Convergence of CR-iteration procedure for a nonlinear quasi contractive map in convex metric spaces

G. V. R. Babua, G. Satyanarayanab

aDepartment of Mathematics, Andhra University, Visakhapatnam-530 003, India.
bDepartment of Mathematics, Dr. Lankapalli Bullayya college, Visakhapatnam-530 013, India.

Abstract

We prove that the modified CR-iteration procedure converges strongly to a fixed point of a nonlinear quasi contractive map in convex metric spaces which is the main result of this paper. The convergence of Picard-S iteration procedure follows as a corollary to our main result.

Keywords: Convex metric space, quasi contraction map, CR-iteration procedure and Picard-S iteration procedure.

2010 MSC: 47H10, 54H25.

1. Introduction and preliminaries

Definition 1.1. Let (X,d) be a metric space. A map $W : X \times X \times [0,1] \to X$ is said to be a ‘convex structure’ on X if

$$d(u,W(x,y,\lambda)) \leq \lambda d(u,x) + (1-\lambda)d(u,y)$$

for $x,y,u \in X$ and $\lambda \in [0,1]$.

A metric space (X,d) together with a convex structure W is called a convex metric space and we denote it by (X,d,W). We note that $W(x,y,1) = x$ and $W(x,y,0) = y$. A nonempty subset K of X is said to be ‘convex’ if $W(x,y,\lambda) \in K$ for $x,y \in K$ and $\lambda \in [0,1]$.

Remark 1.2. Every normed linear space $(X,||.||)$ is a convex metric space with the convex structure W defined by $W(x,y,\lambda) = (1-\lambda)y + \lambda x$ for $x,y \in X$, $\lambda \in [0,1]$. But there are convex metric spaces which are not normed linear spaces $[1,8,11]$.
In 1974, Ćirić [3] introduced quasi-contraction maps in the setting of metric spaces and proved that the Picard iterative sequence converges to the fixed point in complete metric spaces.

Definition 1.3. Let \((X,d)\) be a metric space. A selfmap \(T : X \to X\) is said to be a quasi-contraction map if there exists a real number \(0 \leq k < 1\) such that
\[
d(Tx,Ty) \leq kM(x,y) \tag{1.2}
\]
where
\[
M(x,y) = \max\{d(x,y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)\} \tag{1.3}
\]
for \(x, y \in X\).

Let \(K\) be a nonempty convex subset of a normed linear space \(X\) and let \(\{\alpha_n\}_{n=0}^{\infty}\) and \(\{\beta_n\}_{n=0}^{\infty}\) be sequences in \([0,1]\). The Ishikawa iteration procedure [7] in the setting of normed linear spaces is as follows: For \(x_0 \in K\),
\[
y_n = (1 - \beta_n)x_n + \beta_n Tx_n \\
x_{n+1} = (1 - \alpha_n)x_n + \alpha_n Ty_n, \quad \text{for } n = 0, 1, 2, \ldots \tag{1.4}
\]

Ding [5] considered the Ishikawa iteration procedure in the setting of convex metric spaces as follows: Let \(K\) be a nonempty convex subset of a convex metric space \((X,d,W)\), and let \(\{\alpha_n\}_{n=0}^{\infty}\) and \(\{\beta_n\}_{n=0}^{\infty}\) be the sequences in \([0,1]\). For \(x_0 \in K\),
\[
y_n = W(Tx_n,x_n,\beta_n) \\
x_{n+1} = W(Ty_n,x_n,\alpha_n) \quad \text{for } n = 0, 1, 2, \ldots \tag{1.5}
\]
and proved that the Ishikawa iteration procedure (1.5) converges strongly to a unique fixed point of a quasi-contraction map in the setting of convex metric spaces, provided \(\sum_{n=0}^{\infty} \alpha_n = \infty\).

In 1999, Ćirić [4] introduced a more general quasi-contraction map and proved the convergence of an Ishikawa iteration procedure in convex metric spaces to the unique fixed point and the result is the following.

Theorem 1.4. (Čirić [4]) Let \(K\) be a nonempty closed convex subset of a complete convex metric space \(X\) and let \(T : K \to K\) be a selfmap satisfying
\[
d(Tx,Ty) \leq w(M(x,y)), \tag{1.6}
\]
where \(M(x,y)\) is as defined in (1.3) for \(x, y \in K\) and \(w : (0,\infty) \to (0,\infty)\) is a map which satisfies (i) \(0 < w(t) < t\) for each \(t > 0\), (ii) \(w\) increases, and the following conditions:
\[
\lim_{t \to \infty} (t - w(t)) = \infty: \quad \text{and} \tag{1.7}
\]
either \(t - w(t)\) is increasing on \((0,\infty)\) \tag{1.8}
or \(w(t)\) is strictly increasing and \(\lim_{n \to \infty} w^n(t) = 0\) for \(t > 0\). \tag{1.9}

Let \(\{\alpha_n\}_{n=0}^{\infty}\) and \(\{\beta_n\}_{n=0}^{\infty}\) be sequences in \([0,1]\) such that \(\sum_{n=0}^{\infty} \alpha_n = \infty\). For \(x_0 \in K\), the Ishikawa iteration procedure \(\{x_n\}_{n=0}^{\infty}\) defined in (1.5) converges strongly to the unique fixed point of \(T\).

Sastry, Babu and Srinivasa Rao [10] improved Theorem 1.4 by replacing (1.8) and (1.9) with a single condition, namely \(0 < w(t^+) < t\) for each \(t > 0\) and proved the following theorem.
Theorem 1.5. [10] Let \((X,d,W)\) be a complete convex metric space and \(T : X \to X\) be a map that satisfies
\[
d(Tx,Ty) \leq w(M(x,y)) \tag{1.10}
\]
where \(M(x,y)\) is defined as in (1.3) for \(x, y \in X\) and \(w : (0, \infty) \to (0, \infty)\) is a map such that (i) \(w\) increases,
(ii) \(\lim_{t \to \infty} (t - w(t)) = \infty\) (iii) \(0 < w(t^+) < t\) for \(t > 0\).

Let \(\{\alpha_n\}_{n=0}^{\infty}\) and \(\{\beta_n\}_{n=0}^{\infty}\) be sequences in \([0, 1]\) such that \(\sum_{n=0}^{\infty} \alpha_n = \infty\).

Then for any \(x_0 \in K\), the sequence \(\{x_n\}_{n=0}^{\infty}\) generated by the iteration procedure (1.5) converges strongly to a unique fixed point of \(T\).

Here we note that a map that satisfies (1.10) is said to be a nonlinear quasi contractive map on \(X\).

Remark 1.6. (i) and (iii) of Theorem 1.5 imply that \(0 < w(t) < t\) for each \(t > 0\).

Remark 1.7. If \(w(t) = kt\) for \(t \in (0, \infty)\) and \(0 \leq k < 1\) then the map \(T\) of Theorem 1.5 reduces to a quasi contraction map.

In 2012, Chugh, Kumar and Kumar [2] introduced ‘CR-iteration procedure’ as follows:

Let \(K\) be a nonempty convex subset of a normed linear space, \(X\), and let \(\{\alpha_n\}_{n=0}^{\infty}\), \(\{\beta_n\}_{n=0}^{\infty}\) and \(\{\gamma_n\}_{n=0}^{\infty}\) be sequences in \([0, 1]\). For \(x_0 \in K\),
\[
\begin{align*}
z_n &= (1 - \gamma_n)x_n + \gamma_nTx_n \\
y_n &= (1 - \beta_n)Tx_n + \beta_nTz_n \\
x_{n+1} &= (1 - \alpha_n)y_n + \alpha_nTy_n, \quad \text{for} \quad n = 0, 1, 2, \ldots .
\end{align*} \tag{1.11}
\]

By choosing \(\alpha_n \equiv 1\) for all \(n\) in (1.11), we have the following.

For \(x_0 \in K\),
\[
\begin{align*}
z_n &= (1 - \gamma_n)x_n + \gamma_nTx_n \\
y_n &= (1 - \beta_n)Tx_n + \beta_nTz_n, \\
x_{n+1} &= Ty_n, \quad \text{for} \quad n = 0, 1, 2, \ldots .
\end{align*} \tag{1.12}
\]

The iteration procedure (1.12) is called the ‘Picard-S iteration procedure’ [6].

In 2014, Chugh and Malik [9] introduced an analogue of CR-iteration procedure (1.11) in convex metric spaces as follows:

Let \(K\) be a nonempty convex subset of a convex metric space \((X,d,W)\).

For any \(x_0 \in K\),
\[
\begin{align*}
z_n &= W(Tx_n,x_n,\gamma_n) \\
y_n &= W(Tz_n,Tx_n,\beta_n) \\
x_{n+1} &= W(Ty_n,y_n,\alpha_n) \tag{1.13}
\end{align*}
\]

where \(\{\alpha_n\}_{n=0}^{\infty}\), \(\{\beta_n\}_{n=0}^{\infty}\) and \(\{\gamma_n\}_{n=0}^{\infty}\) are in \([0, 1]\).

We call the iteration procedure \(\{x_n\}\) defined in (1.13) is a ‘modified CR-iteration procedure’ in convex metric spaces.

If \(\alpha_n \equiv 1\) then the iteration procedure (1.13) reduces to the following which is an analogue of Picard-S iteration procedure (1.12) in a convex metric space.

For \(x_0 \in K\),
\[
\begin{align*}
z_n &= W(Tx_n,x_n,\gamma_n) \\
y_n &= W(Tz_n,Tx_n,\beta_n) \\
x_{n+1} &= Ty_n \tag{1.14}
\end{align*}
\]

where \(\{\beta_n\}_{n=0}^{\infty}\) and \(\{\gamma_n\}_{n=0}^{\infty}\) are in \([0, 1]\).

We call the iteration \(\{x_n\}\) defined in (1.14) is a ‘modified Picard-S iteration procedure’.

Motivated by the results of Ćirić [4] and Sastry, Babu and Srinivasa Rao [10], in Section 2 of this paper, we prove the strong convergence of modified CR-iteration procedure to a fixed point of a nonlinear quasi contractive map (Theorem 2.2) which is the main result of this paper. The convergence of modified Picard-S iteration procedure (1.14) follows as a corollary to our main result.
2. Main results

Lemma 2.1. Let (X,d,W) be a convex metric space, and let K be a nonempty convex subset of X. Let $T : K \rightarrow K$ be a map such that

$$d(Tx, Ty) \leq w(M(x,y))$$

for $x, y \in K$,

(2.1)

where $M(x,y)$ is defined in (1.3) with $M(x,y) > 0$ and $w : (0,\infty) \rightarrow (0,\infty)$ is a map such that (i) w is increasing on $(0,\infty)$, (ii) $\lim_{t \rightarrow \infty} (t - w(t)) = \infty$, and (iii) $0 < w(t^+) < t$ for each $t > 0$. For $x_0 \in K$, let $\{x_n\}, \{y_n\}$ and $\{z_n\}$ be the sequences generated by the modified CR-iteration procedure (1.13). Then the sequences $\{x_n\}$, $\{y_n\}$, $\{z_n\}$, $\{Tx_n\}$, $\{Ty_n\}$ and $\{Tz_n\}$ are bounded.

Proof. For each positive integer n, we define the set

$$A_n = \{x_i\}_{i=0}^n \cup \{y_i\}_{i=0}^n \cup \{z_i\}_{i=0}^n \cup \{Tx_i\}_{i=0}^n \cup \{Ty_i\}_{i=0}^n \cup \{Tz_i\}_{i=0}^n.$$

We denote the diameter of A_n by a_n. We show that $\{a_n\}_{n=1}^\infty$ is bounded. For this purpose, we define $b_n = \max\{ \sup_{0 \leq i \leq n} d(x_0, Tx_i), \sup_{0 \leq i \leq n} d(x_0, Ty_i), \sup_{0 \leq i \leq n} d(x_0, Tz_i) \}$ for $n = 1, 2, ...$.

We now show that $a_n = b_n$ for $n = 1, 2, ...$.

Clearly, $b_n \leq a_n$ for $n = 1, 2, ...$.

Without loss of generality, we assume that $a_n > 0$ for $n = 1, 2, ...$.

Case (i): $a_n = d(Tx_i, Tx_j)$ for some $0 \leq i, j \leq n$.

Now, $a_n = d(Tx_i, Tx_j) \leq w(M(x_i, x_j)) \leq w(a_n) < a_n$,

a contradiction.

Hence, $a_n \neq d(Tx_i, Tx_j)$ for any $0 \leq i, j \leq n$.

With the similar reason, it is easy to see that $a_n \neq d(Tx_i, Ty_j)$, $a_n \neq d(Tx_i, Tz_j)$, $a_n \neq d(Ty_i, Ty_j)$, $a_n \neq d(Ty_i, Tz_j)$, and $a_n \neq d(Tz_i, Tz_j)$ for any $0 \leq i, j \leq n$.

Case (ii): $a_n = d(y_i, Tx_j)$ for some $0 \leq i, j \leq n$.

$$a_n = d(y_i, Tx_j) = d(w(Tz_i, Tx_i, \beta_i), Tx_j) \leq \beta_i d(Tz_i, Tx_j) + (1 - \beta_i) d(Tx_i, Tx_j)$$

$$\leq \max\{d(Tz_i, Tx_j), d(Tx_i, Tx_j)\} \leq a_n$$

which fails to hold by Case (i).

Therefore, $a_n \neq d(y_i, Tx_j)$ for any $0 \leq i, j \leq n$.

Similarly, it is easy to see that $a_n \neq d(y_i, Ty_j)$ and $a_n \neq d(y_i, Tz_j)$ for any $0 \leq i, j \leq n$.

Case (iii): $a_n = d(y_i, y_j)$ for some $0 \leq i, j \leq n$.

$$a_n = d(y_i, y_j) \leq d(W(Tz_i, Tx_i, \beta_i), y_j) \leq \beta_i d(y_i, Tz_i) + (1 - \beta_i) d(y_j,Tx_i)$$

$$\leq \max\{d(y_j, Tz_i), d(y_j, Tx_i)\} \leq a_n$$

which fails to hold by Case (ii).

Therefore, $a_n \neq d(y_i, y_j)$ for any $0 \leq i, j \leq n$.

Case (iv): $a_n = d(x_i, Tx_j)$ for some $0 \leq i, j \leq n$.

If $i > 0$ then $a_n = d(x_i, Tx_j) = d(W(Ty_{i-1}, y_{i-1}, \alpha_{i-1}), Tx_j)$$

$$\leq \alpha_{i-1} d(Ty_{i-1}, Tx_j) + (1 - \alpha_{i-1}) d(y_{i-1}, Tx_j)$$

$$\leq \max\{d(Ty_{i-1}, Tx_j), d(y_{i-1}, Tx_j)\} \leq a_n$$

which is absurd by Case (i) and Case (ii).

Therefore $i = 0$ and hence $a_n = d(x_0, Tx_j)$ so that $a_n \leq b_n$.

Case (v): Either $a_n = d(x_i, Ty_j)$ or $d(x_i, Tz_j)$ for some $0 \leq i, j \leq n$.

By the similar argument as in Case (iv), $i = 0$ and hence $a_n \leq b_n$.

Case (vi): $a_n = d(x_i, y_j)$ for some $0 \leq i, j \leq n$.

$$a_n = d(x_i, y_j) = d(x_i, W(Tz_j, Tx_j, \beta_j)) \leq \beta_j d(x_i, Tz_j) + (1 - \beta_j) d(x_i, Tx_j)$$

$$\leq \max\{d(x_i, Tz_j), d(x_i, Tx_j)\} \leq a_n$$

which is absurd by Case (i) and Case (ii).

Therefore $a_n = d(x_i, Tz_j)$ or $d(x_i, Tx_j)$. By Case (iv) and Case (v), we have
\[a_n = d(x_0, Tx_0) \] or \[d(x_0, Tz_0) \] so that \(a_n \leq b_n \).

\text{Case (vii)} : \(a_n = d(x_i, x_j) \) for some \(0 \leq i < j \leq n \).

\[\frac{a_n}{d(x_i, x_j)} = d(x_i, W(Ty_{j-1}, y_{j-1}, \alpha_{j-1})) \leq \alpha_{j-1}d(x_i, Ty_{j-1}) + (1 - \alpha_{j-1})d(x_i, y_{j-1}) \]

\[\leq \max\{d(x_i, Ty_{j-1}), d(x_i, y_{j-1})\} \leq a_n \]

so that \(a_n = d(x_i, Ty_{j-1}) \) or \(d(x_i, y_{j-1}) \).

Hence, \(a_n \leq b_n \) follows from from \text{Case (v)} and \text{Case (vi)}.

\text{Case (viii)} : \(a_n = d(x_i, z_j) \) for some \(0 \leq i, j \leq n \).

\[\frac{a_n}{d(x_i, z_j)} = d(x_i, W(Tx_j, x_j, \gamma_j)) \leq \gamma_jd(x_i, Tx_j) + (1 - \gamma_j)d(x_i, x_j) \]

\[\leq \max\{d(x_i, Tx_j), d(x_i, x_j)\} \leq a_n \]

so that \(a_n = d(x_i, Tx_j) \) or \(d(x_i, x_j) \).

Hence, \(a_n \leq b_n \) follows from \text{Case (iv)} and \text{Case (vii)}.

\text{Case (ix)} : \(a_n = d(y_i, z_j) \) for some \(0 \leq i, j \leq n \).

\[\frac{a_n}{d(y_i, z_j)} = d(y_i, W(Tx_j, x_j, \gamma_j)) \leq \gamma_jd(y_i, Tx_j) + (1 - \gamma_j)d(y_i, x_j) \]

\[\leq \max\{d(y_i, Tx_j), d(y_i, x_j)\} \leq a_n \]

so that \(a_n = d(y_i, Tx_j) \) or \(d(y_i, x_j) \).

By \text{Case (ii)}, \(a_n \neq d(y_i, Tx_j) \).

Therefore \(a_n = d(y_i, x_j) \) and hence \(a_n \leq b_n \) follows from \text{Case (vi)}.

\text{Case (x)} : \(a_n = d(z_i, Tx_j) \) for some \(0 \leq i, j \leq n \).

\[\frac{a_n}{d(z_i, Tx_j)} = d(z_i, W(Tx_i, x_i, \gamma_i), Tx_j) \leq \gamma_jd(z_i, Tx_j) + (1 - \gamma_j)d(z_i, x_j) \]

\[\leq \max\{d(z_i, Tx_j), d(z_i, x_j)\} \leq a_n \]

so that \(a_n = d(z_i, Tx_j) \) or \(d(z_i, x_j) \). Hence it follows from \text{Case (viii)} and \text{Case (x)} that \(a_n \leq b_n \).

\text{Case (xi)} : Either \(a_n = d(z_i, Ty_j) \) or \(a_n = d(z_i, Tz_j) \).

In this case, clearly \(a_n \leq b_n \).

Hence, by considering all the above cases, it follows that \(a_n \leq b_n \) so that \(a_n = b_n \) for \(n = 1, 2, \ldots \).

Now for any \(0 \leq i \leq n \),

\[d(x_0, Tx_i) \leq d(x_0, Tx_0) + d(Tx_0, Tx_i) \]

\[\leq A + w(M(x_0, x_i)) \]

\[\leq A + w(a_n), \text{ where } A = d(x_0, Tx_0). \]

Similarly, it is easy to see that

\[d(x_0, Ty_i) \leq A + w(a_n) \text{ for } 0 \leq i \leq n \] and

\[d(x_0, Tz_i) \leq A + w(a_n) \text{ for } 0 \leq i \leq n. \]

Therefore \(b_n \leq A + w(a_n) \) so that

\[a_n - w(a_n) \leq A \quad \text{(2.2)} \]

for \(n = 1, 2, \ldots \), since \(b_n = a_n \).

Since \(\lim_{t \to \infty} (t - w(t)) = \infty \), there exists \(c > 0 \) such that \(t - w(t) > A \) for all \(t > c \).

If \(a_n > c \) for some \(n \geq 1 \) then \(a_n - w(a_n) > A \),

a contradiction.

Thus \(a_n \leq c \) for all \(n \), i.e., the sequence \(\{a_n\}_n \) is bounded.

Hence the conclusion of the lemma follows.

\[\square \]

\textbf{Theorem 2.2.} Let \((X, d, W) \) be a complete convex metric space and \(K \) be a nonempty closed convex subset of \(X \). Let \(T : K \to K \) satisfy all the hypotheses of Lemma 2.1. Let \(\{\alpha_n\}_{n=0}^{\infty}, \{\beta_n\}_{n=0}^{\infty}, \) and \(\{\gamma_n\}_{n=0}^{\infty} \) be sequences in \([0, 1]\) such that \(\sum_{n=0}^{\infty} \alpha_n = \infty \). Then the sequence \(\{x_n\} \) generated by the modified CR-iteration procedure (1.13) converges strongly to a unique fixed point of \(T \).
Proof. Without loss of generality, we assume that \(x_n \neq Tx_n \) for any \(n = 0, 1, 2, \ldots \).

For each integer \(n \geq 0 \), we let
\[
C_n = \{x_i\}_{i=n}^{\infty} \cup \{y_i\}_{i=n}^{\infty} \cup \{z_i\}_{i=n}^{\infty} \cup \{Tx_i\}_{i=n}^{\infty} \cup \{Ty_i\}_{i=n}^{\infty} \cup \{Tz_i\}_{i=n}^{\infty}.
\]

By Lemma 2.1, \(C_n \) is bounded. We denote the diameter of \(C_n \) by \(c_n \).

Let \(d_n = \max\{\sup d(x_n, Tx_i), \sup d(x_n, Ty_i), \sup d(x_n, Tz_i)\} \) for \(n = 0, 1, 2, \ldots \).

Then it is easy to see that \(c_n = d_n \) for \(n = 0, 1, 2, \ldots \).

Clearly, the sequence \(\{c_n\} \) is a decreasing sequence of nonnegative real numbers so that \(\lim_{n \to \infty} c_n \) exists, we let it be \(c \).

Now we prove that \(c = 0 \). On the contrary, we assume that \(c > 0 \) so that \(c_n > 0 \) for \(n = 0, 1, 2, \ldots \).

For each positive integer \(n \) and for each \(j \geq n \), we have
\[
d(x_n, Tx_j) = d(Tx_j, W(Ty_{n-1}, y_{n-1}, \alpha_{n-1}))
\leq \alpha_{n-1}d(Tx_j, Ty_{n-1}) + (1 - \alpha_{n-1})d(Tx_j, y_{n-1})
\leq \alpha_{n-1}w(M(x_j, y_{n-1})) + (1 - \alpha_{n-1})d(Tx_j, y_{n-1})
\leq \alpha_{n-1}w(c_n) + (1 - \alpha_{n-1})c_{n-1}
\text{ so that}
\]
\[
\sup_{j \geq n} d(x_n, Tx_j) \leq \alpha_{n-1}w(c_n) + (1 - \alpha_{n-1})c_{n-1}.
\]

Similarly, \(\sup_{j \geq n} d(x_n, Ty_j) \leq \alpha_{n-1}w(c_n) + (1 - \alpha_{n-1})c_{n-1} \) and

\[
\sup_{j \geq n} d(x_n, Tz_j) \leq \alpha_{n-1}w(c_n) + (1 - \alpha_{n-1})c_{n-1} \text{ hold.}
\]

Therefore
\[
d_n \leq \alpha_{n-1}w(c_n) + (1 - \alpha_{n-1})c_{n-1} \quad \text{for} \quad n = 1, 2, \ldots.
\]

Since \(c_n = d_n \), we have
\[
\alpha_{n-1}(c_n - w(c_n)) \leq c_{n-1} - c_n \quad \text{for} \quad n = 1, 2, \ldots.
\] \(\text{(2.3)} \)

Let \(s = \inf\{c_n - w(c_n) : n \geq 0\}. \) If \(s = 0 \) then there exists a subsequence \(\{c_{n(k)}\} \) of the sequence \(\{c_n\} \) such that \(\lim_{k \to \infty} (c_{n(k)} - w(c_{n(k)})) = 0 \), i.e., \(c - w(c^+) = 0 \),

a contradiction, from (iii) of Lemma 2.1.

Therefore \(s > 0 \) so that there exists a real number \(\eta > 0 \) such that \(c_n - w(c_n) \geq \eta \) for \(n = 0, 1, 2, \ldots \).

It follows from the inequality (2.3) that \(\eta \alpha_{n-1} \leq c_{n-1} - c_n \) for \(n = 1, 2, \ldots \).

Since the sequence \(\{c_n\} \) is convergent, we have the series \(\sum \alpha_n < \infty \),

a contradiction.

Therefore \(c = 0 \) so that the sequence \(\{x_n\} \) is Cauchy and hence there exists \(x \in K \) such that \(\lim_{n \to \infty} x_n = x \).

Since \(c = 0 \), we have \(\lim_{n \to \infty} d(x_n, Tx_n) = 0 \) so that \(\lim_{n \to \infty} Tx_n = x \).

Now, we prove that \(x \) is a fixed point of \(T \).

Since \(T \) satisfies the inequality (2.1), we have
\[
d(Tx_n, Tx) \leq w(M(x_n, x)) \quad \text{for} \quad n = 0, 1, 2, \ldots
\]

(2.4)

Since \(M(x_n, x) \geq d(x, Tx) \) for \(n = 0, 1, 2, \ldots \) and \(\lim_{n \to \infty} M(x_n, x) = d(x, Tx) \), we have

\[
\lim_{n \to \infty} w(M(x_n, x)) = w(d(x, Tx)^+) \quad \text{so that} \quad d(x, Tx) \leq w(d(x, Tx)^+).
\]

Hence \(x \) is a fixed point of \(T \) by using (iii) of Lemma 2.1.

Now from the inequality (2.1) and Remark 1.6, clearly the uniqueness of fixed point of \(T \) follows. \(\square \)

If \(\alpha_n \equiv 1 \) in the modified CR-iteration procedure (1.13) then we have the following corollary from Theorem 2.2.

Corollary 2.3. Let \(X, K, T \) be as in Theorem 2.2. Let \(\{\beta_n\}_{n=0}^{\infty} \) and \(\{\gamma_n\}_{n=0}^{\infty} \) be sequences in \([0, 1] \). For \(x_0 \in K \), let the sequence \(\{x_n\}_{n=0}^{\infty} \) be generated by the modified Picard-S iteration procedure (1.14). Then \(\{x_n\}_{n=0}^{\infty} \) converges to a unique fixed point of \(T \).
In the following, we prove that CR-iteration procedure (1.11) and Picard-S iteration procedure (1.12) converge to a unique fixed point of a quasi-contraction map under certain hypotheses in the setting of Banach spaces.

Corollary 2.4. Let X be a Banach space, K be a nonempty closed convex subset of X, and $T : K \to K$ be a quasi-contraction map. Let $\{\alpha_n\}_{n=0}^{\infty}$, $\{\beta_n\}_{n=0}^{\infty}$, and $\{\gamma_n\}_{n=0}^{\infty}$ be sequences in $[0, 1]$ such that $\sum_{n=0}^{\infty} \alpha_n = \infty$. For $x_0 \in K$, let $\{x_n\}$ be the sequence generated by either CR-iteration procedure (1.11) or by Picard-S iteration procedure (1.12). Then $\{x_n\}$ converges strongly to a unique fixed point of T.

Proof. Follows from Remark 1.7, Theorem 2.2 and Corollary 2.3. \hfill \square

References

1, 1.2