(5.19)

applying the Cauchy inequality

α ‖un‖2 + 2β
∫ t

0

∥∥∥∥dundt
∥∥∥∥2

dτ

≤
∫ t

0 ‖f‖
2

B1
2(0,1)

dτ + α
∥∥u0
∥∥2

+
∫ t

0 ‖u
p
n‖2

B1
2(0,1)

dτ
, (5.20)

but we have ∫ t
0 ‖u

p
n‖2

B1
2(0,1)

dτ =
∫ t

0

∥∥∥up−1
n · un

∥∥∥2

B1
2(0,1)

dτ

≤ 1

2

∫ t
0

∥∥∥up−1
n

∥∥∥2

B1
2(0,1)

dτ +
1

2

∫ t
0 ‖un‖

2

B1
2(0,1)

dτ

≤ 1

2

∫ t
0

∥∥∥up−1
n

∥∥∥2

B1
2(0,1)

dτ +
1

2
KT see equation (5.15)

≤ 1

2

∫ t
0

∥∥∥up−2
n · un

∥∥∥2

B1
2(0,1)

dτ +
1

2
KT

≤ 1

2

[
1

2

∫ t
0

∥∥∥up−2
n

∥∥∥2

B1
2(0,1)

dτ +
1

2

∫ t
0 ‖un‖

2

B1
2(0,1)

dτ

]
+

1

2
KT

≤ 1

2
· 1

2

∫ t
0

∥∥∥up−2
n

∥∥∥2

B1
2(0,1)

dτ +
1

2
· 1

2
·KT +

1

2
KT,

after p iteration we get ∫ t

0
‖upn‖

2

B1
2(0,1)

dτ ≤ T
(

1

2p+1
‖u0‖2 +K

(
1

2p
+

1

2

))
, (5.21)
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substituting (5.21) in (5.20) we get

α ‖un‖2 + 2β
∫ t

0

∥∥∥∥dundt
∥∥∥∥2

dτ

≤
∫ t

0 ‖f‖
2

B1
2(0,1)

dτ + α
∥∥u0
∥∥2

+ T

(
1

2p+1

∥∥∥(u)0
∥∥∥2

+K

(
1

2p
+

1

2

))
.

(5.22)

Let be

L =

∫ t

0
‖f‖2

B1
2(0,1)

dτ + α
∥∥u0
∥∥2

+ T

(
1

2p+1
+K

(
1

2p
+

1

2

))
, (5.23)

so we have ∫ t

0

∥∥∥∥dundt
∥∥∥∥2

dτ ≤ L

2β
. (5.24)

6. Convergence and existence result

Theorem 6.1. There exist a function u ∈ L2 (0, T ;V ) with

du

dt
∈ L2

(
0, T ;B1

2 (0, 1)
)
,

and a subsequence (unk
)k ⊆ (un)n such that

unk
⇀ u in L2 (0, T ;V ) , (6.1)

and
dunk

dt
⇀

du

dt
in L2

(
0, T ;B1

2 (0, 1)
)
, (6.2)

when n −→∞.

Proof. See article [3] .

Theorem 6.2. The limit function u from Theorem (6.1) is the unique weak solution to problem (3.1)− (3.3)
in the sense of definition (3.1) .

Proof. One: Existence. We have to show that the limit function u satisfies all conditions (i) − (iv) of
definition (3.1) . Obviously, in light of properties of function u the first two conditions are already seen.
On the other hand, from u (t) = u0 +

∫ t
0 Ψ (s) ds, t ∈ [0, T ], written in the proof of Theorem (6.1) , we have

directly u (0) = u0, so the initial condition is also fulfilled, now we have to see that integral identity obeyed
by u, for this, writing (4.6) for n = nk and integrating on [0, t] , it comes∫ t

0

(
∂unk

(s)

∂s
, ϕj

)
B1

2(0,1)

ds+ α
∫ t

0 (unk
(s) , ϕj) ds

+β
∫ t

0

(
∂unk

(s)

∂s
, ϕj

)
ds−

∫ t
0 (upnk (s) , ϕj)B1

2(0,1) ds

=
∫ t

0
(f (x, s) , ϕj)B1

2(0,1) ds; ∀t ∈ [0, T ] , j = 1, ..., nk.

(6.3)

By performing a limit process k −→∞ in (6.3), we get owing (6.1) and (6.2)∫ t
0

(
∂u (s)

∂s
, ϕj

)
B1

2(0,1)

ds+ α
∫ t

0 (u (s) , ϕj) ds

−
∫ t

0 (up (s) , ϕj)B1
2(0,1) ds

+β
∫ t

0

(
∂u (s)

∂s
, ϕj

)
ds

=
∫ t

0
(f (x, s) , ϕj)B1

2(0,1) ds; ∀t ∈ [0, T ] , j = 1, ..., nk.

(6.4)
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Differentiating this latter with respect to t we get(
∂u (t)

∂t
, ϕj

)
B1

2(0,1)

+ α (u (t) , ϕj) + β

(
∂u (t)

∂t
, ϕj

)
− (up (t) , ϕj)B1

2(0,1)

= (f (x, t) , ϕj)B1
2(0,1) ∀t ∈ [0, T ] , j ≥ 1.

(6.5)

From where (iv) is obtained due the density of ∪nVn in V . Thus, u weakly solves problem (3.1) − (3.2) .
Two : Uniqueness . Writing the problem (3.1)− (3.3) in the form

∂u (x, t)

∂t
− α∂

2u (x, t)

∂t2
= f (x, t, u (x, t)) , (6.6)

which

f (x, t, u (x, t)) = (u (x, t))p + β
∂

∂x

(
∂2u (x, t)

∂x2

)
+ f (x, t) . (6.7)

Let us (ũ, ů) two weak solutions of (6.6) we get(
dũ (t)

∂t
, v

)
B1

2(0,1)

+ α (ũ (t) , v) = (f (ũ, x, t) , v)
B1

2(0,1)
, (6.8)

and (
dů (t)

∂t
, v

)
B1

2(0,1)

+ α (̊u (t) , v) = (f (̊u, x, t) , v)
B1

2(0,1)
, (6.9)

subtructing the identity (6.9) from (6.8) we get for v = ů− ũ
1

2

d

dt
‖(̊u− ũ) t‖B1

2(0,1) + α ‖(̊u− ũ) t‖ = f (t, ů)B1
2(0,1) − f (t, ũ)B1

2(0,1) , (6.10)

integrating (6.10) and putting u (t) = ů− ũ we have

‖u (t)‖2B1
2(0,1) + 2α

∫ t
0 ‖u (τ)‖2 dτ = 2

∫ t
0 (f (τ, ů)− f (τ, ũ) , u)B1

2(0,1) dτ,

≤ 2
∫ t

0 ‖f (τ, ů)− f (τ, ũ)‖B1
2(0,1) · ‖u (τ)‖B1

2(0,1) dτ,

≤ 2M
∫ t

0 ‖u (τ)‖2B1
2(0,1) dτ.

(6.11)

From where Gronwalls lemma yields ‖u (τ)‖2B1
2(0,1) = 0 =⇒ ů = ũ ; So, we have the uniqueness of the

solution.

Proposition 6.3. The sequence (un)n totally converges to u in L2 (0, T ;V ) .

Proof. The key point is to reason by absurdity, so we suppose that (un) is not converging to u in L2 (0, T ;V )
then

∃ε ≥ 0,∃v ∈ L2 (0, T ;V ) ,∃ (uξ)ξ ⊂ (un)n :∣∣∣∫ T0 (uξ (t)− u (t) , v (t)) dt
∣∣∣ ≥ ε,∀v, (6.12)

but (uξ)ξ is bounded in L2 (0, T ;V ) , consequently we can construct a subsequence
(
uξj
)

which weakly

converges in L2 (0, T ;V ) towards a certain element w ∈ L2 (0, T ;V ) , and while reasoning exactly as for the
function u from the theorem (6.1) , we prove that u is another solution for the problem (3.1)− (3.3) , which
implies,taking into account uniqueness in the problem in question, that w is none other than u, so

lim
ξ−→∞

∫ T

0
(uξ (t)− u (t) , v (t)) dt = 0,

which is in contradiction with (6.12), thus

un ⇀ u in L2 (0, T ;V )
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Theorem 6.4. Let be u0, u0
∗ ∈ V, f, f∗ ∈ L2

(
O, T ;B1

2 (0, 1)
)
, and let u and u∗ be the corresponding weak

solutions satisfying assumptions (H1)− (H3) , if the following inequality

‖f (t, v)− f∗ (t, w)‖B1
2(0,1) ≤ a (t) + b ‖v − w‖B1

2(0,1) , ∀t ∈ I, ∀v, w ∈ V, (6.13)

holds for some continuous nonnegative a (t) ∈ I and some constant b ≥ 0 we have the estimate

‖u− u∗‖2B1
2(0,1) ≤

(∥∥u0 − u0
∗
∥∥2

B1
2(0,1)

+

∫ t

0
a2 (τ) dτ

)
e(2b+1)t. (6.14)

Proof. We take the difference identities (6.8)− (6.9) corresponding to u, u∗ and f, f∗

‖u− u∗‖2B1
2(0,1) + 2α

∫ t
0 ‖u (τ)− u∗ (τ)‖2 dτ

≤
∥∥u0 − u0

∗
∥∥2

B1
2(0,1)

+2
∫
‖f (τ, u)− f∗ (τ, u∗)‖B1

2(0,1) · ‖u (τ)− u∗ (τ)‖B1
2(0,1) dτ,

(6.15)

applying the elementary algebraic inequality

2αβ ≤ α2 + β2; ∀α, β ∈ R,

to the second term in the right hand side, we derive

‖u− u∗‖2B1
2(0,1) + 2α

∫ t
0 ‖u (τ)− u∗ (τ)‖2 dτ

≤
∥∥u0 − u0

∗
∥∥2

B1
2(0,1)

+
∫ t

0 a
2 (τ) dτ + (2b+ 1)

∫ 1
0 ‖u (τ)− u∗ (τ)‖2B1

2(0,1) dτ

, (6.16)

from which the estimate (6.14) follows by means of Gromwell’s lemma.
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