
Available online at http://cna-journal.com
Commun. Nonlinear Anal. 2 (2020), 28–43

Research Article

New Iteration Algorithms for Finite Family of Two Quasi-nonexpansive
Mappings Satisfying Jointly Demiclosedness Principle in Banach Spaces

Imo Kalu Agwua,∗

aDepartment of Mathematics, Micheal Okpara University of Agriculture, Umudike, Umuahia, Abia State, Nigeria

Abstract

In this paper, we propose and study two iteration schemes (modified Halpern’s type and HS-iteration
schemes). Furthermore, it is proved that if two finite families of quasi-nonexpansive mappings satisfy jointly
demiclosedness principle, then under appropriate conditions on the iteration parameters, the schemes so
introduced strongly converge to the common fixed points of the mappings. Our main results improve and
generalize the results in the literature and many other existing results currently in literature.
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1. Introduction

Let E be a Banach space and D a nonempty closed convex subset of E. Throughout the paper, N, →
and ⇀ will denote the set of positive integers,strong convergence and weak convergence respectively.

Let Q : D −→ D be a mapping of D into itself and Si, Ti : D −→ CB(D), for i = 1, 2, · · · , N, be finite
families of two quasi-nonexpansive mappings of D into itself. The set of fixed points of Q will be denoted
by F (Q) = {x ∈ D : Qx = x}. A point x is a common fixed point of Si and Ti, for i = 1, 2, · · · , N, if
x ∈ F = ∩Ni=1F (S) ∩ ∩Ni=1F (T ).

In 1965, Browder [13] established the first fixed point theorem for single-valued nonexpansive self map-
pings. More precisely, he proved that if C is a bounded closed convex subset of a Hilbert space H and T is
a nonexpansive mapping of C into itself, then T has a fixed point in C. Soon after that, both Browder [14]
and Gohde [15] simultaneously proved that the same is true if E is a uniformly convex Banach space. Kirk
[16] also proved the following theorem:
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Theorem 1.1. (?) Let E be a reflexive Banach space and let C be a nonempty bounded closed convex subset
of E which has normal structure. Let T be a nonexpansive mapping of C into itself. Then F(T) is nonempty.

After Kirk’s theorem, many fixed point theorems concerning single-valued mappings have been proved
in a Hilbert space or a Banach space (see, e.g., [2, 4, 6, 8, 8, 9, 10] and the references contained in them).
In particular, Baillon and Schoneberg [17] introduced the concept of asymptotic normal structure and
generalized Kirk’s fixed point theorem as follows:

Theorem 1.2. (??) Let E be a reflexive Banach space and let C be a nonempty bounded closed convex subset
of E which has asymptotic normal structure. Let T be a nonexpansive mapping of C into itself. Then F(T)
is nonempty.

ln the sequel, the following definitions will be needed:

Definition 1.3. Recall that a single-valued mapping Q : D −→ D is called nonexpansive [1] if

‖Qx−Qy‖ ≤ ‖x− y‖, ∀x, y ∈ D. (1.1)

It is important to note that if F (Q) 6= ∅ in (1.1), then we obtain a class of mapping called quasi-nonexpansive
mapping; that is, a mapping such that for all x ∈ D and q ∈ F (Q),

‖Qx− q‖ ≤ ‖x− q‖.

A subset D of E is said to be a retract of E if there exists a continuous mapping Q : E −→ D (called
retraction) such that Qx = x for all x ∈ E. A retraction Q from D onto E is called sunny if the following
property holds: Q(Qx + t(x + Qx)) = Qx for all x ∈ D and t ≥ 0 with Qx + t(x + Qx) ∈ D. A retract of
a Hausdorff space must be a closed subset. It is well known that every closed convex subset of a uniformly
convex Banach space E is a retract of E.

It has been established [3, Theorem 13.1] that in a smooth Banach space E, a retraction Q from D onto
E is both sunny and nonexpansive if and only if

〈x−Qx, J(y −Qx) ≤ 0,∀x ∈ D and y ∈ E. (1.2)

Hence, there is at most one sunny nonexpansive retraction from D onto E. For example, if E is a nonempty,
closed and convex subset of a Hilbert space H, then the nearest point projection PE from E onto E
is the unique sunny nonexpansive retraction of E onto E. This is not true in general for all Banach
spaces, since outside Hilbert space, nearest point projections, although sunny are no longer nonexpansive.
Conversely, sunny nonexpansive retraction do sometimes play a similar role in Banach space as the nearest
point projections in Hilbert space. Thus, it becomes necessary to ask the following question:

Question 1.4. Which subsets of a Banach space does a sunny nonexpansive retraction exists? If it does
exists, how can one finds it?

It has been proved [3, Theorem 13.2] that if C is a closed convex subset of a uniformly smooth Banach
space and T : C −→ C is nonexpansive, then the fixed point set is a sunny retraction of C. Bruck [2,
Theorem 2] also proved that if C is a closed convex subset of a reflexive Banach space, every bounded,
closed and convex subset of which has the fixed point property for nonexpansive mappings and T : C −→ C
is nonexpansive, then its fixed point set is a nonexpansive retraction of C.

Due its connection with so many contractive-type mappings, several authors have studied iterative
methods for approximating fixed points of nonexpansive and quasi-nonexpansive mappings (see, e.g., [1, 3,
6, 8, 10]), etc. and the references contained therein).
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Definition 1.5. Let E be a smooth, strictly convex and reflexive Banach space and J be the normalized
duality mapping of E. Let C be a nonempty, closed and convex subset of E. A mapping T : C −→ C is
said to be nonspreading (see [19, 20]) if

φ(Tx, Ty) + φ(Ty, Tx) ≤ φ(Tx, y) + φ(Tx, y),∀x, y ∈ C,

where φ(x, y) = ‖x‖2−2〈x, Jy〉+ |y‖2, ∀x, y ∈ E. Note that if E is a real Hilbert space, then J is the identity
mapping and φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ |y‖2 = ‖x− y‖2. They mapping T : C −→ C called nonspreading
with respect to Hilbert if the inequality below holds

2‖Tx− Ty‖2 ≤ ‖Tx− y‖2 + ‖x− Ty‖2, ∀x, y ∈ C.

ln 1953, Mann [22] introduced the following iteration scheme, which is referred to as Mann iteration
method:

xn+1 = αnxn + (1− αn)Txn, (1.3)

where an initial guess x0 ∈ C is arbitrary and {αn}n∈N ⊆ [0, 1] such that limn→∞ αn = 0 and
∑∞

n=1 αn =∞.
The Mann iteration scheme has been extensively investigated (see, e.g., [23]). ln an infinitely dimensional
Hilbert spaces, the Mann iteration sequence can only guarantee weak convergence (see [24]). To achieve
strong convergence, different authors have modified the Mann iteration method (see [18]) in many ways.

In 1967, Halpern [18] studied the following iteration scheme :

xn+1 = αnu+ (1− αn)Txn, (1.4)

where {αn}n∈N is a real sequence in [0, 1] satisfying some appropriate conditions. He proved strong con-
vergence of {xn}n∈N to the fixed point of T , where αn = na, for a ∈ (0, 1), in the setting of Hilbert space.
Recently, many researchers have used (1.4) in its original form, and the modified version, in approximating
the fixed points of nonexpansive mappings and other classes of nonlinear mappings in different spaces (see
[1, 25, 26]) and the references therein).

For approximating the fixed points of Lipschitz pseudocontractive mapping T , lshikawa [27] introduced
the following algorithm, which is called lshikawa iteration algorithm:

x1 = x ∈ C;

xn+1 = αnxn + (1− αn)Tyn;

yn = (1− βn)xn + βnTxn, n ≥ 0

(1.5)

where {αn} and {βn} are real sequences in (0, 1) satisfying the following conditions:

1. 0 ≤ αn ≤ βn ≤ 1;

2. limn→∞ βn = 0;

3.
∑∞

n=1 αnβn =∞

He showed that the sequence defined by (1.5) converges strongly to a fixed point of the mapping T provided
C is a compact convex subset of a Hilbert space H.

Recently, Agarwal. O’Regan and Sahu [28] introduced the S-iteration algorithm in Banach space as
follows:

x1 =∈ K;

xn+1 = (1− αn)Txn + αnTyn;

yn = (1− βn)xn + βnTxn, n ≥ 1,

(1.6)

where {αn} and {βn} are real sequences in (0, 1). They showed that the algorithm is independent of (1.3)
and (1.5) and converges faster than both (1.3) and (1.5) .
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Most recently, Naraghirad [1] introduced (1.7) as a generalization of (1.4) as follows:
x1 = x ∈ D;

xn+1 = αnu+ (1− αn)yn;

yn = (1− βn)Snxn + βnTxn,

(1.7)

where {αn} and {βn} are real sequences in (0, 1). They proved strong convergence of (1.7) to QFu, where
QF is the sunny nonexpansive retraction from E onto F .

The demiclosedness principle, which was first studied by Opial [6], is one of the indispensable tools in
proving weak and strong convergence theorems for both single-valued and multivalued nonlinear mappings.
Notably, the theory of fixed points with the associated mappings satisfying demiclosedness principle due
to Opial [6] has been deeply investigated for the past forty (40) years or so, and much more intensively
recently (see, e.g, [1] and the references therein). Although some interesting results have been obtained, it
is worth mentioning that, in some cases, the mapping T of the class of nonexpansive mappings defined in
the setting of a Hilbert space H does not necessarily satisfies the demiclosedness principle due to Opial [6]
(see [1], Example 2.1 for details). Consequently, it is natural to ask:

Question 1.6. Is there any way one can obtain strong convergence theorems of Halpern’s type for such
mappings that fail to satisfy the original demiclosedness principle due to Opial in the setting of Banach
spaces?

Naraghrad [1] gave an affirmative answer to the above question using the idea of jointly demiclosedness
principle (Recall that if C is a nonempty subset of of a Banach space E, then a pair S, T : C −→ C satisfies
jointly demiclosedness principle if xn ⊂ C converges weakly to a point z ∈ C and limn→∞‖Sxn−Txn‖ = 0,
then Sz = z and Tz = z; that is, S−T is jointly demiclosed at zero) which they introduced. More precisely,
they prove the following theorem:

Theorem 1.7. (EN) Let E be a Banach space and C a nonempty, closed and convex subset of E and v ∈ C.
Let S, T : C −→ C be two quasi-nonexpansive self mappings such that F = F (S) ∩ F (T ) 6= ∅ is closed and
convex. Let S, T satisfies jointly demiclosedness principle on C and {xn}n≥1 be the sequence defined by

x1 = x ∈ D;

xn+1 = αnu+ (1− αn)yn;

yn = (1− βn)Sxn + βnTxn, ∀n ∈ N,
(1.8)

where {αn}n∈N and {βn}n∈N are real sequences in (0, 1). If the following conditions hold:

1. limnn→∞αn = 0;

2.
∑∞

n=1 αn =∞;

3. 0 < lim infn→∞ βn(1− βn) ≤ lim supn→∞ βn(1− βn) < 1.

Then, the sequence defined by (1.8) converges strongly to QFu, where QF is the sunny nonexpansive retrac-
tion from E onto F .

Remark 1.8. It is remarked in [1] that if S = I, where I is the identity mapping on E, then I − T is
demiclosed at zero. Again, if S and T satisfy the demiclosedness principle due to Opial [6], then (S, T )
satisfies the jointly demiclosedness . Regrettably, the converse is not in general true as could be seen in [1,
Example 2.1].

Example 1.9. (see [1]) Let E = `2(N), where

`2(N) =

{
σ = (σ1, σ2, · · · , σn · · · ) :

∞∑
n=1

‖σn‖2 <∞
}
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‖σ‖ =

( ∞∑
n=1

‖σn‖2
)1

2 ,∀σ ∈ `2(N),

(σ, η) =
∞∑
n=1

σnηn,∀σ = (σ1, σ2, · · · , σn · · · ), η = (η1, η2, · · · , ηn · · · ) ∈ `2(N).

Let {yn}n∈N∪{0} ⊂ E be a sequence defined by

y0 = (1, 0, 0, 0, 0 · · · )
y1 = (1, 1, 0, 0, 0, 0, · · · )
y2 = (1, 0, 1, 0, 0, 0, · · · )
y2 = (1, 0, 0, 1, 0, 0, 0, · · · )

. . . . . . . . .

yn = (σn,1, σn,2 · · · , σn,k, · · · )
. . . . . . . . .

where

σn,k =

{
1, if k = 1, n+ 1

0, if k 6= 1, k 6= n+ 1

Define two mappings S, T : E −→ E by

S(y) =


−n
n+ 1

y, if y = y0

−y, if y 6= y0,∀n ≥ 0

and

T (y) =


n

n+ 1
y, if y = y0

y, if y 6= y0

Then, T does not satisfy the original demiclosedness principle but (S, T ) does satisfies the jointly demi-
closedness principle (see, e.g., [1] for details).

Moltivated by these facts, we introduce and study the following iterative algorithms for finite families of
nonlinear mappings :
Let D be a nonempty subset of a real Banach space E and Si, Ti : D −→ D, for i = 1, 2, · · · , N, be finite
family of two nonlinear mappings with F(T ) 6= ∅. Compute the sequence {xn}n∈N by the iterative schemes

x1 = x ∈ D;

xn+1 =
∑N

i=1 αn,iu+ (1−
∑N

i=1 αn,i)Tiyn;

yn = (1−
∑N

i=1 βn,i)Sixn +
∑N

i=1 βnTixn,i, ∀n ∈ N&

(1.9)

and 
x1 = x ∈ D;

xn+1 =
∑N

i=1 αn,iu+ (1−
∑N

i=1 αn,i)yn;

yn = (1−
∑N

i=1 βn,i)Sixn +
∑N

i=1 βnTixn,i, ∀n ∈ N&

(1.10)

where {αn}n∈N and {βn}n∈N are real sequences in (0, 1) with
∑N

i=0 αn,i = 1 =
∑N

i=0 βn,i. It is important
to note that if i = 1, then (1.9) is independent of (1.7). We also note that (1.9) and (1.10) are independent.
The purpose of this paper is to establish strong convergence theorems of the iterative algorithm (1.9) and
(1.10) for finite families of two quasi-nonexpansive mappings in uniformly convex Banach space.
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2. Preliminary

For the sake of convenience, we restate the following concepts and results:
Let E be a Banach space with its dimension greater than or equal to 2. The modulus of convexity of E is
a function δE(ε) : (0, 2] −→ (0, 2] defined by

δE(ε) = inf{1− ‖1

2
(x+ y)‖ : ‖x‖ = 1, ‖y‖ = 1, ε = ‖x− y‖}.

A Banach space E is uniformly convex if and if δE(ε) > 0, for all ε ∈ (0, 2].
We recall the following:

Definition 2.1. A multivalued mapping T : D −→ CB(D) is said to satisfy condition Eµ, where µ ≥ 0, if
for each x, y ∈ D,

d(x, Ty) ≤ µd(x, Tx) + ‖x− y‖.
We say that T satisfy condition (E) whenever T satisfies (Eµ) for some µ ≥ 0.

Definition 2.2. The space E has Opial condition [6] if for any sequence {xn} in E, xn converges to x
weakly,it follows that lim supn→∞ ‖xn − x‖ < lim supn→∞ ‖xn − y‖ for all y ∈ E with x 6= y.

Examples of Banach spaces satisfying Opial conditions are Hilbert spaces and all spaces lp(1 < p <∞).
On the other hand, Lp[0, π] with 1 < p 6= 2 fails to satify Opial condition.

Lemma 2.3. [1] Let {sn}n∈N be a sequence of nonnegative real numbers satisfyingthe inequality:

sn+1 ≤ (1− γn)sn + γnδn,∀n ≥ 1,

where {γn}n∈N and {δn}n∈N satisfy the following conditions:

(i) {γn}n∈N ⊂ [0, 1] and
∑∞

n=1 γn =∞, or equivalently,
∏∞
n=1(1− γn) = 0;

(ii) lim supn→∞ δn ≤ 0 or (ii)′
∑∞

n1 γnδn <∞.

Then,limn→∞ sn = 0.

Lemma 2.4. (see [1]) Let X be a uniformly convex Banach space and let r > 0. Then, there exists a
strictly increasing continous function g : [0,∞) −→ [0,∞) with g(0) = 0 such that ‖λx + (1 − λ)y‖2 ≤
λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)g(‖x− y‖) for all x, y ∈ Br = {z ∈ X : ‖z‖ ≤ r, λ ∈ [0, 1].

Lemma 2.5. (see [1]) Let E be a real Banach space and J : E −→ 2E
?

be the normalized duality mapping
of E. Then,

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, J(x+ y)〉,∀x, y ∈ E. (2.1)

Lemma 2.6. (see [1]) Let {an}n∈N be a sequence of real numbers such that there exists a subsequence
{ni}n∈N of {n}n∈N such that ani < ani+1 for all i ∈ N . Then, there exists a subsequence {mk}k∈N such
that mk →∞ and the following properties are satisfied by all (sufficiently large) k ∈ N :

amk
≤ amk+1 and ak ≤ amk+1 (2.2)

In fact, mk = maxj ≤ k : aj < aj + 1.

Lemma 2.7. ( see [1]) Let C and D be nonempty subsets of a Banach space E with D ⊂ C and let
QD : C −→ D be retraction from C into D. then, QD is sunny and nonexpansive if and only if

〈z −QD(z), J(y −QD(z))〉 ≤ 0, ∀z ∈ C and ∀y ∈ D, (2.3)

where J is the normalized duality mapping of E.

Lemma 2.8. (see [6]) Let X be the Banach space which satisfies the Opial property and {xn} be a sequence
in X. Let u, v ∈ X be such that ‖xn − u‖ and ‖xn − v‖ exists. If {xni} and {xnj} are subsequences of {xn}
which converges to u and v respectively, then u = v.
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3. Main Results

Theorem 3.1. Let E be a Banach space and D a nonempty, closed and convex subset of E and v ∈
D. Let {Si}Ni=1, {Ti}Ni=1 : D −→ D be finite families of two quasi-nonexpansive self mappings such that
F = ∩Ni=1F (Si) ∩ ∩Ni=1F (T ) 6= ∅ is closed and convex.. Let (Si, Ti), for i = 1, 2, · · · , N, satifies jointly
demiclosedness principle on D and {xn} be the sequence defined by

x1 = x ∈ D; (3.1)

xn+1 =
N∑
i=1

αn,iu+ (1−
N∑
i=1

αn,i)Tiyn; (3.2)

yn = (1−
N∑
i=1

βn,i)Sixn +
N∑
i=1

βn,iTixn,∀n ∈ N (3.3)

where {αn} and {βn} are real sequences in (0, 1) such that
∑N

i=0 αn,i = 1 =
∑N

i=0 βn,i. If the following
conditions hold:

i. limn→∞ αn = 0

ii.
∑∞

n=1 αn =∞;

iii. 0 < lim infn→∞ βn(1− βn) ≤ lim supn→∞ βn(1− βn) < 1.

Then, the sequence defined in (3.1) converges strongly to QFv, where QF is the sunny nonexpansive retaction
from E onto F .

Proof. Since S and T are quasi-nonexpansive mappings,it follows that F is closed and convex. Set

z = QFv.

Let q ∈ F be fixed. From Lemma 2.2, it follows that there exists a strictly increasing function φ : [0,∞) −→
[0,∞) with φ(0) = 0 such that the following estimates remain valid:

‖yn − q‖2 = ‖(1−
N∑
i=1

βn,i)(Sixn − q) +

N∑
i=1

βn,i(Tixn − q)‖2

≤ (1−
N∑
i=1

βn,i)‖Sixn − q‖2 +

N∑
i=1

βn,i‖Tixn − q‖2 −
N∑
i=1

βn,i(1− βn,i)φ(‖Sixn − Tixn‖)

≤ (1−
N∑
i=1

βn,i)‖xn − q‖2 +
N∑
i=1

βn,i‖xn − q‖2 −
N∑
i=1

βn,i(1− βn,i)φ(‖Sixn − Tixn‖)

= ‖xn − q‖2 −
N∑
i=1

βn,i(1− βn,i)φ(‖Sixn − Tixn‖) (3.4)

≤ ‖xn − q‖2 (3.5)
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Again, from (3.1) and (3.4), we obtain

‖xn+1 − q‖2 = ‖
N∑
i=1

αn,i(u− q) + (1−
N∑
i=1

αn,i)(Tiyn − q)‖2

≤
N∑
i=1

αn,i‖u− q‖2 + (1−
N∑
i=1

αn,i)‖Tiyn − q‖2

≤
N∑
i=1

αn,i‖u− q‖2 + (1−
N∑
i=1

αn,i)‖yn − q‖2

≤
N∑
i=1

αn,i‖u− q‖2 + (1−
N∑
i=1

αn,i)[‖xn − q‖2

−
N∑
i=1

βn,i(1− βn,i)φ(‖Sixn − Tixn‖)] (3.6)

≤
N∑
i=1

αn,i‖u− q‖2 + (1−
N∑
i=1

αn,i)‖xn − q‖2

≤ max{‖u− q‖2, ‖xn − q‖2}

By induction, we obtain from the last inequality that

‖xn+1 − q‖2 ≤ max{‖u− q‖2, ‖x1 − q‖2}, ∀n ∈ N.

It is easy to see that the sequence {‖xn − q‖}n∈N is bounded and so is {xn}n∈N . Consquently, using (3.1),
the following sequences {yn}n∈N , {Tyn}n∈N , {Txn}n∈N , {Sxn}n∈N are bounded. Let

M = sup

{
‖u− q‖2 − ‖xn − q‖2 + βn,i(1− βn,i)φ(‖Sixn − Tixn‖) : n ∈ N

}
≥ 0 (3.7)

Then, it follows from (3.6) and (3.7) that

N∑
i=1

βn,i(1− βn,i)φ(‖Sixn − Tixn‖) ≤ ‖xn − q‖2 − ‖xn+1 − q‖2 +

N∑
i=1

αn,iM (3.8)

Next, we show that

‖xn+1 − q‖2 ≤ (1− αn,i)‖xn − q‖2 + 2

N∑
i=1

αn,i〈u− q, J(xn+1 − q)〉, i ∈ N. (3.9)
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From Lemma 2.3, (3.1) and (3.5), we get

‖xn+1 − q‖2 = ‖
N∑
i=1

αn,i(u− q) + (1−
N∑
i=1

αn,i)(Tiyn − q)‖2

≤ (1−
N∑
i=1

αn,i)
2‖Tiyn − q‖2 + 2

N∑
i=1

αn,i〈u− q, J(xn+1 − q)〉

≤ (1−
N∑
i=1

αn,i)
2‖yn − q‖2 + 2

N∑
i=1

αn,i〈u− q, J(xn+1 − q)〉

≤ (1−
N∑
i=1

αn,i)
2‖xn − q‖2 + 2

N∑
i=1

αn,i〈u− q, J(xn+1 − q)〉

≤ (1− αn,i)2‖xn − q‖2 + 2
N∑
i=1

αn,i〈u− q, J(xn+1 − q)〉

≤ (1− αn,i)‖xn − q‖2 + 2
N∑
i=1

αn,i〈u− q, J(xn+1 − q)〉, i ∈ N. (3.10)

Now, we show that xn → q as n → ∞. To do this, we consider two possible cases. Case A. Suppose
{‖xn − q‖}n∈N is a monotonically decreasing sequence, then there exists n0 ∈ N such that ‖xn − q‖2 −
‖xn+1 − q‖2 → 0 as n→∞. Thus, from (3.8) and conditions [(i) and (iii)], we have

lim
n→∞

N∑
i=1

βn,i(1− βn,i)φ(‖Sixn − Tixn‖) = 0 (3.11)

and from the properties of φ, we get

lim
n→∞

‖Sixn − Tixn‖ = 0, (3.12)

for each i ∈ N. Since {xn}n∈N is bounded, there exists a subsequence {xnk
}k∈N of {xn}n∈N such that

xnk
⇀ p ∈ D as k →∞. Furthermore, from (3.12), we have

lim
k→∞

‖Sixnk
− Tixnk

‖ = 0, i ∈ N. (3.13)

Again, since for each i ∈ N (Si, Ti) is assumed to satisfy jointly demiclosedness principle, it follows from
(3.12) that p ∈ F . Now, assume that there exists another subsequence {xni}k∈N of {xn}n∈N such that
xni ⇀ q ∈ D as i→∞ with p 6= q, where q ∈ F . Then, (3.10) implies

‖p− q‖2 ≤ (1− αn)‖p− q‖2 + 2
N∑
i=1

αn,i〈u− q, J(p− q)〉 (3.14)

Similarly,

‖q − p‖2 ≤ (1− αn)‖q − p‖2 + 2
N∑
i=1

αn,i〈u− q, J(q − p)〉 (3.15)

Adding (3.14) and (3.15), we obtain

‖p− q‖ ≤ ‖q − p‖,
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which is a contradiction. Hence, p = q.
Using the above information and Lemma 2.5, we get

lim sup
n→∞

〈u− q, J(xn+1 − q)〉 = lim
k→∞
〈u− q, J(xnk+1 − q)〉

= 〈u− q, J(p− q)〉
≤ 0 (3.16)

Hence, putting δn = 〈u− q, J(xn+1 − q)〉, γn =
∑N

i=1 αn,i, sn = ‖xn − q‖2, then it follows from (3.10), (3.16)
and Lemma 2.1 that limn→ ‖xn − q‖ = 0, which is the desired result.
Case B. If {‖xn − q‖}n∈N is not monotonically decreasing sequence, then there exists a nondecreasing
sequence {ni}i∈N of {n}n∈N such that

‖xni − q‖ < ‖xni+1 − q‖. (3.17)

Thus, by Lemma 2.4, there exists a nondecreasing sequence {xnj}j∈N such that

mj →∞, ‖xnj − q‖ ≤ ‖xmj+1 − q‖ and ‖xj − q‖ ≤ ‖xmj+1 − q‖ (3.18)

By substituting mj for n in (3.8), using the first part of the last inequality, we get

N∑
i=1

βmj ,i(1− βmj ,i)φ(‖Sxmj − Txmj‖) ≤ ‖xmj − q‖2 − ‖xmj+1 − q‖2 +

N∑
i=1

αmj ,iM

≤
N∑
i=1

αmj ,iM,∀j ∈ N. (3.19)

Thus, by conditions [(i) and (iii)]and the properties of φ, we get

lim
j→∞

‖Sixmj − Tixmj‖ = 0, i ∈ N. (3.20)

Using similar argument as in Case A, it is easy to show that

lim sup
n→∞

〈u− q, J(xn+1 − q)〉 = lim
j→∞
〈u− q, J(xmj+1 − q)〉

≤ 0 (3.21)

Again, substituting mj for n in (3.10), we have

‖xmj+1 − q‖2 ≤ (1− αmj ,i)‖xmj − q‖2 + 2
N∑
i=1

αmj ,i〈u− q, J(xmj+1 − q)〉. (3.22)

Using the last inequality with αmj ,i ∈ (0, 1), we obtain

0 ≤ ‖xmj − q‖2 − |xmj − q‖2 ≤ 2
N∑
i=1

αmj ,i[〈u− q, J(xmj+1 − q)〉 − ‖xmj − q‖].

Hence, from (3.21), we have
lim
j→∞

‖xmj − q‖ = 0. (3.23)

Also, from (3.22) and (3.23), we have

lim
j→∞

‖xmj+1 − q‖ = 0. (3.24)

Finally, from (3.24) and the second part of the inequalities in (3.18), for all j ∈ N , we have xj → q as
j → ∞.Thus, we have xn → q as n → ∞ as desired. This completes the proof. This completes the
proof.
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Theorem 3.2. Let E be a Banach space and D a nonempty, closed and convex subset of E and v ∈
D. Let {Si}Ni=1, {Ti}Ni=1 : D −→ D be finite families of two quasi-nonexpansive self mappings such that
F = ∩Ni=1F (Si) ∩ ∩Ni=1F (T ) 6= ∅ is closed and convex.. Let (Si, Ti), for i = 1, 2, · · · , N, satifies jointly
demiclosedness principle on D and {xn} be the sequence defined by

x1 = x ∈ D; (3.25)

xn+1 =

N∑
i=1

αn,iu+ (1−
N∑
i=1

αn,i)yn; (3.26)

yn = (1−
N∑
i=1

βn,i)Sixn +
N∑
i=1

βn,iTixn,∀n ∈ N (3.27)

where {αn} and {βn} are real sequences in (0, 1) such that
∑N

i=0 αn,i = 1 =
∑N

i=0 βn,i. If the following
conditions hold:

i. limn→∞ αn = 0

ii.
∑∞

n=1 αn =∞;

iii. 0 < lim infn→∞ βn(1− βn) ≤ lim supn→∞ βn(1− βn) < 1.

Then, the sequence defined in (3.1) converges strongly to QFv, where QF is the sunny nonexpansive retaction
from E onto F .

Proof. Since S and T are quasi-nonexpansive mappings,it follows that F is closed and convex. Set

z = QFv.

Let q ∈ F be fixed. From Lemma 2.2, it follows that there exists a strictly increasing function φ : [0,∞) −→
[0,∞) with φ(0) = 0 such that the following estimates remain valid:

‖yn − q‖2 = ‖(1−
N∑
i=1

βn,i)(Sixn − q) +

N∑
i=1

βn,i(Tixn − q)‖2

≤ (1−
N∑
i=1

βn,i)‖Sixn − q‖2 +

N∑
i=1

βn,i‖Tixn − q‖2 −
N∑
i=1

βn,i(1− βn,i)φ(‖Sixn − Tixn‖)

≤ (1−
N∑
i=1

βn,i)‖xn − q‖2 +

N∑
i=1

βn,i‖xn − q‖2 −
N∑
i=1

βn,i(1− βn,i)φ(‖Sixn − Tixn‖)

= ‖xn − q‖2 −
N∑
i=1

βn,i(1− βn,i)φ(‖Sixn − Tixn‖) (3.28)

≤ ‖xn − q‖2 (3.29)
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Again, from (3.27) and (3.28), we obtain

‖xn+1 − q‖2 = ‖
N∑
i=1

αn,i(u− q) + (1−
N∑
i=1

αn,i)(yn − q)‖2

≤
N∑
i=1

αn,i‖u− q‖2 + (1−
N∑
i=1

αn,i)‖yn − q‖2

≤
N∑
i=1

αn,i‖u− q‖2 + (1−
N∑
i=1

αn,i)[‖xn − q‖2

−
N∑
i=1

βn,i(1− βn,i)φ(‖Sixn − Tixn‖)] (3.30)

≤
N∑
i=1

αn,i‖u− q‖2 + (1−
N∑
i=1

αn,i)‖xn − q‖2

≤ max{‖u− q‖2, ‖xn − q‖2}

By induction, we obtain from the last inequality that

‖xn+1 − q‖2 ≤ max{‖u− q‖2, ‖x1 − q‖2}, ∀n ∈ N.

Clearly, the sequence {‖xn−q‖}n∈N is bounded and so is {xn}n∈N . Consquently, using (3.27), the following
sequences {yn}n∈N , {Tyn}n∈N , {Txn}n∈N , {Sxn}n∈N are bounded. Let

M = sup

{
‖u− q‖2 − ‖xn − q‖2 + βn,i(1− βn,i)φ(‖Sixn − Tixn‖) : n ∈ N

}
≥ 0 (3.31)

Then, it follows from (3.30) and (3.7) that

N∑
i=1

βn,i(1− βn,i)φ(‖Sixn − Tixn‖) ≤ ‖xn − q‖2 − ‖xn+1 − q‖2 +
N∑
i=1

αn,iM (3.32)

Next, we show that

‖xn+1 − q‖2 ≤ (1− αn,i)‖xn − q‖2 + 2
N∑
i=1

αn,i〈u− q, J(xn+1 − q)〉, i ∈ N. (3.33)

From Lemma 2.3, (3.27) and (3.29), we get

‖xn+1 − q‖2 = ‖
N∑
i=1

αn,i(u− q) + (1−
N∑
i=1

αn,i)(yn − q)‖2

≤ (1−
N∑
i=1

αn,i)
2‖yn − q‖2 + 2

N∑
i=1

αn,i〈u− q, J(xn+1 − q)〉

≤ (1−
N∑
i=1

αn,i)
2‖xn − q‖2 + 2

N∑
i=1

αn,i〈u− q, J(xn+1 − q)〉

≤ (1− αn,i)2‖xn − q‖2 + 2
N∑
i=1

αn,i〈u− q, J(xn+1 − q)〉

≤ (1− αn,i)‖xn − q‖2 + 2

N∑
i=1

αn,i〈u− q, J(xn+1 − q)〉, i ∈ N. (3.34)
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Now, we show that xn → q as n → ∞. To do this, we consider two possible cases. Case A. Suppose
{‖xn − q‖}n∈N is a monotonically decreasing sequence, then there exists n0 ∈ N such that ‖xn − q‖2 −
‖xn+1 − q‖2 → 0 as n→∞. Thus, from (3.32) and conditions [(i) and (iii)], we have

lim
n→∞

N∑
i=1

βn,i(1− βn,i)φ(‖Sixn − Tixn‖) = 0 (3.35)

and from the properties of φ, we get

lim
n→∞

‖Sixn − Tixn‖ = 0, (3.36)

for each i ∈ N. Since {xn}n∈N is bounded, there exists a subsequence {xnk
}k∈N of {xn}n∈N such that

xnk
⇀ p ∈ D as k →∞. Furthermore, from (3.36), we have

lim
k→∞

‖Sixnk
− Tixnk

‖ = 0, i ∈ N. (3.37)

Again, since for each i ∈ N (Si, Ti) is assumed to satisfy jointly demiclosedness principle, it follows from
(3.36) that p ∈ F . Now, assume that there exists another subsequence {xni}k∈N of {xn}n∈N such that
xni ⇀ q ∈ D as i→∞ with p 6= q, where q ∈ F . Then, (3.34) implies

‖p− q‖2 ≤ (1− αn)‖p− q‖2 + 2

N∑
i=1

αn,i〈u− q, J(p− q)〉 (3.38)

Similarly,

‖q − p‖2 ≤ (1− αn)‖q − p‖2 + 2
N∑
i=1

αn,i〈u− q, J(q − p)〉 (3.39)

Adding (3.38) and (3.39), we obtain
‖p− q‖ ≤ ‖q − p‖,

which is a contradiction. Hence, p = q.
Using the above information and Lemma 2.5, we get

lim sup
n→∞

〈u− q, J(xn+1 − q)〉 = lim
k→∞
〈u− q, J(xnk+1 − q)〉

= 〈u− q, J(p− q)〉
≤ 0 (3.40)

Hence, putting δn = 〈u− q, J(xn+1 − q)〉, γn =
∑N

i=1 αn,i, sn = ‖xn − q‖2, then it follows from (3.34), (3.40)
and Lemma 2.1 that limn→ ‖xn − q‖ = 0, which is the desired result.
Case B. If {‖xn − q‖}n∈N is not monotonically decreasing sequence, then there exists a nondecreasing
sequence {ni}i∈N of {n}n∈N such that

‖xni − q‖ < ‖xni+1 − q‖. (3.41)

Thus, by Lemma 2.4, there exists a nondecreasing sequence {xnj}j∈N such that

mj →∞, ‖xnj − q‖ ≤ ‖xmj+1 − q‖ and ‖xj − q‖ ≤ ‖xmj+1 − q‖ (3.42)

By substituting mj for n in (3.32), using the first part of the last inequality, we get

N∑
i=1

βmj ,i(1− βmj ,i)φ(‖Sxmj − Txmj‖) ≤ ‖xmj − q‖2 − ‖xmj+1 − q‖2 +
N∑
i=1

αmj ,iM

≤
N∑
i=1

αmj ,iM,∀j ∈ N. (3.43)
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Thus, by conditions [(i) and (iii)]and the properties of φ, we get

lim
j→∞

‖Sixmj − Tixmj‖ = 0, i ∈ N. (3.44)

Using similar argument as in Case A, it is easy to show that

lim sup
n→∞

〈u− q, J(xn+1 − q)〉 = lim
j→∞
〈u− q, J(xmj+1 − q)〉

≤ 0 (3.45)

Again, substituting mj for n in (3.34), we have

‖xmj+1 − q‖2 ≤ (1− αmj ,i)‖xmj − q‖2 + 2
N∑
i=1

αmj ,i〈u− q, J(xmj+1 − q)〉. (3.46)

Using the last inequality with αmj ,i ∈ (0, 1), we obtain

0 ≤ ‖xmj − q‖2 − |xmj − q‖2 ≤ 2
N∑
i=1

αmj ,i[〈u− q, J(xmj+1 − q)〉 − ‖xmj − q‖].

Hence, from (3.45), we have

lim
j→∞

‖xmj − q‖ = 0. (3.47)

Also, from (3.46) and (3.47), we have

lim
j→∞

‖xmj+1 − q‖ = 0. (3.48)

Finally, from (3.48) and the second part of the inequalities in (3.42), for all j ∈ N , we have xj → q as
j → ∞.Thus, we have xn → q as n → ∞ as desired. This completes the proof. This completes the
proof.

Corollary 3.3. Let E be a Banach space and D a nonempty, closed and convex subset of E and v ∈ D. Let
Si : D −→ D, i = 1, 2, · · · , N, be a finite family of nonspreading mapping and Ti : D −→ D, i = 1, 2, · · · , N,
be a finite family of nonexpansive mapping such that F = ∩Ni=1F (Si) ∩ ∩Ni=1F (T ) 6= ∅ is closed and convex.
Let (Si, Ti), i = 1, 2, · · · , N, satisfies jointly demiclosedness principle on D and {xn} be the sequence defined
by

x1 = x ∈ D; (3.49)

xn+1 =
N∑
i=1

αn,iu+ (1−
N∑
i=1

αn,i)Tiyn; (3.50)

yn = (1−
N∑
i=1

βn,i)Sixn +

N∑
i=1

βnTixn,∀n ∈ N (3.51)

where {αn} and {βn} are real sequences in (0, 1). If the conditions of Theorem 3.1 holds, then, the sequence
defined in (3.52) converges strongly to QFv, where QF is the sunny nonexpansive retaction from E onto F .

Corollary 3.4. Let E be a Banach space and D a nonempty, closed and convex subset of E and v ∈ D. Let
S : D −→ D, i = 1, 2, · · · , N, be a finite family of nonspreading mapping and Ti : D −→ D, i = 1, 2, · · · , N,
be a finite family of nonexpansive mapping such that F = ∩Ni=1F (Si) ∩ ∩Ni=1F (T ) 6= ∅ is closed and convex.
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Let (Si, Ti), i = 1, 2, · · · , N, satisfies jointly demiclosedness principle on D and {xn} be the sequence defined
by

x1 = x ∈ D; (3.52)

xn+1 =

N∑
i=1

αn,iu+ (1−
N∑
i=1

αn,i)yn; (3.53)

yn = (1−
N∑
i=1

βn,i)Sixn +
N∑
i=1

βnTixn, ∀n ∈ N (3.54)

where {αn} and {βn} are real sequences in (0, 1). If the conditions of Theorem 3.1 holds, then, the sequence
defined in (??) converges strongly to QFv, where QF is the sunny nonexpansive retaction from E onto F .

In conclusion, we make the following remarks:

Remark 3.5. 1. We propose two iteration schemes and establish strong convergence results of the schemes
to the common fixed points for finite family of two quasi-nonexpansive mappings. Our main results
generalise the results in [1] from single mapping to finite family of mappings.

2. Corollary 3.3 and Corollary 3.4 provide a partial answers to the open Question 1.1 raised in [1] in a
more general setting.
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