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Abstract

In this paper, we introduce a pair of («a, ¥, ¢) -almost generalized weakly contractive maps in S-metric spaces
and prove the existence and uniqueness of common fixed points of such maps under weakly compatible
property. Our results extend and generalize the results of Babu and Leta [3] to a pair of maps in S-metric
spaces and generalize the result of Sedghi, Shobe and Aliouche [17]. We provide examples in support of our
results.
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1. Introduction

In 2006, Mustafa and Sims [14] introduced G-metric spaces as a generalization of S-metric spaces and
proved the existence of fixed points of various contraction type mappings. In 2012, Sedghi, Shobe and
Aliouche [17] introduced a new concept on metric spaces, namely S-metric spaces and studied some properties
of these spaces. Sedghi, Shobe and Aliouche [17] asserted that S-metric is a generalization of G-metric space.
But, very recently Dung, Hieu and Radojevic [8] verified by examples that S-metric is not a generalization of
G-metric and vice versa. Therefore the class of G-metric spaces and the class of S-metric spaces are different.
There has been a considerable interest to study common fixed points for a pair (family) of mappings satisfying
some contractive conditions in metric spaces. Jungck [10] introduced commuting mappings in 1976. Jungck
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[11] enlarged the class of non-commuting mappings by compatible mappings in 1986. In 1998 Jungck and
Rhodes [12] introduced weak compatibility. In 2002, Aamri , Moutawakil [1] introduced a new notation
namely property (E.A.). It is observed that property (E.A.) requires the completeness or closedness of
subspaces for the existence of common fixed point of pair of maps. In 2004, Berinde[4] introduced 'weak
contractions’ as a generalization of contraction maps. Berinde [5] renamed 'weak contractions’ as ’almost
contractions’ in his later work. In 2008, Dutta and Choudhury[9] introduced (¢, p)- weakly contractive
maps. Later in 2014, (v, ¢)-almost weakly contractive maps in G-metric spaces were introduced by Babu
and Ratna Babu[2]. Fixed points of contractive maps on S-metric spaces were studied by [3], [8], [15], [17],
[18] and [19, 20]. («, 1, p)-gneralized weakly contractive maps in S-metric spaces were introduced by Babu
and Leta [3] in 2017.

In the following we provide some basic definitions and preliminaries which we use in this paper.

2. Preliminaries

Definition 2.1. [17] Let X be a non empty set. An S-metric on X is a function S : X3 — [0,00) that
satisfies the following conditions: for each x,y,z,a € X

(S1) S(z,y,2) =0,

(S2) S(z,y,2z) =0 if and only if x = y = z and
(S3) S(z,y,2) < S(x,z,a) + S(y,y,a) + S(z, z,a).
The pair (X, S) is called an S-metric space.

Example 2.2. [17] Let(X,d) be a metric space. Define S : X3 — [0,00) by S(x,y, 2) = d(z,y) + d(z, ) +
d(y, z) for all z,y,z,€ X. Then S is an S-metric on X and S is called the S-metric induced by the metric
d.

Example 2.3. [8] Let X = R, the set of all real numbers and let S(z,y,2) = |y + z — 2x| + |y — z| for all
z,y,z € X. Then (X, S) is an S-metric space.

Example 2.4. [18] Let R be the real line. Then S(z,y,2) = |t —z|+|y—z| for all z,y, z € R is an S-metric
on R. This S-metric is called the usual S-metric.

Example 2.5. LetX = [0, 1] and We define S : X3 — [0, 0) by

0 if x=y==z
S(@.y,2) = { max{z,y,z} otherwise
Then S is an S-metric on X.
The following lemmas are useful in our main results.

Lemma 2.6. [17] In an S-metric space, we have S(z,z,y) = S(y,y, z).

Lemma 2.7. [8] Let (X, S) be an S-metric space. Then S(z,z,2) < 2S(z,z,y) + S(y,y, 2)
and S(z,x,2) < 2S(z,x,y) + S(z, z,y) for all x,y,z € X.

Definition 2.8. [17] Let (X, S) be an S-metric space. We define the following:

(i) asequence {x,} € X converges to a point = € X if S(z,, zy,,z) — 0 as n — oco. That is, for each € > 0,
there exists ng € N such that for all n > ng, S(xy,,z,,x) < € and we denote it by lim,,_, =, = x.

(ii) a sequence {z,} € X is called a Cauchy sequence if for each € > 0, there exists ng € N such that
S(Tn, T, Tm) < € for all n,m > ny.
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(iii) the S-metric space (X,.5) is said to be complete if each Cauchy sequence in X is convergent.

Definition 2.9. [3] Let (X,S) and (Y,S’) be two S-metric spaces. Then the function f : X — Y is S-
continuous at a point = € X if it is S-sequentially continuous at x, that is whenever {z,} is S-convergent
to x, we have f(x,) is S’ convergent to f(x).

Lemma 2.10. [17] Let (X, S) be an S-metric space. If the sequence {z,} in X converges to z, then x is
unique.

Lemma 2.11. [17] Let (X, S) be an S-metric space. If there exist sequences {x,} and {y,} in X such that

lim z, =z and lim y, =y, then lim S(x,,zn,yn) = S(z,x,y).
n— 00 n—00 n—00

Definition 2.12. Let (X, .S) be an S-metric space and f,T be two self maps on X. A point x € X is called
a common fixed point of f and T if z = fx = Tx.
The pair (f,T) is said to be

(i) commuting on X if fTx =T fx, for all x € X.
(ii) S-weakly commuting on X if S(fTx, fTx,Tfx) < S(fx, fr,Tx) for every z € X.

(iii) S-compatible if lim S(fTxy, fTxy, T fr,) =0 whenever {z,} is a sequence in X such that
n—oo

lim fx, = lim Tz, =t for some t € X.
n—o0 n—oo

(iv) S-weakly compatible if they commute at their coincidence point. That is, for x € X, if fr = Tz
holds then fTx =T fx.

(v) satisfy property (E. A.), if there exists a sequence {z,,} in X such that lim fz, = lim Tx, = z for
n—oo n—oo

some z € X.

Remark 2.13. (1)Every weakly commuting pair of maps in an S-metric space X is S-weakly commuting,
but its converse need not be true.

(2) Every S-weakly commuting pair of maps is S-compatible, but its converse need not be true.
(3) Every S-compatible pair of maps is S-weakly compatible, but its converse need not be true.
(4) Property (E. A.) and S-weakly compatible pair of maps are independent to each other.

The following examples illustrate the above Remark.

Example 2.14. Let X = [0,2]. We define S : X? — [0,00) by S(z,y,2)=max{ |z — z|,|y — 2|} for all
z,y,z € X. Then S is an S-metric on X. We define f,7: X — X by f(z) = % and T'(x) = ‘%2 Now,

4 4 4 4 2 2 2 2
S(fTx, fTz,Tfx) =515, 15, 52) = 53 < T =500, 7, %) = S(fz, fo, Tx).
Therefore the pair (f,T) is S-weakly commuting, but not commuting.

For, fTx = % and T'fx = %. Therefore fTx # T fx for every z # 0.

Example 2.15. Let X = R. We define S : X3 — [0,00] by S(z,9,2) = |x — 2| + |y — 2| for all z,y,2 € X.
Then S is an S-metric on X. We define f,g: X — X by f(z) = 23 and g(z) = 223. Let {z,} be a sequence
in X such that lim f(x,)= lim g(z,). Then lim z, =0.
n—oo n—oo n—oo
Now consider nh_{glo S(fgxn, fgTn, gfrs) = lim, o S(82), 82D 22) = 0.
Therefore the pair (f, g) is S-compatible.
Now conider S(fgz, fgr,gfz) = S(82°,82%,22°) = 12|2°| # 2|23| = S(fx, fx,gx) for all x > 1.
Therefore the pair (f, g) is not S-weakly commuting.
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Example 2.16. Let X = [1,3]. We define S : X3 — [0,00] by S(z,y,2)=max{ |z — z|,|y — 2|} for all
z,y,z € X. Then S is an S-metric on X. We define f, 7 : X — X by

1 if z=1 1 if z=
fr= 2 ifzxe(1,2) and Tx = 1 if z € (1,2)
1 ifxe(2,3] x—1 ifzel23

We have fo =Tz for x = 1,2. Implies fTx =T fa for x =1, 2.
Therefore the pair (f,7T) is S-weakly compatible.
1
Now let :pn—2+— n > 1. We have hm fr, =1 and hm Tz, = hm T(2+ =) =1
Then hm S(fTa:n, [Ty, Tfx,) = hm 5(2 2,1)=1# O Therefore the pair (f,T') is not S-compatible.

Example 2.17. Let X = RT. We define S : X3 — [0,00] by S(x,y,2z)=max{ |z — z|,|y — 2|} for all
x,y,z € X. Then S is an S-metric on X. We define f,7: X — X by f(z) = and T(x) = 1 4+ x. Trivially,
the pair (f,T') is S-weakly compatible.
Suppose that there is a sequence {z,} C X such that lim fz, = lim Tz, = z (say).

n—oo n—oo
ie., lim S(fxn, fan, z) = lim S(Txy, Trp,z) =0.1ie., lim 2|z, —z| = lim 2|1 + x, — z| = 0, so that

n—oo n—oo

hm ;L'n =z and hm Ty =2 — 1, which is absurd. Therefore property (E. A.) fails to hold.

n—oo

Example 2.18. Let X = [0,1]. We define S : X3 — [0,00] by S(z,y,2)=max{ |z — z|,|y — 2|} for all

2,9,z € X. Then S is an S-metric on X. We define f,7: X — X by f(r) = § and T'(z) = 1 — x for all

z € X. Let {z,} C X such that z, = 2 as n — oco. Then lim fz, = lim Tz, = 3. Hence the pair (f,T)
n—oo

n—o0

satisfies property (E. A.) but the pair (f,T') is not S-compatible. For, ILm S(fTxy, fTey, Tfx,) = % #0.

Definition 2.19. [17] Let (X, S) be an S-metric space. A map F': X — X is said to be a contraction if
there exists a constant 0 < < 1 such that

S(F(x), F(x),F(y)) <~vS(z,z,y), for all z,y€ X. (2.1)

Theorem 2.20. [17] Let (X, S) be an S-metric space. A map F': X — X be a contraction. Then F' has a
unique fixed point » in X.

Definition 2.21. [13] An altering distance function is a function 1 : [0,00) — [0, 00) which satisfies

(i )4 is continuous (ii) % is non-decreasing and (iii)(¢) = 0 if and only if ¢t = 0.

We denote the class of all altering distance functions by ¥

We denote @ = {p : [0,00) — [0,00) such that (i) ¢ is continuous and (ii) ¢(¢) = 0 if and only if ¢ = 0}.

Definition 2.22. [3] Let (X,S) be an S-meric space. Let f: X — X be self map of X. If there exists
€ (0,1), ¢ € ¥ and ¢ € ® such that

V(S(fx, fy, [2)) S Y(S(Ma(2,y, 2))) — ¢(S(Ma(z,y, 2))), (2.2)

where Ma(xa Y, Z) - maX{S(x, Y, Z)? S($, Zz, fw)v S(y7 Y, fy)7 S(Zv 2, fZ), OéS(f.’E, f.’IJ, y) + (1 - O‘)S(fyv fya Z)}
for all z,y,z € X, then f is called an («a, v, ¢)-generalized weakly contractive map on X.

Theorem 2.23. [3|Let (X,S) be a complete S-meric space and let f be an («, 1, ¢)-generalized weakly
contractive map. Then f has unique fixed point u(say) and f is S-continuous at u.

Lemma 2.24. [3],[7] Let (X,S) be an S-metric space and {z,} be a sequence in X such that

lim S(zp,Zn, Tn+1) = 0. (2.3)

n—0o0
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If {z,} is not a Cauchy sequence, then there exist an € > 0 and two sequences {my} and {ny} of positive
integers with ng > mg > k such that

STy s Ty, Tny,) = € S(Tmp—15 Tmp—1,Tn,,) < € (2.4)

and
(i) im S(zpm,, Tmy, Tn,) = (73) im S(Tmy—1, Tmp—1,Tn, ) = €
k—o0 k—o0

€
(vi1) klggo S(Tmys Tmy Tnj—1) =€ (10) klggo (Tmp—1, Tmp—1, Tnp—1) = €.

In this paper, we define (o, ), ¢)-almost generalized weakly contractive maps in S-metric spaces and
prove the existence and uniqueness of common fixed point of such pair of maps. Also, we established a
common fixed point for above maps using property (E. A.) under weakly compatible property. In section 4,
we draw some corollaries and provide examples in support of our main results.

3. Main Result

Definition 3.1. Let (X, S) be an S-meric space. Let f,7 : X — X be self maps on X. Suppose that there
exists a € (0,1), L >0, 1 € ¥ and ¢ € & such that

V(S(fz, fy, £2)) < P(Ma(2,y,2)) — o(Ma(2,y,2)) + LN (2,9, 2), (3.1)

where
Mo (2,y,2) = max{S(Tz,Ty,Tz),S(Tz, Tz, fz), S(Ty, Ty, fy),S(Tz,T, fz),
CMS(fx, fl', Ty) + (1 - OZ)S(fy, fy7 TZ)} and
N(z,y,z) = min{S(fz, Tz, Tx),S(fz,Ty,Ty),S(fx,Tz,Tz),S(fx, Ty, Tz)}, for all x,y,z € X. Then the
pair (f,T) is called an (a1, ¢)-almost generalized weakly contractive maps on X.

Example 3.2. LetX = [0,1] and We define S : X3 — [0, 0) by

if x=y==z

S(x,y,2) = { max{z,y,z}  otherwise

Then S is an S-metric on X. Now we define f,T: X — X by

1 if z€]0,1] 2—z if xz€]0,1]

fx:{z if 2 € (1,2] and Tx:{o if € (1,2).

We now define functions t, ¢ : [0,00) — [0,00) by ¥(t) = t* and ¢(t) = & for all ¢ > 0. Now we verify that
the pair (f,T) is an (o, v, p)-almost generalized weakly contractive maps on X.

Case (i): Let z,y,z € [0, 1].

We assume without loss of generality, that = > y > z.

S(fx, fy, fz) =S(1,1,1) = 0, so that the inequality (3.1) holds trivially.

Case (ii): Let z,y,z € (1,2].

We assume without loss of generality, that z > y > z.

S(fx, fy, fz) = 5(2,2,2) =0, so that the inequality (3.1)holds trivially.

Case (iii): Let y,z € [0,1] and z € (1,2].

We assume without loss of generality, that x > y > z.

S(fx, fy, fz) =2,5Tx,Ty,Tz) =2 — 2,S(Tx, Tz, fx) = 2,S(Ty, Ty, fy) =2 —y,S(Tz,Tz,fz) =2 — =z
and aS(fz, fx,Ty) + (1 —a)S(fy, fy,Tz) =2 — (1 — a)z. Now, M,(z,y,2) = 2.

Clearly $(S(fz, fy, £2)) £ ¥(Ma (2,1, 2)) — 9(Ma(w,y, 2)) for any ¢ and .

We have S(fx,Tz,Tx) = 2,5(fx,Ty,Ty) = 2, S(fx,T2,Tz) = 2 and S(fz,Ty,Tz) = 2, so that
N(x,y,2) = 2. Now ¥(S(fz, fy, f2)) = ¥(2) =22 =4 < L(2) = LN(z,y, 2) for any L > 2.
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Case (iv): Let z € [0,1] and z,y € (1, 2].
We assume without loss of generality, that x > y > z.
S(fx, fy,fz) =2, S(Tx,Ty,Tz)=2—2, S(Tx,Tx,fx)=2, S(Ty,Ty,fy)=2,5TzTz fz)=2—=z2
and aS(fz, fx,Ty) + (1 — a)S(fy, fy,Tz) = 2, so that My (z,y,2) = 2.
Clearly ¥(S(fz, fy, f2)) £ ¥(Ma(z,y,2)) — ¢(Ma(z,y, 2)) for any ¢ and .
We have S(fz,Tz,Txz) = 2,5(fx,Ty,Ty) = 2, S(fx,T2,Tz) = 2 and S(fz,Ty,Tz) = 2, so that
N(z,y,z) =2.
Now ¥(S(fx, fy, fz)) = ¥(2) =22 =4 < L(2) = LN(z,y, 2) for any L > 2.
Case (v): Let z,y € [0,1] and z € (1, 2].
We assume without loss of generality, that z > x > .
S(fzx, fy, fz) =2,8(Tz, Ty, Tz) =2 —y,S(Tx, Tz, fx) =2 —x,5(Ty, Ty, fy) =2 —y,S(Tz,Tz, fz) =2
and aS(fz, fx,Ty) + (1 — «)S(fy, fy,Tz) =1+ a(l — y), so that M,(z,y,z) = 2.
Clearly $(S(f2, fy, 12)) £ $(Mal,9, 2)) — o(Malz,y, 2)) for any  and o,
We have S(fz,Tx,Tz) =2—=z, S(fz,Ty,Ty)=2—y, S(fz,T2,Tz)=1and S(fz,Ty,Tz) =2 —y,
so that N(x,y,z) = 1. Now ¥(S(fz, fy, f2)) = ¥(2) =22 =4 < L(1) = LN(z,y, 2) for any L > 4.
Case (vi): Let z € ]0,1] and z,y € (1, 2].
We assume without loss of generality, that z > y > x.
S(fx, fy,fz)=2,8(Tz, Ty, Tz) =2 —z,S(Tx,Tx, fx)=2—x,5(Ty, Ty, fy) =2,5(Tz,Tz, fz) =2 and
aS(fx, fz,Ty) + (1 —a)S(fy, fy,Tz) =2 — «, so that My (z,y,2) = 2.
Clearly $(S(f, [y, £2)) £ $(Ma(2,9,2)) — 6(Ma(z,y, 2)) for any ¢ and .
We have S(fx, Tz, Tx) =2 — 2, S(fz, Ty, Ty) =1, S(fx,Tz,Tz) =1 and S(fz,Ty,Tz) = S(1,0,0) = 1,
so that N(z,y,z) = min{2 — z,1} = 1.
Now (S(fx, fy, fz)) = ¥(2) =22 =4 < L(1) = LN(z,y, 2) for any L > 4
Case (vii): Let y € [0,1] and 2,2 € (1, 2].
We assume without loss of generality, that z > x > .
S(fx, fy, fz) =2,5(Tz, Ty, Tz) =2 —y,S(Tx,Tx, fx) =2,5Ty, Ty, fy) =2 —y,S(T2,Tz, fz) =2 and
aS(fx, fx,Ty)+ (1 —a)S(fy, fy,Tz) =1+ «, so that My(x,y,z) = 2.
Clearly T/J(S(f% fy7 fZ)) ﬁ T/J(Ma(% Y, Z)) - QD(MIX(Q:? Y, Z)) for any ¢ and ¢.
We have S(fz, Tz, Tz) =2,5(fx, Ty, Ty) =2 —vy, S(fx,T2,Tz) =2 and S(fz,Ty,Tz) =2 —y,
so that N(z,y,z) = min{2,2 —y} =2 —y.
Now ¢¥(S(fz, fy, fz)) =¢(2) =4 < L(2—-y) = LN(z,y, 2) for any L > 4.
Hence the pair (f,T) is an (o, 1, ¢)-almost generalized weakly contractive maps on X with any L > 4.
Here we observe that f does not satisfy (2.2) and therefore f is not an (a, v, ¢)-generalized weakly con-
tractive map on X. For, the inequality (2.2) fails at z = 0,y = 0 and z = 2 for any choice of ¢ and

®.
Lemma 3.3. Let (X, .S) be an S-metric space. If a sequence {x,} in X converges to z and S(zp, Tn, yn) — 0
then y, — x.

Proof. Let {xy} be a sequence in an S-metric space X which converges to z € X and S(xn, Zn,yn) — 0.

Let € > 0 be given. Then there exist ni,no € N such that
for all n > ny, we have S(Zp, Zn,yn) < % ,
for all n > ng, we have S(xy, zy, ) < i or S(x,x,zp) <

= o

Let ng = max{ni,n2}. Then for all n > ng, we have
S(x,2,yn) < 25(x,2,20) + S(Yn, Yn, Tn) < 25 + § = € for all n > ng.
Hence y, — x. This completes the proof of the lemma. O

Theorem 3.4. Let (X, S) be an S-meric space. Let f,7: X — X be self maps on X. Assume
(i) f(X) S T(X)
(ii) either f(X) or T'(X) is complete
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(iii) (f,T) is («, 1, ¢)-almost generalized weakly contractive maps.

Then f and T have a unique common fixed point v in X provided (f,T') is S-weakly compatible on X.
Moreover, if T' is S-continuous at u then f is S-continuous at wu.

Proof. Let xyp € X be arbitrary. We define a sequence {z,} by fx, = Txp4 for n = 0,1,2,... . If
frn = fapy1 for some n, then x,41 is a coincidence point of f and 1. Now we assume that fx, # fr,11
foralln=0,1,2,....
By substituting = x,41,y = Tn41 and z = x, 42 in the inequality (3.1), we have
¢(S(f$n+1, JTnt1, fxn-l-?)) <v Ma(xa Y, Z)) - SO(MOé(:m Y, Z)) +L N(xv Y, Z)
= @b(max{S(Tmn+1, T:En+1, Tl‘n+2), S(T:L‘n+1, T:En+1, fl’n+1),
S(Txpp1, Topgr, frng), S(Tenyo, Topyo, fTny2),
aS(frni1, fani1, Toni1) + (1 — ) S(foni1, fnt1, Topi2)})
- (p(maX{S(Ta:n_,_l, T.Z'n_H, Txn+2), S(Tl‘n_H, T-Z'n—&-h fxn+1),
S(Tl'nJrl, Trpyq, fxn+1)a S(Tl'nJrQ, Txny2, f$n+2)a
aS(frni1, fons1, Tangr) + (1 — @) S(foni1, fonir, Tani2)})
+ Lmin{S(fxnt+1, Tepns1, Txnt1), S(fXns1, TTps1, TTni1),
S(frny1, Topyo, Tapyo), S(frni1, Topy1, Topyo)}

= ¢(ma${5(f33m fwna fxn—i-l)a S(fxna fxna f$n+1)a S(fl’n, fxnv fxTH-l)a
S(frns1, fanta, font2), aS(fantr, fonir, fon)+(1=a)S(feni1, fania, foni1)})
- cp(ma:c{S(f:L‘n, fxnv fxn+1), S(f$n7 fmnv fx'thl)v S(fxnv fxna f$n+1)a
S(fns1, fonta, font2), aS(fantr, fonir, fon)+(1=a)S(fent1, fantr, foni1)})
+L min{‘s(fanrl, JTn, fxn)v S(f:l:n+1a JTn, f’l"n)’ S(fanrla fxn+1a f$n+1)7

S(frny1, fon, frai)}
That is

¢(S(f$n+1, f$n+1a fxn+2)) < w(maX{S(fl‘m fl'na fl'nJrl)a S(fl’n+1, fanrla fl‘n+2)})
—(max{S(fzn, frn, frni1), S(frni1, frni1, fTni2)})

Let My, = max{S(fxn, fxn, frnt1), S(fTns1, fTni1, foni2)}-

Here we have two cases, either M,, = S(fx, fz,, frnt1) or My = S(fxni1, fTnt1s fTni2)-

Suppose that, for some n, M,, = S(fxnt1, fTnt+1, fTni2). Therefore from (3.2), it follows

o(S(fzp, frn, frn+1)) = 0. Hence fx, = fxn41, a contradiction since fz,, and fx,1 are distinct elements.
Thus M,, = S(fzn, fxn, frns1) for all n. Hence from (3.2), we have

(3.2)

V(S(frny1, frngt, fxn+2)) < Qb(S(fl'm Jon, frng1)) — @(S(fxm Jn, fwn—&-l)) (3'3)

< ¢(S(f96m fn, f$n+1))'
Now by the non decreasing property of v, it follows that

S(fﬂl’n+1, fxn+17 fxn+2) < S(fﬂl’n, JTn, fwnJrl) for all n € N.
Therefore {S(fzn+1, fTnt1, fTnt2)} is a decreasing sequence of positive real numbers. Hence there exists

r > 0 such that
im S(fni1, fTni1, fante) =1 (3.4)
n—oo

On letting n — oo in (3.3) and using (3.4), we obtain ¥ (r) < ¢(r) — ¢(r), so that ¢(r) = 0. Hence
r=0. (3.5)

We now show that {fz,} is an S-Cauchy sequence. Suppose if possible, that {fz,} is not S-Cauchy.
Therefore by Lemma 2.24, there exists an € > 0 and two sequences {my} and {n} of positive integers with
ng > myg > k such that
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S(fxm,, [Tmys fon,) > €,S(fTmy—1, fTm,—1, f2n,) < € satistying the identities (i) to (iv) of Lemma 2.24.
We now prove the the following;:

(1) kll}n(r)lo S(fan,, [Tmy—1, fTme—1) <2¢ and (i) kli_)rrolo S(fan,, [Tn,—1, [Tm,—1) < 2e€. (3.6)

By using condition (S3) of S-metric space and using Lemma 2.7,
we get S(fxnk7 fxmk—la f"rmk—l) < S(fxnka fxnka fxnk)—i_s(fwmk—la fxmk—la fxnk)—i_s(fxmk—la f:l:mk—lv fxnk)
i'e'7 S(fiﬂnk, fxmkflv fwmkfl) < QS(fl'mk,l, fxmkflv fxnk)
On taking limits as £ — oo and using condition(i) of Lemma 2.24, we get
nh—>nc}o S(f$nk, fl'mkflv fxmkfl) < 2e.
Consider S(f:l:nka f"L‘nk*l’ f:Emkfl) < S(f!l)nk, fl'nk, fl'mk)_'_s(fxnk*lv f:Enk*lv fl‘mk)‘FS(fZEmkfl, fl'mkfla fxmk)
On taking limits as k& — oo, we have
kli_)rn S(fan,, [Tn,—1, [Tmu—1) < e+e+0=2e
oo

Now taking = fxy,,y = fom,, 2 = frn, and applying the inequality (3.1), we have
¢(S(f$nkv fZn,, fxmk)) < ¢(ma${S(Txnk,Txnk,T$mk), S(Txnk’Txnw fxmk)v S(Txnvaxnm fxmk)7
S(Txmys Ty, s fTmy ), &S (fon,, fan,, Ten, )+1—a)S(fan,, fTn,, Tom,)})
— pmax{S(Txpn,, Txn,, Txm,),S(Txn,, TTn,, frm,),S(Txn,, TTn,, fTm,),
S(Txmy s Ty, fTm,), @S (frn,, fan,, Ten, ) +(1—a)S(fan,, fTn,, TTm,)}
+ Lmin{S(fxn,, Txn,, Txn, ), S(fng, Tng, Tan, ), S(f2ng, TZm,, TTm,),
S(fan,, Ten,, TTm,)}

= @Z}(max{s(fmnk,l s [Ty f:L‘WLk—l)7 S(fl'nkfh JTny_ys fl'nk)a S(fxnkfla JET fxnk)a
S(frmp—1 [Tmp—1, [Tmy ), @S (fTnys fnys fTn, )+ (A=) S(f2ny, fTn, [Tmy_,)})
—go(max{S(fxnk% > fxnk,l > fxmk,l)a S(fxnkfla fxnk,la fxnk)a S(fxnkfla f"Enk,la fxnk),
S(fl’mk_l, fxmk—lv fxmk), O‘S(fxmw fxnlw fxnk—l)—"_(l_a)s(fxnk? fxnkv fxmk—l)})
+L min{S(f:an, fxnk—l > fx”k—l)’ S(fxnk’ fxnkfl ) fxnkq)’ S(fxnk’ fxmk—l’ f$mk,1)7
S(f.%'nk, fxnk71 ) fxmk71)}'

On taking limits as k& — oo in the above inequality and using Lemma 2.24,

we get P(e) < (e) — ¢(e) + L(0) < 9(€), a contradiction.

Hence {fx,} is S-Cauchy.

Now suppose that T'(X) is complete. Then there exists u € X such that lim Tz, = u. Hence lim fz, = u.

n—oo n—o0

Since u € T'(X) there exists z € X such that u = T'z. We now show that fz = u.
We now consider
V(S (fan, fan, f2) < Y(max{S(Tx,, Tx,,Tz),S(Txn, Txy, fr,), S(Txy, Tey, fr,),
S(T2, T2, £2),0(fn, fn, Tan) + (1 — 0)S(Fin, fm, T2)))
—o(max{S(Tzy, Try,T2),S(Txn, Ty, frn), S(Trn, Try, fr,),
S(T2, Tz, fz),aS(frn, frn, Ton) + (1 — @)S(fon, frn, Tz)})
+ L min{S(fan, Txn, Txy), S(frn, Ton, Tryn), S(fon, T2,Tz),S(frn, Trn, Tz)}.
On letting n — oo in the above inequaity, we get
(S (u,u, fz) < Pp(maz{S(u,u,u),S(u,u,u),S(u,u,u),S(u,u, fz),0})
— @(maz{S(u,u,u), S(u,u,u),S(u,u,u),S(u,u, fz),0}).
Therefore

P(S(u,u, f2)) S (S (u,u, f2)) = 0(S(u,u, f2)) (3.7)

so that ¢(S(u,u, fz)) = 0. Hence u = fz. Therefore fz =Tz = u.

Since the pair (f,T) is S-weakly compatible, we have fTz =T fz. Thus fu = Tu.

Now, suppose that f(X) is complete. Then there exists u € f(X) such that nh_)rglo frn = nlg]go Tx, = u.
Since f(X) C T(X) we have u € T(X), so that there exists z € X such that w = Tz. Therefore proceeding
as above, we get fz = u.

We now show that u is the common fixed point of f and T
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Consider ¥(S(fu, fu, fx,)) < Y(maz{S(Tu, Tu,Txy), S(Tu, Tu, fu), S(Tu, Tu, fu),
S(Txy, Ty, fr,),aS(fu, fu,Tu) + (1 — a)S(fu, fu, Txy,)
— o(max{S(Tu,Tu, Txy), S(Tu, Tu, fu), S(Tu, Tu, fu),
S(Txy, Txy, fr,),aS(fu, fu,Tu) + (1 — a)S(fu, fu,Tx,)})
+Lmin{S(fu, Tu, Tu),S(fu, Tu, Tu),S(fu, Twp, Txy), S(fu, Tu,Tzy,)}
Taking the limit as n — oo in the above inequality, we have
V(S(fu, fu,u)) < Y(maz{S(Tu,Tu,u), S(fu, fu, fu), S(fu, fu, fu), S(u,u,u), a(0)+ (1 —a)S(fu, fu,u)})
—p(maz{S(Tu, Tu,u),S(fu, fu, fu), S(fu, fu, fu),S(u,u,u), x(0)+(1—a)S(fu, fu,u))})
+ Lmin{S(fu, fu, fu), S(fu, fu, fu),S(fu,u,u), S(fu, fu,u)}
This implies ¥(S(fu, fu,u)) = 0. So that fu = u. Therefore fu = Tu = u. Hence u is the common fixed
point of f and T.
We now prove uniqueness of common fixed point. Suppose if possible v and v are two common fixed points
of f and T with u # v, then we consider
P(S(fu, fu, fv)) < Ymax{S(Tu, Tu,Tv),S(Tu, Tu, fu), S(Tw, Tu, fu), S(Tv,Tv, fv),
ol fu, fu, Tu) + (1 — a)S(fu, fu, To)})
— o(mazx{S(Tu,Tu,Tv),S(Tu, Tu, fu),S(Tu, Tu, fu),S(Tv, Tv, fv),
a(fu, fu,Tu) + (1 — a)S(fu, fu,Tv)})
+ Lmin{S(fu,Tu, fT),S(fu, Tu,Tu), S(fu, Tv,Tv), S(fu, Tu,Tv)}.
Implies ¥(S(u,u,v)) < o(S(u,u,v)) + L (0).
Thus ¢(S(u,u,v)) =0, so that S(u,u,v) = 0. Therefore v = v. Hence uniqueness follows.
Now suppose that T is S-continuous at u. We show that f is also S-continuous at .
Consider the sequence {z,} in X such that z,, — v as n — oo. Then

P(S(fu, fu, fen)) < P (Ma(u, u, 2n)) = (Mo (u, u,20)) + L N(u,u, 2,) (3.8)

where M, (u,w, x,) = max{S(Tu, Tu,Txz,),S(Tu, Tu, fu),S(Tu, Tu, fu),S(Txy, Txn, fr,),

aS(fu, fu,Tu) + (1 — @)S(fu, fu, Tx,)}

= max{S(Tu, Tu, Txy), S(u,u,u),S(u,u,u), S(Txy, TTpn, fr,),

aS(Tu, Tu,Tu) + (1 — a)S(Tu, Tu, Txy)}
Now taking the limits as n — oo
li_>m M (u, u, ) = max{0, 0,0, 1i_>m S(Tw, Tu, fry),a(0) + (1 —a)0} = li_)m S(fu, fu, fry)
and N (u,u,x,) = min{S(fu, Tu, Tu), S(fu, Tu,Tu), S(fu, Txn, Txy),S(fu, Tu, Txy,)}
Now taking the limits as n — oo, we get li_>m N(u,u,x,) = 0.
On taking the limits as n — oo in (3.8), we get
T O(S(fu, fu. fa)) < 6 lim S(fu, fu, fr,)) — o( lim S(fu, fu, f,)).
Therefore ¢ li_>m S(fu, fu, fx,)) = 0. This implies li_}rn S(fu, fu, fx,) = 0. ie., fz, is S-convergent to
fu. This completes the proof of the theorem. O

In the following theorem we use property (E. A.) to relax condition f(X) C T'(X).

Theorem 3.5. Let X be an S-meric space. Let f,T be two self maps on (X, S). Assume that T(X) is a
closed subspace of X and let the pair (f,T) be («, 1, p)-almost generalized weakly contractive maps. If the
pair (f,T) satisfies property (E. A.) then f and T have a unique common fixed point in X provided the
pair (f,T) is S-weakly compatible on X.

Proof. Since f and T satisfy property (E.A.), there exists a sequence {z,} in X such that lim fx, =

n—o0

lim Tz, = u for some v € X. Since T'(X) is a closed sub space of X, there exists a € X such that u = Ta.

n—o0
Now

V(S(frn, fan, fa)) < Y(max{S(Txn, Txn, Ta),S(Txn, Ty, fr,), STy, Tan, fr,),



G. V. R. Babu, P. D. Sailaja, G. Srichandana, Commun. Nonlinear Anal. 7(1) (2019), 17-35 26

S(Ta,Ta, fa),aS(fxn, frn, Tx,) + (1 — a)S(fan, fon, Ta))})
— p(max{S(Txn, Txn,Ta), S(Txn, Txn, frn),S(Txpn, Ty, fr,),
S(Ta,Ta, fa),aS(frn, frn, Tr,) + (1 — a)S(fon, fr,, Ta))})
+ Lmin{S(fxn, Txyn, Txy), S(fon, Ten, Ty), S(frn, Ta,Ta), S(fan, Txy, Ta)}.

On letting n — oo on both sides, we get
P(S(u,u, fa)) < Y(max{S(u,u,u),S(u,u,u), S(u,u, fa),S(u, u,w), a(u,u,u) + (1 — a)S(u, u,u)})
— o(max{S(u,u,u),S(u,u,u), S(u,u,u),S(u,u, fa),S(u,u,u), a(0) + (1 — a)S(u, u,u)})
+ L min{S(u,u,u), S(u,u,u),S(u,u,u), S(u,u,u)}.
— (S(fu, fuw) — $(S(fu, fu,u) + L (0)
This implies ¢(S(u,u, fa) = 0, so that S(u,u, fa) = 0. Implies u = fa. Hence a is the coincidence point of
f and T'. Since the pair (f,T') is S-weakly compatible, fu = fTa =T fa = Tu.
Now consider (S(fa, fa, fu)) < ¢Y(max{S(Ta,Ta,Tu),S(Ta,Ta, fa),S(Ta,Ta, fa),S(Tu, Tu, fu),
aS(fa, fa,Ta)+ (1 —a)S(fa, fa,Tu)})
— ¢(max{S(Ta,Ta,Tu),S(Ta,Ta, fa),,S(Ta,Ta, fa),S(Tu, Tu, fu),
aS(fa, fa,Ta)+ (1 —a)S(fa, fa,Tu)})
+ Lmin{S(fa,Ta,Ta),S(fa,Ta,Ta),S(fa,Tu,Tu),S(fa,Ta,Tu)}

That is (S (u, u, fu)) < P(maz{S(u, u, fu), S(u,u, u), S(fu, fu, fu), (Tu, Tu, fu), @S (u, u,u)+(1-a)S(u, u, fu)})
—(p(TTLCL.I'{S(U, U, f’U,>, S(U, u, 'LL), S(fuv fu7 f'LL), S(TU, T'LL, fu)a aS(u, u, U)—i-(l—OC)S(U, U, f’LL)})
This gives ¢(S(u,u, fu)) = 0. By the property of ¢, S(u,u, fu) = 0. Therefore v = fu. This implies
u = fu = Tu. Hence u is the common fixed point of f and 7. Uniqueness of common fixed point follows as
in the proof of Theorem 3.4. UJ
4. Corollaries and Examples
Corollary 4.1. Let (X, S) be an S-meric space. Let f,T : X — X be self maps on X. Assume
(i) f(X) CT(X)
(ii) either f(X) or T'(X) is complete.
(iii) the pair (f,T") be (a1, p)-almost generalized weakly contractive maps.

Then f and T have a unique common fixed point u in X provided the pair (f,T') is S-compatible on X.
Moreover, if T is S-continuous at u then f is S-continuous at w.

By choosing ¢ (t) =t for all £ > 0 in Theorem 3.4, we obtain the following corollary.
Corollary 4.2. Let (X, S) be an S- meric space. Let f,T7 : X — X be two self maps on X. Assume that
(1) F(X) C T(X)
(2) either f(X) or T(X) is complete.

(3) there exists a € (0,1), L >0, € ¥ and ¢ € @ such that
S(fz, fy, [2)) < Ma(z,y, 2) — p(Ma(z,y,2)) + LN (2,4, 2),
where M, (z,y,z) = max{S(Tx,Ty,Tz),S(Tx, Tz, fx),S(Ty, Ty, fy),S(Tz,Tz, fz)

aS(fz, fz,Ty) + (1 — a)S(fy, fy,Tz)}
and N(z,y,z) = min{S(fz, Tz, Tx),S(fz,Ty,Ty),S(fx,T2,Tz),S(fx,Ty,Tz)} for all z,y,z € X.

Then f and T have a unique common fixed point u in X provided the pair (f,T) is S-weakly compatible
on X. Moreover, if T' is S-continuous at u then f is S-continuous at wu.

By taking ¢(t) = (1 — A)t,¢ > 0 in the Corollary 4.2, we have the following.
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Corollary 4.3. Let (X, S) be a complete S-metric space and f, T be two self mappings on X. Assume that
f(X) € T(X) and if there exist A\,a € (0,1), L > 0, such that S(fz, fy, fz) < AMqa(x,y,2) + LN(z,y, 2)
where M, (x,y,z) and N(z,y,z) are same as in the Corollary 4.2. Then f and T have a unique common
fixed point u provided the pair (f,T) is S -weakly compatible.

If a = 1 in the inequality (3.1), we have the following.
Corollary 4.4. Let (X, S) be an S- meric space. Let f,T : X — X be two self maps on X. Assume that
(i) /(X) S T(X)
(ii) either f(X) or T'(X) is complete

(iii) there exists L >0, ¢ € ¥ and ¢ € ® such that
W(S(fx, fy, f2)) < Y(max{S(Tx, Ty, Tz), S(Tx, Tz, fx), S(Ty, Ty, fy), S(T'z, Tz, fz),

3(S(f, f2,Ty) + S(fy, fy. T2))})
- @(maX{S(Txa Tya TZ)7 S(T:L’, T$7 f.%'), S(Tyv Tyv fy)a S(Tza TZ7 fz)a

3(S(fx, fx,Ty) + S(fy, fy, T2))})
+ L min{S(fz,Tx,Tz),S(fz,Ty,Ty),S(fx,Tz,Tz),S(fx, Ty, Tz)}
for all z,y,z € X.

Then f and T have a unique common fixed point u in X provided the pair (f,T) is S-weakly compatible
on X. Moreover, if T' is S-continuous at u then f is S-continuous at wu.

If L =0 in the inequality (3.1), we have the following.
Corollary 4.5. Let (X, S) be an S-meric space. Let f,7 : X — X be two self maps on X. Assume that
(i) f(X) CT(X)
(ii) either f(X) or T(X) is complete.

(iii) there exists L > 0, ¢ € ¥ and ¢ € ® such that
P(S(fz, [y, [2)) <P (Ma(z,y,2)) = p(Ma(2,y,2)) for all z,y, 2, € X.

Then f and T have a unique common fixed point u in X provided the pair (f,T") is S-weakly compatible
on X.

If 4 is the identity map in the Corollary 4.5, then we have the following.

Corollary 4.6. Let (X,S) be a complete S-meric space. Let f,T be two self maps on X. Assume that
f(X) C T(X). Suppose there exists ¢ € ¥ and ¢ € ¢, a € (0,1) such that S(fz, fy, fz) < My(x,y,z) —
o(Ma(z,y, 2)), for all z,y,z € X. Then T and f have a unique common fixed point in X provided the pair
(f,T) is S- weakly compatible.

By choosing ¢(t) = (1 — A)t,t > 0 in the Corollary 4.6, we have the following.

Corollary 4.7. Let (X,S5) be a complete S-metric space and f,T be two self mappings on X. Assume
that f(X) C T(X) and there exist A\, € (0,1) such that S(fz, fy, fz) < AMy(z,y,2) for all z,y,z € X.
Then f and T has a unique common fixed point u provided the pair (f,T") is S-weakly compatible.
Remark 4.8. Theorem 2.20 follows as a corollary to Corollary 4.7 by taking T as the identity map on X.

By choosing T' as the identity map of X in Theorem 3.4, we have the following.
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Corollary 4.9. Let (X,S) be a complete S-meric space. Let f : X — X be a mapping. Suppose there
exists a € (0,1), L >0, € ¥ and ¢ € @ such that

V(S(fx, fy, [2)) < p(max{S(z,y,2),S(z,z, fx), S(y,y, fy),S(2, 2, f2),aS(fz, fr,y)+(1-a)S(fy, fy,2)})
—p(max{S(z,y,2), S(z, z, fz), S(y, y, fy), S(2, 2, f2),aS(fz, fx,y)+(1-a)S(fy, fy,2)})
for all x,y,z € X. Then f has a unique common fixed point u and f is S-continuous at u.
Remark 4.10. Theorem 2.23 follows as a corollary to Corollary 4.9 by taking L = 0.
The following is an example in support of Theorem 3.4 .

Example 4.11. Let X = [0,1] and we define S : X3 — [0,00) by S(z,y,2) = maz{|xr — z|,|y — 2|} for all
z,y,2 € X. Then S is an S-metric on X. Now we define f,7: X — X by

ra={

Here f(X) C T(X). We now define functions ¢, ¢ : [0,00) — [0, 00) by

if x€(0,1] =z
ifxe(%,l] and T$—2.

(8008

3 2 if telo,1]
= — > — 4 ’
P(t) 5 for all t>0 and o(t) { P oitre 1 00).

Now we verify that (f,T) is an («, 1, ¢)- almost generalized weakly contractive map.

Case (i): Let z,y,z € [0, 3.
We assume, without loss of generality, that = > y > z.
S(fr, fy,f2) =8(5.%5.5) =§ — & and S(Tx, Ty, Tz) = S(5,%,5) = 5 — 5. We have

T—2)2
G(S(fa, fy [2) = 5 — 4 < 2 = 5
< S(TzTyTz)  S(Tz,TyTz)?
— 2 4 )
Mo (z,y,2 Mo (z,y,2
< (231 ) _ ¢ (41/ )

= ¢(Ma(x,y,z)) - @(M&(xayvz)) + LN(.’L',y, Z) for any L Z 0.
Case (ii): Let z,y,2 € (3, 1].
We assume, without loss of generality, that z > y > z.
S(fx, fy,fz)=S5(%,4.%)=%—% and S(Tx,T_y,;Tz) =S5(%42) =2~
Now ¢(S(fx, fy, f2) = $(5 —3) < -5 =
_ S(T2TyTz) _ (S(Tz,TyT=))?
2 1

Ma(xvyvz) _ (Ma($’y7z))2

= w(]\;a(;r, y,2)) — o(My(x,y,2)) + LN (z,y, z) for any L > 0.
Case (iii): Let y,z € [0, 3] and = € (3,1].

We assume, without loss of generality, that x > y > z.

S(fx,fy, fz) =85, 4:%)=5-5 STz, Tz, fr) = 5(5,%5,%) = §and S(Tz, Ty, Tz) = S(5, %,
Sub Case (a): Let § < z <

x.
V(S(fz, fy, f2)) =5 — 16 <

IN

rol
N~—
Il
ol
[
role

el
N

S(Tx,Tx,fr) (S(Tx,Tx,fx))?
4

%Ma(x7y, z) — %(Ma(l\yaz))

P(Mali9,2)) — 9(Malz,, 2)) + LN (2,3, 2) for any L > 0.
Sub Case (b): Let z <

S(fz, fy. f2) =5 —3
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Now, ¢(S(fz, fy, f2) =5 -6 < *T° — 5

T—z (zf,Z)Q
2

=5 -7
S(Tz,TyTz) _ (S(Tz,TyTz))*
2 7
=Y(My(z,y,2)) — o(My(z,y,2)) + LN(z,y, 2) for any L > 0.
Case (iv): Let z € [0, 4] and 2,y € (3,1].
We assume, without loss of generality, that x > y > z.
S(fx?fyafz) = S(%’%7 %) = %_ga S(T.%',T.%',fl‘) = S(%a%a%) = %7 S(Tvavaz) = S(%7%a§) = |% - %‘

Sub Case (a): Let g <z<uw.
(92

V(S(f, fy, [2)) =5 — 16 < 1

_ S(T'z,Tz,fx)
2

00|8

(S(Tx,Tx,fx))?
4

M«'X ($7y72) _ (Ma($,y72))2
2 4

IN

= p(Ma(z,y,2)) — p(Ma(2,y,2)) + LN(2,y, 2) for any L > 0.
Sub Case (b): Let z < 3 <

Z.
B(S(fw, fy, 12)) = & — 45 < =% — O

a—z _ (555

4 4
S(TaTyTz) _ (S(IwTy,T=)?
2 4

Ma(:§7y72) _ (Ma(vzy7Z))2

(Mal2,9,2)) — $(Ma(,9,2)) + LN (2,9, 2) for any L > 0.

Case (v): Let z,y € [0, 3] and z € (3, 1].

We assume, without loss of generality, that z > y.

S(fr, fy,f2)=8(5.%8.5) =55, STz, Ty, Tz) = 5(5,5,5) =5—5 and S(T2,Tz, fz) = S(3,
Sub Case (a): Let 5 <z < 2.
WSUfafy ) =i -H<i- %

_ S(TzTzfz)  (S(TzTz,fz))>
2 4

IHIA

role
NS
~—
Il
NS

2

2

< Malowa) _ (Ma(azyz))z
= p(Ma(2,y,2)) — p(Ma(z,y, 2)) + LN(2,y, 2) for any L > 0.

Sub Case (b): Let x <
V(S(fz, fy, [2) = § — 15 < 1% — (Zzgf)

-z _ (55%)?
4 4

S(Ta,TyTz) _ (S(Ta,Ty,Tz))>
2 1

Ma(§7y7z) _ (Ma(ailvyvz))2

V(Ma(z,y, 2)) — p(Ma(z,y,2)) + LN (2,y, 2) for any L > 0.
Case (vi): Let z € [0, 3] and z,y € (3, 1].

We assume, without loss of generality, that z > y > x.

S(fx7fy7fz) = S(%7%7§) = i - %7S(T‘T7Ty7TZ) = S(%)%u%) = % - %,S(TZ,TZ,]CZ) = S(%a

Sub Case (a): Let 5§ <z < 2.

I IA

(NGRS
e
SN—
Il
Bl
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V(S fy f2) =5 -6 <5 &

n

(TzTz.fz) _ (S(TzTzfz))*
2 4

< Ma($7y7z) _ (Ma(z,y,z))Q
— 2 4

= p(Ma(z,y,2)) — p(Ma(2,y,2)) + LN(2,y, 2) for any L > 0.
Sub Case (b): Let < 2 <

z
zZ—X 2
W(S(fa, fy. £2) = § — £ < 5= - 5

S(Tx,TyTz) (S(Ta:,Ty,Tz))2
2 4

< Ma(%y’z) _ (Mﬂ(w’yvz))g
2 4

= p(Mu(z,y,2)) —o(My(z,y,2)) + LN(z,y, 2) for any L > 0.
Case (vii): Let y € [0,3] and 2,z € (3, 1].
We assume, without loss of generality, that z > x > .
(fx Ty, fZ) (x’g7i):i*%7 S(T$,Ty,TZ)=S(
Sub Case (a): Let § <y < z.
V(S(fo, fy, f2)) =3 — {6 <5~ @&

(32
4
8(TzTzfz)  (S(TzTzf2))?
2 4

N\@

,3)=35—%and S(Tz, Tz, f2) = S(3,

vl
role
NS
S~—
Il
NS

ool

Mo(2,y,2) _ (Ma(2,y,2))°
2 4

IN

— (Mo, 2)) — $(Mal2,9,2)) + LN (2, ) for any L> 0.
Sub Case (b): Let y < 2

< z.
W(S(fz, fy, f2)) = % — %é v Ly

=71 4
S(Tx, Ty, Tz) _ (S(Tz,Ty,Tz))?
2 Z

< Ma(x:yaz) _ (Mﬂé(xvyzz))z
- 2 4

- ¢( (:U Y,z )) (,O(Ma(.l‘, Y, Z)) + LN(x7y> Z) fOI‘ any L 2 0.
Hence (f,T) is an («a,v,)- almost generalized weakly contractive map on X. Also, the pair (f,T) is
S-weakly compatible and f and T have unique common fixed point 0.

The following example is in support of Theorem 3.5

Example 4.12. LetX = [0,1] and We define S : X3 — [0,00) by S(z,y,2) = max{|x — 2|, |y — 2|} for all
z,y,z € X. Then S is an S-metric on X. Now we define f,T : X — X by

1tz if 1 if 0.1
_ . if z€]0,5) _Jo if z€1l0,3)
Jx { 1 if 2 € [,1] and Tz l—z ifzeli 1]

ﬁ .
W(t) = % and p(t) = { § i}ft tee[l[,oc;ﬂ
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We now verify that (f, ) is an (a, ¥, ¢)- almost generalized weakly contractive maps on X.
Case (i): Let z,y,2 € [0,1).
We assume, without loss of generality, that z >y > z.

S(fx, fy, f2) = S(lﬁ, By Ly — o2z §(Tx,Ty,Tz) =0 and S(Tz, T, fz) = S(0,0, 15%) = 132,

7 2
(+52)°

Pri- G
_ S(TzTzfz) _ (S(TzTy.f2))*
2 4

V(S(fz, fy, f2)) =

< Ma(x,yvz) _ (J\Ja(ﬂzy,Z))2

_¢( (w Y,z )) @(Ma(m,y,z))—l—LN(:v,y,z) for anyLZO-
Case (ii): Let z,y,z € [1,1].
We assume, without loss of generality, that x > y > z.
S(fx, fy, fz) = S(%, %, %) = 0, so that the inequality (3.1) holds trivially.
Case (iii): Let y, 2 € [0, 3) and = € [5,1].
We assume, without loss of generality, that > y > z.
S(fa, fy, f2) = S(5, 52, 152) = max{3, |4 — 3.
S(Tz, Ty, Tz)=1—2x, STy, Ty, fy) = 1+y ,and S(T'2, Tz, fz) = L=
If S(fx, fy, fz) = 5 then
(1$2)?

V(S(fa, fy, f2) =5 <241 — 3~
_ S(TzTzfz) (S(T2,Tz,fz))>?
2 Z
< Ma(wyy 2) (1\@(922472))2
= Y(Ma(2,y, 2)) — p(Ma(2,y,2)) + LN (2,y,2) for any L > 0.
If S(fx, fy, fz) = 5= then

2
W(S(fa, fy, f2)) = 452 < = = O

If S(fz, fy, fz) = .
V(S(f, fy, fz)) = L < 1%;; _ (T:)z

_ S(Ty,zTy,fy) _ (~‘9(Ty72y,fy))2
Ma(xyZ) _ (1\4a(664,y,z))2

= 1/1( o, 1,2)) = p(Mal(@,, 2)) + LN (2, y, 2) for any L > 0.
Case (iv): Let z € [0,1) and 2,y € [3,1].
We assume, without loss of generality, that > y > z.
St fy.12) = 5(3,3, %%) = § and S(T= Tz, f2) = 50,0, 49 = 5.
(55)?

O(S(fz, fy, f2) =5 < L — 3

_ S(TzTzfz)  (S(TzTzf2))°
2 4

IN

MOé (:c,y,z) _ (Ma(xvyvz))Q
2 4

IN

= p(Ma(z,y,2)) — ¢(Ma(z,y,2)) + LN(z,y,z) for any L > 0.
Case (v): Let z,y € [0, %) and z € (5,1].
We assume, without loss of generality, that = > y.

S(fz, fy, fz) = (1+:c7 14y 1) = max{%,4},S(Tz, Tz, fx) = HTI and S(Ty, Ty, fy) = S(O7O7HTy) —

2 02
If S(fx, fy, fz) = 5 then

1+y
—5 -
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T

—
w‘+

V(S(fz, fy, f2)) =5 < L2 —

4
1+ (L52)2
< Tx - 24
_ S(Tz,Tz,fz)  (S(TxTz,fz))?
= 2 1

Ma (m,y,z) _ (Ma(l‘vyvz))2
— 2 4

= b(Ma(2,y,2)) = p(Ma(2,y,2)) + LN (z,y, 2) for any L > 0.
If S(fx, fy, fz) = § then
W(S(fa, fy, [2) =4 < 2 — %

< S@yTy.fy) _ (S(Ty,Ty.fy))?
= i

= '¢(M (l’ Y,z )) - QO(MQ(ZL',y,Z)) + LN(.CE,y, Z) for any L > 0.
Case (vi): Let z € [0,1) and 2,y € (3, 1].
We assume, without loss of generahty, that z >y > =z.
S(fa, fy. f2) = SC42,1,1) = £ and S(Tw, Tar, fr) = S(0,0,142) = 152,

[
Now 9(8(fo, fur f2)) = & < e —

N

4
1+ (42)?
N
S(Tx,Tx,fr) (S(Tx,Tx,fx))?
- 2 4

Mo (x,y,z Mo (z,y,2))2
< Malrwz) _ (Ma(ry.2)

= ¢Y(Ma(z,y,2)) — ¢(Ma(2,y, 2)) + LN (2,y, 2) for any L > 0.

Case (vii): Let y € [0, 3) and z,z € (3,1].
We assume, without loss of generality, that z > x > y.
S(fx, fy, fz) = S(3, 5%, 3) = § and S(Ty, Ty, fy) = 5(0,0, 55%) = 5.
If S(fx, fy, fz) = § then

Y 1+y (1+y)2
V(S(fz, fy, f2)) = § < % — 5

S(T

Ty fv) (S(Ty,EZAfy))2

<

= ¥(Ma(z,y,2)) — ¢(Ma(z,y,2)) + LN (2,y, 2) for any L > 0.
Hence (f,T) is an (a, 9, p)-almost generalized weakly contractive maps on X. More over (f,T) is S-weakly
compatible and (f,T) satisfies property (E. A.) and f and T have a unique common fixed point %

If the maps f and T fail to satisfy property (E. A.) in Theorem 3.5, then f and T may not have a
common fixed point.The following example illustrates this fact.

Example 4.13. Let X = [0,1] and We define S : X3 — [0,00) by S(z,y,2) = maz{|z — z|,|y — 2|} for all
z,y,z € X. Then S is an S-metric on X. Now we define f,T : X — X by

[ 1 if ze]0,3] _
fx—{ % ifzé(%,l] and Tr =

if €(0,2]

[NV

We now define functions 1, ¢ : [0, 00) — [0, 00) by

t
t) = -
We now verify (f,T) is an (a, v, ¢)- almost generalized weakly contractive maps on X.

Case (i): Let z,y,z € [0, 2].
We assume, without loss of generality, that x >y > z.

and pt)= 2 for all t>0
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S(fx, fy, fz)) = 5(1,1,1) = 0, so that the inequality (3.1) holds trivially.
Case (ii): Let z,y,z € (3,1].

We assume, without loss of generality, that © >y > z.

S(fx, fy, fz)) = S(3,%,2%) =0, so that the inequality (3.1) holds trivially.
Case (iii): Let y,2 € [0, 2] and z € (2, 1].

We assume, without loss of generality, that x >y > 2.
S(fx,fy,fz)z ( 1a1) 7 (fl' Tz, T$) S(?)p%a%)zéy
S(fx,Tz,Tz) = S(%, 3.9 = % and S(fz,Ty,Tz)) = 5(3,3,2)
W(S(fz, fy, f2) = ¥(5) = § < {5 for any L > 2

= LN(z,y,z) for any L > 2

< Pp(Mu(z,y,2)) — p(Mu(x,y,2)) + LN(z,y, 2) for any L > 2.
Case (iv): Let z € [0, 2] and z,y € (3,1].

We assume, without loss of generality, that x > y > z.

nn

(fo, Ty, Ty) = 53,3, 1) = 15,
= &5, sothat N(z,y,2) = 5.

S f.12) = 5G4, 1) = 3, SUeTaTa) = 56,5,4) = SUnTy.T9) = S 3.8) = &
S(fx, Tz, fz) =S(5, % 1):% and S(fz,Ty,Tz)) = S(3,3,%) = 1, so that N(z,y,2) = .
Now, ¥(S(fz, fy, fz))zég—for any L > 2

=L N(z,y,z) for any L > 2
< (M, (1’ y,2)) — p(Ma(z,y,2)) + L N(z,y,2) for any L > 2.
Case (v): Let z,y € [0, 2] and z € (3,1].

We assume, without loss of g(—:-nemhty7 that z >y > z.

S(fx. fy. £2) = S(L1.3) = L. S(fa. Te T) = §(3.3.1) = %75(f$7Ty,Ty) =513 D=1
S(fx,Tz,Tz) = S(1, % %) % and S(fx,Ty,Tz)) = S(1,3,1) =1, so that N(z,y,2) = L.
NOW7 l/J(S(fxa fy:fz)) = (%) 1 S i fOI' any L Z %

=L N(z,y,z) for all L >

< Y(My(z,y,2)) — @(Ma(x,y,z))—l—L N(z,y,z) for any L >
%] dz,ye(%,l].
3) =3, S(fz,Tz,Tx)=5(1,%,%) = 1,5( :
%) 1 and S(fx, Ty,Tz)):S(l,%,%):% sothat N(:n Y, z) = %.

Case (vi): Let x €

[0
S(fz, fy, fz) = S(1,
S(fx,Tz,Tz) =51,

OJ\[\’)"

\—/ww

Now, ¥(S(fz, fy, fz) %S%franyL>2
=L N(z,y, )foranyLZ%
2
< P(Ma(z,y,2)) — p(Ma(2,y,2)) + L N(z,y,z) for anyng,

Case (vii): Let x,y € [0, 2] and z € (2 1].
We assume, without loss of generahty, that z > x > y.

S(fz, fy, fz) = S(3,1,3) = S(fx,Tz,Tx) = S(3,5,%) = ¢ (fl’ Ty, Ty) =535 1) = 12
S(fe,Tz,Tz) = S(3 L Land S(fz, Ty, Tz)) = (%, %, %) = 12, so that N(z,y,z) = %
Now, ¥(S(fx, fy, f % for any L > 2
L N(z,y,z) for any L > 2
<WY(My(z,y,2)) — o(Muo(z,y,2)) + L N(z,y,z2) for any L > 2.

2
3
z

y 5

\—/m,_.“

)
1
6

)

I I/\ ”

2
3

Therefore from all the above cases (f,T) satisfies inequality (3.1). Hence the pair (f,T) is (a, v, ¢)-almost
generalized weakly contractive map for any L > 2. Also the pair (f,T') is S-weakly compatible but the pair

(f,T) do not satisfy property (E.A.) and f and T do not have a common fixed point.
The following examples are in support of Corollary 4.9 .

Example 4.14. Let X = [0, 3] and We define S : X* — [0,RT) by

0 if r=y==z
max{z,y,z}  otherwise

S(a.2) = {
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Then S is an S-metric on X. Now we define f :: X — X by
3 if ze0,2)

]

We now define functions ¢, ¢ : [0, 00) — [0, 00) by

fo=

[\G][WV]

if z € [2,

\G][Vv)

b(t)=t and ()= £ for all t>0

We now verify (f,T) satisfies inequality in corollary 3.8.
Case (i): Let z,y,z € [0, 2).
We assume, without loss of generality, that x >y > z.
S(fz, fy, fz)) = S(2, g, 3) =0, so that the inequality (3.1) holds trivially.
Case (ii): Let z,y,z € [2,3].
We assume, without loss of generality, that = > y > z.
S(fz, fy, fz)) = S(3, %,?) = 0, so that the inequality (3.1) holds trivially.
Case (iii): Let y,z € [0,5) and z € [%, 3.
We assume, without loss of generality, that y > z.

S(fa:,fy,fz)):S(%,%,%):%, S(x7y>z):xa S(.%,J?,fx):S(iL' 5373) %? (y yvfy) (%ya%):%

S(z,2, fz) = S(z,2,3) = ¢ and aS(fz, fz,y)+(1-a)S(fy, fy,2) = aS(3, 5, 9)+(1-a)S(2, 2,2

Now, Ma(m,y,z) = maX{S(;L"y’ Z),fS(l‘,l’,ffL‘) S(y yafy) (z,z,fz) S(f:E f ay) + (1 —Oé) (

—max(n 3,3 3.3+ o) = &

S(fﬂf,fﬁ,if)zs(gaiU T) = ga S(fm,y,y):S(Q,y,y) 37 S(f{L‘,Z,Z):S(%,Z,Z):%,

S(fx,y,z) =3, so that N(z,y,2) = min{S(fz,z,z),S(fz,y,y), S(fz, 2, 2),S(fr,y,2)} = 3.

Now, ¥(S(fz, fy, fz)) < L3 for any L > 1.

Case (iv): Let z € [0, )anda: ye 23]

We assume, without loss of generality, that = > y.

S(fxafyafz))is(;%?%):%: S(.CE y? )_x ( ) ; S(yayvfy):%7 S(z,z,fz):%and

aS(fzx, fx,y) + (1 — a) (fy, fy,z) = 5, so that M,(z, ) = max{x %,

Now, S(fl’,$$) (fwayay):% (fZL‘ZZ):% (f.l‘ Y,z )_%

Therefore ¥ (S(fz, fy fz)) <L3 5 for any L > 1.

Case (v): Let z,y € |0, )andze[5,2]

We assume, without loss of generality, that z > x > .

S(fx, fy,f2) =3, S(x,y,2) = =, 5(93 z, fx) =2, S(y,y,fy) = 2, S(z,2,f2) = 5 and

aS(fz, fz,y)+(1—a)S(fy, fy,z) = 2a+(1—a)z, so that My (z,y, 2) = max{z, 2,

Now, S(fz,z,z) =2, S(fz,y,v) S(fx,z,2) =2, S(fx,y,2) =z, so that N(z,y,z) = 2.
z

QJCJW

57

Now, ¥(S(fz, fy, f2)) = ¢(3) = % S L3 for any L > 3. Case (vi): Let z € [0,2] and 2,y € (2, 3]
We assume, without loss of generality, that z > y > z. S(fx, fy, fz) = S(%,%,%) = %, (r,y,2) =
2y SS(.’L'?).%' fx):'g,? (g%fy) S%S(z,z,fz):S(z,z,%):%andaS(f:r,fx,y)—i—(l Oé) (fyafya )
aS(5,5,y) (1_0‘)5(27272)3:353_:?TO’ 9 3 3

so that My (z,y,2) = max{z,%,5,5,5 — a5} = 5. Now, S(fz,x,z) =, S(fz,y,y) =y, S(fzr,2,2) =
z, S(fx,y,z) = z, so that N(at y,z) = 2. Now, ¥(S(fz, fy, fz)) = ¢¥(3) = 3 < L2 for any L > 3.Case
(vii): Let y € [0, ) and x,z € (% %] We assume, without loss Qf generality, that z > x. S(fz, fy, fz) = %,
Sy, 2) =, S, fr) = 5, Sy, fy) =3, 52,2 f2) = 3 and

aS(fx, fx,y)+ (1 — a) (fy, fy,z) =z+ (% — 2)a, S0 that My (x,y,2) = max{z, g, g, S,z + (% —2)a} = %
Now, S(fz,z,x) = 5,5(fz,y,y) = y,S(fz,2,2) = 35,5(fz,y,2) = , so that N(z,y,z) = % Now,
Y(S(fx, fy fz)) = 1/)( ) 3 < L3 for any L>1. Hence f satisfies all the hypotheses of Corollary 4.9 for
any L > 2 5 and f has a unlque ﬁxed point u = %

Here we observe that f isnot an («, 1, p)-generalized weakly contractive map. For, at z = %, Yy = % z= %

Hence Theorem 2.23 is not applicable.
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Also, f is not a contraction. For, at x = %,y = %, z = % the inequality (2.1) fails to hold. Hence Theorem
2.20 is not applicable.

Example 4.15. Let X = [,1] and We define S : X3 — [0, 00) by

if r=y==z

Sto) = { |

max{z,y,z}  otherwise

Then S is an S-metric on X. Now we define f : X — X by

[ 22 if z€[1,3)
fx_{; if z € [1,1]

We now define functions 1, ¢ : [0,00) — [0, 00) by

t3 t
Y(t) = 3 and e(t) = T+t

We can easily verify that f satisfies all the hypotheses of Corollary 4.9 for any L > 2 and f has a unique

fixed point u = % Here we observe that the inequality (2.1) and the inequality (2.2) fail to hold when
T = %,y = %,z = %. Hence Corollary 4.9 is a generalization of Theorem 2.20 and Theorem 2.23 which

inturn Theorem 3.4 is a generalization of Theorem 2.20 and Theorem 2.23.

for all ¢>0
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