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Abstract

In this paper, we establish the existence of positive solutions for 2nth order Lidstone boundary value problems
with p-Laplacian of the form

(−1)n[φp(y
(2n−2)(t)− k2y(2n−4)(t))]′′ = f(t, y(t)), t ∈ [0, 1],

y(2i)(0) = 0 = y(2i)(1),

for 0 ≤ i ≤ n − 1, where n ≥ 2 and k > 0 is a constant, by applying Guo–Krasnosel’skii fixed point
theorem.

Keywords: Green’s function, p-Laplacian, boundary value problem, positive solution, cone, fixed point
theorem.
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1. Introduction

The theory of differential equations is useful in providing a mathematical basis to interpret various real
world problems of present society, which are complex and multidisciplinary in nature. In this theory, one
of the most important operators is the classical one dimensional p-Laplacian operator and is defined by
φp(s) = |s|p−2s, where p > 1, φ−1

p = φq and 1
p + 1

q = 1. There has been a surge of interest to study
p-Laplacian boundary value problems, which arise in various contexts such as viscoelastic flows, image
processing, turbulent filtration in porous media, biophysics, plasma physics, rheology, glaciology, radiation
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of heat, plastic molding etc. In particular, the concept of viscosity solutions is quite suitable for large values
of p. For more details on applications, we refer [9].

In recent years, the existence of positive solutions for nonlinear boundary value problems with p-Laplacian
operator have received great attention due to its wide applicability. To mention a few paper along these
lines are Wang [33], Lian and Wong [24], Agarwal et al. [2], Li and Ge [21], Liu and Ge [25], Avery and
Henderson [3], Li and Shen [23] and for further development in the topic, see [41, 12, 14, 39, 42, 36, 37].

In this paper, we establish the existence of positive solutions for 2nth order p-Laplacian boundary value
problem of the form

(−1)n[φp(y
(2n−2)(t)− k2y(2n−4)(t))]′′ = f(t, y(t)), t ∈ [0, 1], (1.1)

y(2i)(0) = 0 = y(2i)(1), (1.2)

for 0 ≤ i ≤ n − 1, where n ≥ 2, k > 0 is a constant and f : [0, 1] × R+ → R+ is a continuous function,
by applying Guo–Krasnosel’skii fixed point theorem. In the past few decades for k = 0 and p = 2, a
lot of works have been done on the existence of positive solutions of 2nth order boundary value problems
associated with ordinary differential equations by using various methods, see [6, 38, 11, 7, 4, 40, 19, 20] and
for k 6= 0 and p = 2, most of the researchers focussed and established the existence of positive solutions
of second order differential equations satisfying Neumann and Sturm-Liouville boundary conditions, see
[17, 31, 32, 22, 5, 30, 34, 35, 16, 26, 28]. However, few works have been carried out in establishing the
existence of positive solutions of 2nth order p-Laplacian boundary value problems, see [13, 29, 10, 27].

The rest of the paper is organized as follows. In Section 2, we express the solution of the boundary value
problem (1.1)-(1.2) as a solution of an equivalent integral equation involving Green functions and establish
some inequalities for these Green functions. In Section 3, we develop criteria for the existence of at least one
positive solution of the boundary value problem (1.1)-(1.2) by an application of Guo–Krasnosel’skii fixed
point theorem. Finally as an application, we give an example to demonstrate our results.

2. Green’s Function and Bounds

In this section, we express the solution of the boundary value problem (1.1)-(1.2) as a solution of an
equivalent integral equation involving Green functions and then establish some inequalities for these Green
functions.

The Green’s function for the second order homogeneous problem of the form

−y′′(t) + k2y(t) = 0, t ∈ [0, 1], (2.1)

y(0) = 0 = y(1), (2.2)

is constructed and denoted by G(t, s). Let u(t) = (−1)n−2[φp(x(t))(2n−4)] and x(t) = −y′′(t) + k2y(t). Then
the Green’s function for the second order homogeneous boundary value problem

−u′′(t) = 0, t ∈ [0, 1], (2.3)

u(0) = 0 = u(1), (2.4)

is constructed and denoted by H1(t, s). Using this Green’s function H1(t, s), we obtain the Green’s function
Hn−2(t, s), n ≥ 3, recursively for the (2n− 4)th order homogeneous boundary value problem

(−1)n−2x(2n−4)(t) = 0, t ∈ [0, 1], (2.5)

x(2i)(0) = 0 = x(2i)(1), (2.6)

for 0 ≤ i ≤ n− 3.
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Lemma 2.1. The Green’s function G(t, s) for the homogeneous boundary value problem (2.1)-(2.2) is given
by

G(t, s) =


sinh(kt) sinh(k(1− s))

k sinh(k)
, t ≤ s,

sinh(ks) sinh(k(1− t))
k sinh(k)

, s ≤ t.

(2.7)

Proof. By algebraic calculations, we can establish the result.

Lemma 2.2. [1] The Green’s function H1(t, s) for the homogeneous boundary value problem (2.3)-(2.4) is
given by

H1(t, s) =


t(1− s), t ≤ s,

s(1− t), s ≤ t.
(2.8)

Lemma 2.3. [1, 38] The Green’s function for the homogeneous boundary value problem (2.5)-(2.6) is
Hn−2(t, s), where Hn−2(t, s) is defined recursively as

Hj(t, s) =

∫ 1

0
Hj−1(t, τ)H1(τ, s)dτ, for 2 ≤ j ≤ n− 2, (2.9)

and H1(t, s) is given in (2.8).

Therefore, the solution of the boundary value problem (1.1)-(1.2) is given by

y(t) =

∫ 1

0
H(t, s)φq

[∫ 1

0
H1(s, r)f(r, y(r))dr

]
ds, (2.10)

where

H(t, s) =

∫ 1

0
G(t, ξ)Hn−2(ξ, s)dξ. (2.11)

Lemma 2.4. The Green’s function G(t, s) in (2.7) satisfies the following inequalities:

(i) G(t, s) ≥ 0, for all t, s ∈ [0, 1],

(ii) G(t, s) ≤ G(s, s), for all t, s ∈ [0, 1],

(iii) G(t, s) ≥ mG(s, s), for all t ∈ I and s ∈ [0, 1],

where m =
sinh(k4 )

sinh(k)
and I =

[
1
4 ,

3
4

]
.

Proof. By algebraic calculations, one can establish the inequalities.

Lemma 2.5. [38] The Green’s function H1(t, s) in (2.8) satisfies the following inequalities:

(i) H1(t, s) ≥ 0, for all t, s ∈ [0, 1],

(ii) H1(t, s) ≤ H1(s, s), for all t, s ∈ [0, 1],

(iii) H1(t, s) ≥ 1

4
H1(s, s), for all t ∈ I and s ∈ [0, 1],

where I =
[

1
4 ,

3
4

]
.

Lemma 2.6. [38] The Green’s function Hn−2(t, s) in (2.9) satisfies the following inequalities:
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(i) Hn−2(t, s) ≥ 0, for all t, s ∈ [0, 1],

(ii) Hn−2(t, s) ≤ 1

6n−3
H1(s, s), for all t, s ∈ [0, 1],

(iii) Hn−2(t, s) ≥ 1

4n−2

(
11

96

)n−3

H1(s, s), for all t ∈ I and s ∈ [0, 1],

where I =
[

1
4 ,

3
4

]
.

Lemma 2.7. The Kernel H(t, s) in (2.10) satisfies the following inequalities:

(i) H(t, s) ≥ 0, for all t, s ∈ [0, 1],

(ii) H(t, s) ≤ K
6n−3

H1(s, s), for all t, s ∈ [0, 1],

(iii) H(t, s) ≥ mL
4n−2

(
11

96

)n−3

H1(s, s), for all t ∈ I and s ∈ [0, 1],

where K =

∫ 1

0
G(τ, τ)dτ and L =

∫
τ∈I

G(τ, τ)dτ .

Proof. By algebraic calculations, one can establish the inequalities.

To establish the existence of positive solutions of the boundary value problem (1.1)-(1.2), we will employ
the following Guo–Krasnosel’skii fixed point theorem will be the fundamental tool.

Theorem 2.8. [8, 15, 18] Let X be a Banach Space, κ ⊆ X be a cone and suppose that Ω1,Ω2 are open
subsets of X with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Suppose further that T : κ ∩ (Ω2\Ω1)→ κ is completely continuous
operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ κ ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, u ∈ κ ∩ ∂Ω2, or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈ κ ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, u ∈ κ ∩ ∂Ω2 holds.

Then T has a fixed point in κ ∩ (Ω2\Ω1).

3. Existence of Positive Solutions

In this section, we establish the existence of at least one positive solution for the nonlinear p-Laplacian
boundary value problem (1.1)-(1.2) by using Guo–Krasnosel’skii fixed point theorem.

Let B = {y : y ∈ C[0, 1]} be a Banach space with the norm

‖y‖ = max
t∈[0,1]

|y(t)|

and let
P = {y ∈ B : y(t) ≥ 0 on t ∈ [0, 1] and min

t∈I
y(t) ≥M‖y‖},

where M =
(
mL
K
)(

11n−3

26n−16

)
. We note that P is a cone in B.

Let the operator T : P → B be defined as

Ty(t) =

∫ 1

0
H(t, s)φq

[∫ 1

0
H1(s, r)f(r, y(r))dr

]
ds. (3.1)

To obtain a positive solution of (1.1)-(1.2), we shall seek a fixed point of the operator T in the cone P.
We assume the following conditions hold throughout this paper:
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(A1) 0 <
∫ 1

0 H1(t, s)ds <∞,

(A2) f(t, y) is a nondecreasing function with respect to y.

Define the nonnegative extended real numbers f0, f0, f∞ and f∞ by

f0 = lim
y→0+

min
t∈[0,1]

f(t, y)

φp(y)
, f0 = lim

y→0+
max
t∈[0,1]

f(t, y)

φp(y)
,

f∞ = lim
y→∞

min
t∈[0,1]

f(t, y)

φp(y)
and f∞ = lim

y→∞
max
t∈[0,1]

f(t, y)

φp(y)
,

and assume that they will exist. The case f0 = 0 and f∞ =∞ represents superlinear and the case f0 =∞
and f∞ = 0 represents the sublinear.

Lemma 3.1. The operator T : P → B defined by (3.1) is a self map on P.

Proof. From (A1) and the positivity of the Green’s function H(t, s) in Lemma 2.7 that for y ∈ P , Ty(t) ≥ 0
on t ∈ [0, 1]. Now, for y ∈ P and by Lemma 2.7, we have

Ty(t) =

∫ 1

0
H(t, s)φq

(∫ 1

0
H1(s, r)f

(
r, y(r)

)
dr

)
ds

≤ K
6n−3

∫ 1

0
H1(s, s)φq

(∫ 1

0
H1(s, r)f

(
r, y(r)

)
dr

)
ds

so that

‖Ty‖ ≤ K
6n−3

∫ 1

0
H1(s, s)φq

(∫ 1

0
H1(s, r)f

(
r, y(r)

)
dr

)
ds. (3.2)

Then by Lemma 2.7, for y ∈ P that

min
t∈I

Ty(t) = min
t∈I

{∫ 1

0
H(t, s)φq

(∫ 1

0
H1(s, r)f

(
r, y(r)

)
dr

)
ds

}

≥
(
mL
4n−2

)(
11

96

)n−3 ∫ 1

0
H1(s, s)φq

(∫ 1

0
H1(s, r)f

(
r, y(r)

)
dr

)
ds

≥
(
mL
K

)(
11n−3

26n−16

)
‖Ty‖

=M‖Ty‖.

Therefore, T : P → P , and hence the proof is complete.

Further, the operator T is completely continuous by an application of the Arzela–Ascoli theorem.
Now, we establish the existence of at least one positive solution of the boundary value problem (1.1)-(1.2)

for superlinear case.

Theorem 3.2. Assume that the conditions (A1) and (A2) are satisfied. If f0 = 0 and f∞ = ∞ then the
boundary value problem (1.1)-(1.2) has at least one positive solution that lies in P.

Proof. Let T be the cone preserving, completely continuous operator that was defined by (3.1). From the
definition of f0 = 0, there exist η1 > 0 and H1 > 0 such that

f(t, y) ≤ η1φp(y), for 0 < y ≤ H1,

where η1 satisfies

(η1)q−1

(
K

6n−3

)∫ 1

0
H1(s, s)φq

(∫ 1

0
H1(r, r)dr

)
ds ≤ 1. (3.3)
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Now, let y ∈ P with ‖y‖ = H1. Then, by Lemma 2.7 and for t ∈ [0, 1], we have

Ty(t) =

∫ 1

0
H(t, s)φq

(∫ 1

0
H1(s, r)f

(
r, y(r)

)
dr

)
ds

≤ K
6n−3

∫ 1

0
H1(s, s)φq

(∫ 1

0
H1(r, r)η1φp(y)

)
dr

)
ds

≤ (η1)q−1

(
K

6n−3

)∫ 1

0
H1(s, s)φq

(∫ 1

0
H1(r, r)dr

)
ds‖y‖

≤ ‖y‖.

Therefore, ‖Ty‖ ≤ ‖y‖. If we set
Ω1 = {y ∈ B : ‖y‖ < H1}

then
‖Ty‖ ≤ ‖y‖, for y ∈ P ∩ ∂Ω1. (3.4)

Further, since f∞ =∞, there exist η2 > 0 and H̄2 > 0 such that

f(t, y(t)) ≥ η2φp(y), for y ≥ H̄2,

where η2 satisfies

(η2)q−1

(
mLM
4n−2

)(
11

96

)n−3 ∫
s∈I

H1(s, s)φq

(
1

4

∫
r∈I

H1(r, r)dr

)
ds ≥ 1. (3.5)

Let H2 = max

{
2H1,

H̄2
M

}
. Choose y ∈ P and ‖y‖ = H2. Then

min
t∈I

y(t) ≥M‖y‖ ≥ H̄2.

From Lemmas 2.5, 2.7, and for t ∈ [0, 1], we have

Ty(t) =

∫ 1

0
H(t, s)φq

(∫ 1

0
H1(s, r)f(r, y(r))dr

)
ds

≥ min
t∈I

{∫ 1

0
H(t, s)φq

(∫ 1

0
H1(s, r)f(r, y(r))dr

)
ds

}

≥
(
mL
4n−2

)(
11

96

)n−3 ∫
s∈I

H1(s, s)φq

(∫ 1

0
H1(s, r)f(r, y(r))dr

)
ds

≥
(
mL
4n−2

)(
11

96

)n−3 ∫
s∈I

H1(s, s)φq

(
1

4

∫
r∈I

H1(r, r)η2φp(y)dr

)
ds

≥
(
mL
4n−2

)(
11

96

)n−3

(η2)q−1

∫
s∈I

H1(s, s)φq

(
1

4

∫
r∈I

H1(r, r)dr

)
M‖y‖ds

≥ ‖y‖.

Therefore, ‖Ty‖ ≥ ‖y‖. So, if we set

Ω2 = {y ∈ B : ‖y‖ < H2}

then
‖Ty‖ ≥ ‖y‖ for y ∈ P ∩ ∂Ω2. (3.6)

Applying Theorem 2.8 to (3.4) and (3.6), it follows that T has a fixed point y ∈ P ∩ (Ω2 \ Ω̄1) and that y is
the positive solution of the boundary value problem (1.1)-(1.2).
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We now establish the existence of at least one positive solution of the boundary value problem (1.1),
(1.2) for sub linear case.

Theorem 3.3. Assume that the conditions (A1) and (A2) are satisfied. If f0 = ∞ and f∞ = 0 then the
boundary value problem (1.1)-(1.2) has at least one positive solution that lies in P.

Proof. Let T be the cone preserving, completely continuous operator defined by (3.1). Since f0 =∞ there
exist η̄1 > 0 and J1 > 0 such that

f(t, y) ≥ η̄1φp(y), for 0 < y ≤ J1,

where η̄1 ≥ η2 and η2 is given in (3.5).

Let y ∈ P and ‖y‖ = J1. Then from Lemmas 2.5, 2.7, and for t ∈ [0, 1], we have

Ty(t) =

∫ 1

0
H(t, s)φq

(∫ 1

0
H1(s, r)f

(
r, y(r)

)
dr

)
ds.

≥ min
t∈I

{∫ 1

0
H(t, s)φq

(∫ 1

0
H1(s, r)f

(
r, y(r)

)
dr

)
ds

}

≥
(
mL
4n−2

)(
11

96

)n−3 ∫
s∈I

H1(s, s)φq

(∫ 1

0
H1(r, r)f(r, y(r))

)
dr

)
ds

≥
(
mL
4n−2

)(
11

96

)n−3 ∫
s∈I

H1(s, s)φq

(
1

4

∫
r∈I

H1(r, r)η̄1φp(y)
)
dr

)
ds

≥
(
mL
4n−2

)(
11

96

)n−3

(η̄1)q−1

∫
s∈I

H1(s, s)φq

(
1

4

∫
r∈I

H1(r, r)
)
dr

)
M‖y‖ds

≥ ‖y‖.

Therefore, ‖Ty‖ ≥ ‖y‖. Now, if we set

Ω3 = {y ∈ B : ‖y‖ < J1}

then

‖Ty‖ ≥ ‖y‖, for y ∈ P ∩ ∂Ω3. (3.7)

Next, since f∞ = 0, there exist η̄2 > 0 and J̄2 > 0 such that

f(t, y(t)) ≤ η̄2φp(y), for y ≥ J̄2,

where η̄2 ≤ η1 and η1 is given in (3.3).

Set

f∗(t, y) = sup
0≤s≤y

f(t, s).

Then, it is straightforward that f∗ is a non decreasing real-valued function, f ≤ f∗ and

lim
y→∞

f∗(t, y)

y
= 0.

It follows that there exists J2 > max{2J1, J̄2} such that

f∗(t, y) ≤ f∗(t, J2), for 0 < y ≤ J2.
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Choose y ∈ P with ‖y‖ = J2. Then

Ty(t) =

∫ 1

0
H(t, s)φq

(∫ 1

0
H1(s, r)f(r, y(r))dr

)
ds

≤ K
6n−3

∫ 1

0
H1(s, s)φq

(∫ 1

0
H1(s, r)f(r, J2)dr

)
ds

≤ K
6n−3

∫ 1

0
H1(s, s)φq

(∫ 1

0
H1(s, r)η̄2φp(J2)dr

)
ds

≤ K(η̄2)q−1

6n−3

∫ 1

0
H1(s, s)φq

(∫ 1

0
H1(r, r)dr

)
dsJ2

≤ J2 = ‖y‖.

Hence, ‖Ty‖ ≤ ‖y‖. So, if we set
Ω4 = {y ∈ B : ‖y‖ < J2}

then
‖Ty‖ ≤ ‖y‖, for y ∈ P ∩ ∂Ω4. (3.8)

Applying by Theorem 2.8 to (3.7) and (3.8), we obtain that T has a fixed point y ∈ P ∩ (Ω4 \ Ω̄3) and that
y is the positive solution of the boundary value problem (1.1)-(1.2).

4. Example

As an application, the results are demonstrated with example.

Example 4.1. Consider the boundary value problem

(−1)3[φp
(
y(4)(t)− k2y′′(t)

)
]′′ = f(t, y(t)), t ∈ [0, 1], (4.1)

y(0) = 0 = y(1),

y′′(0) = 0 = y′′(1),

y(4)(0) = 0 = y(4)(1).

 (4.2)

For simplicity, we take p = 2 and k = 1. By algebraic computations, we get m = 0.21494, K = 0.15652,
L = 0.10655 and M = 0.03658.

(a) If f(t, y(t)) = y2(1+e−t), then f0 = 0 and f∞ =∞. So, all the conditions of Theorem 3.2 are satisfied
and hence, the boundary value problem (4.1)-(4.2) has at least one positive solution.

(b) If f(t, y(t)) = (
√
t2 + 1)y3/4, then f0 = ∞ and f∞ = 0. So, all the conditions of Theorem 3.3 are

satisfied and hence, the boundary value problem (4.1)-(4.2) has at least one positive solution.
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