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Abstract

In this paper, we introduce the concept of a quaternion valued G-metric spaces which generalizes real
valued G-metric spaces, complex valued G-metric spaces, real valued metric spaces and complex valued
metric spaces known in literature. Analogues of Banach contraction principle, Kannan’s and Chatterjea’s
fixed point theorem are proved. Our results generalize many known results in fixed point theory.
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1. Introduction

Quaternion is a number system that extends the complex numbers. It was first defined by Irish mathemati-
cian, William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. A feature of
quaternions is that multiplication of two quaternions is noncommutative.
We write H for the skew field of quaternion and q ∈ H denotes that q is of the form q = a + bi + cj + dk
where i2 = j2 = k2 = ijk = −1, ij = −ji = k, kj = −jk = −i, ki = −ik = j and the modulus of q,
|q| =

√
a2 + b2 + c2 + d2 where a, b, c, and d are real numbers, and i, j, and k are the fundamental quater-

nion units.
There is possibility of treating quaternion as simply quadruples of real numbers [a, b, c, d], with operation
of addition and multiplication suitably defined. The components naturally group into the imaginary part
(b, c, d), for which we take this part as a vector and the purely real part, a, which called a scalar. Sometimes,
we write a quaternion as [V, a] with V = (b, c, d).

[V, a] = [(b, c, d), a] = [a, b, c, d] = a+ bi+ cj + dk∀a, b, c, d ∈ R.

Hence, a quaternion may be viewed as a four-dimensional vector (a, b, c, d). For more information about
quaternion analysis, see [2] and its references. Motivated by the real life applications of quanternion and
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that of fixed point theorems, the concept of quanternion valued G-metric spaces are recommended in this
paper to extend G-metric spaces introduced by [7], quanternion valued metric spaces by [1] and some well
known spaces in literature. Now, some basic definitions of concepts which serve as background to this work
are stated.

2. Preliminaries

Mustafa and Sims (2006) introduced the definition below as generalization of the usual metric space.
Definition 1.1 [7]. Let X be a non-empty set and G : X ×X ×X → [0,∞) be a function satisfying the
following properties:

(i) G(x, y, z) = 0 if and only if x = y = z

(ii) G(x, x, y) > 0, ∀x, y ∈ X, with x 6= y

(iii) G(x, x, y) ≤ G(x, y, z), ∀x, y, z ∈ X, with z 6= y

(iv) G(x, y, z) = G(x, z, y) = G(y, x, z) = ... (symmetry).

(v) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) ∀a, x, y, z ∈ X (rectangle inequality)

The function G is called a G-metric and (X,G), G-metric space.
A G-metric space (X,G) is said to be symmetric if G(x, y, y) = G(x, x, y) for all x, y ∈ X.

Akbar et al. (2011) introduced the definition of the complex valued metric space as follows.
Definition 1.2 [2]. Let X be a non-empty set and dC : X ×X → C be a function satisfying the following
properties:

(i) dC(x, y) = 0 if and only if x = y;

(ii) dC(x, y) ≥ 0, ∀x, y ∈ X;

(iii) dC(x, y) = dC(y, x) (symmetry);

(iv) dC(x, y) ≤ dC(x, z) + dC(z, y) ∀x, y, z ∈ X (triangle inequality).

The function dC is called a complex valued metric on X and (X, dC), a complex valued metric space.

Ahmed et al. (2014) extended the notion of metric spaces to quanternion valued metric spaces as shown
below.
Definition 1.3 [1]. Let X be a non-empty set and dH : X ×X → H be a function satisfying the following
properties:

(i) dH(x, y) = 0 if and only if x = y;

(ii) dH(x, y) ≥ 0, ∀x, y ∈ X;

(iii) dH(x, y) = dH(y, x) (symmetry);

(iv) dH(x, y) ≤ dH(x, z) + dH(z, y) ∀x, y, z ∈ X (triangle inequality).

The function dH is called a quaternion valued metric on X and (X, dH), a quaternion valued metric space.

Definition of interior point, limit point and balls as stated by Ahmed et al. (2014).
Definition 1.4 [1]. Point x ∈ X is said to be an interior point of set A ⊂ X whenever there exists
0 ≺ r ∈ H such that

B(x, r) = {y ∈ X : dH(x, y) ≺ r} ⊂ A

Definition 1.5 [1]. Point x ∈ X is said to be a limit point of A ⊂ X whenever for every 0 ≺ r ∈ H

B(x, r) ∩ (A− {x})6=∅
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Definition 1.6 [1]. Set A is called an open set whenever each element of A is an interior point of A. Subset
B ⊂ X is called a closed set whenever each limit point of B belongs to B. The family

F = {B(x, r) : x ∈ X, 0 ≺ r}

is a subbase for Hausdroff topology τ on X.

Definition 1.7 [1]. Let {xn} be a sequence in X and x ∈ X. If for every q ∈ H with 0 ≺ q there is
n0 ∈ N such that for all n > n0, dH(xn, x) ≺ q, then {xn} is said to be convergent if {xn} converges to the
limit point x; that is, xn → x as n → ∞. If for every q ∈ H with 0 ≺ q there is n0 ∈ N such that for all
n > n0, dH(xn, xn+m) ≺ q, then {xn} is called Cauchy sequence in (X, dH). If every Cauchy sequence is
convergent in (X, dH), then (X, dH) is called a complete quaternion valued metric space.

3. Main Result

Ahmed et al. (2014) introduced the following ordering.
Let H be the set of quaternion and q1, q2 ∈ H. Define a partial order � on H as follows:
q1 � q2 if and only if Re(q1) ≤ Re(q2) and Ims(q1) ≤ Ims(q2), q1, q2 ∈ H, s = i, j, k where Imi = b, Imj =
c, Imk = d.
It follows that q1 � q2, if one of the following conditions is satisfied:

(i) Re(q1) = R(q2), Ims1(q1) = Ims1(q2) where s1 = j, k, Imi(q1) < Imi(q2);

(ii) Re(q1) = R(q2), Ims2(q1) = Ims2(q2) where s2 = i, k, Imj(q1) < Imj(q2);

(iii) Re(q1) = R(q2), Ims3(q1) = Ims3(q2) where s3 = i, j, Imk(q1) < Imk(q2);

(iv) Re(q1) = R(q2), Ims1(q1) = Ims1(q2), Imi(q1) = Imi(q2);

(v) Re(q1) = R(q2), Ims1(q1) = Ims1(q2), Imj(q1) = Imj(q2);

(vi) Re(q1) = R(q2), Ims1(q1) = Ims1(q2), Imk(q1) = Imk(q2);

(vii) Re(q1) = R(q2), Ims(q1) < Ims(q2);

(viii) Re(q1) < R(q2), Ims(q1) = Ims(q2);

(ix) Re(q1) < R(q2), Ims1(q1) = Ims1(q2), Imi(q1) < Imi(q2);

(x) Re(q1) < R(q2), Ims2(q1) = Ims2(q2), Imj(q1) < Imj(q2);

(xi) Re(q1) < R(q2), Ims3(q1) = Ims3(q2), Imk(q1) < Imk(q2);

(xii) Re(q1) < R(q2), Ims1(q1) < Ims1(q2), Imi(q1) = Imi(q2);

(xiii) Re(q1) < R(q2), Ims2(q1) < Ims2(q2), Imi(q1) = Imi(q2);

(xiv) Re(q1) < R(q2), Ims3(q1) < Ims3(q2), Imi(q1) = Imi(q2);

(xv) Re(q1) < R(q2), Ims(q1) < Ims(q2);

(xiv) Re(q1) = R(q2), Ims(q1) = Ims(q2).

Particularly, we will write q1 � q2 if q1 6= q2 and one from (i), to (xvi) is satisfied and we will write q1 ≺ q2
if only (xv) is satisfied. It should be noted that

q1 � q2 ⇒ |q1| ≤ |q2|.

Motivated by Ahmed et al.’s work in [1], we introduce the following definitions.
Definition 2.1. Let X be a non-empty set, H, a set of quaternions and GQ : X×X×X → H be a function
satisfying the following properties:

(i) GQ(x, y, z) = 0 if and only if x = y = z

(ii) 0 ≺ GQ(x, x, y), ∀x, y ∈ X, with x 6= y

(iii) GQ(x, x, y) � GQ(x, y, z), ∀x, y, z ∈ X, with z 6= y

(iv) GQ(x, y, z) = GQ(y, z, x) = GQ(x, z, y) = ... (symmetry).
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(v) There exists a real number s ≥ 1 such that GQ(x, y, z) � s[GQ(x, a, a) +GQ(a, y, z)] ∀a, x, y, z ∈ X
(rectangle inequality)

Then the function GQ is called a quaternion G-metric and (X,GQ) is the quaternion GQ-metric space.
A GQ - metric space is complete if every Cauchy sequence in it is GQ - convergent in it.

Remark 1. We obtain quaternion valued metric space in [1] if y = z and we set d(x, y) = G(x, y, y).

Definition 2.2. {xn} is said to converges to the limit point x; that is, xn → x as n → ∞ if for ev-
ery q ∈ H with 0 ≺ q there is n0 ∈ N such that for all n > n0, G

Q(xn, x, x) ≺ q. If for every q ∈ H with
0 ≺ q there is n0 ∈ N such that for all n > n0, G

Q(xn, xn+m, xn+m+l) ≺ q, then {xn} is called Cauchy
sequence in (X,GQ). If every Cauchy sequence is convergent in (X,GQ), then (X,GQ) is called a complete
quaternion valued G-metric space.

Some auxiliary Lemmas with proofs using the concept of quaternion valued G-metric spaces are stated
below. These Lemmas will be used to prove some fixed point theorems of contractive mappings in this
newly introduced space.
Lemma 2.3. Let (X,GQ) be a GQ-metric space and {xn} a sequence in X. {xn} converges to x ∈ X if
and only if |GQ(xn, x, x)| → 0 as n→∞.

Proof: Suppose that {xn} converges to x. For any real number ε > 0, let q = ε
2 + ε

2 i + ε
2j + ε

2k.
Then, 0 ≺ q ∈ H and there is a natural number N such that GQ(xn, x, x) ≺ q for all n ∈ N . There-
fore, |GQ(xn, x, x)| < |q| =

√
4( ε2)2 = ε for all n ∈ N . Hence, |GQ(xn, x, x)| → 0 as n→∞.

Conversely, suppose that |GQ(xn, x, x)| → 0 as n → ∞. Then, given q ∈ H with 0 ≺ q, there exists a real
number δ > 0, such that, for h ∈ H, |h| < δ ⇒ h ≺ q. For this δ, there is a natural number N such that
|GQ(xn, x, x)| < δ for all n > N which implies that GQ(xn, x, x) ≺ q for all n > N , hence {xn} converges to
x ∈ X.

Lemma 2.4. Let (X,GQ) be a GQ-metric space and {xn} a sequence in X. {xn} is Cauchy sequence
if and only if |GQ(xn, xm, xl)| → 0 as n,m, l→∞.

Proof: Suppose that {xn} is a Cauchy sequence. For any real number ε > 0, let q = ε
2 + ε

2 i+
ε
2j+ ε

2k. Then,
0 ≺ q ∈ H and there is a natural number N such that GQ(xn, xn+m, xn+m+l) ≺ q for all n ∈ N . Therefore,
|GQ(xn, xn+m, xn+m+l)| < |q| =

√
4( ε2)2 = ε for all n ∈ N . Hence, |GQ(xn, xn+m, xn+m+l)| → 0 as n→∞.

Conversely, suppose that |GQ(xn, xn+m, xn+m+l)| → 0 as n → ∞. Then, given q ∈ H with 0 ≺ q, there
exists a real number δ > 0, such that, for h ∈ H, |h| < δ ⇒ h ≺ q. For this δ, there is a natural number N
such that |GQ(xn, xn+m, xn+m+l)| < δ for all n > N which implies that GQ(xn, xn+m, xn+m+l) ≺ q for all
n > N , hence {xn} is a Cauchy sequence.

The following example shows that GQ-metric space is not necessarily a G-metric space.
Example 1 Let X = S ∪ T where S = N , T = { 1

2n , n ∈ N} and GQ : X × X × X → H be defined as
follows:

GQ(a, b, c) = GQ(b, c, a) = GQ(a, c, b) = ...

for a, b.c ∈ X and

GQ(a, b, c) =


0, if a = b = c;

1 + 2v, if a, b, c ∈ S and a = b, b = c or a = c;

1 + 7v, Otherwise.
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where v ∈ {ai+ bj + ck : i2 = j2 = k2 = ijk = −1, a, b, c ∈ R}. Then GQ is a GQ - metric on X but not G
- metric on X.

Example 2 Let X = { 1n , n ∈ N} with

GQ(a, b, c) = GQ(b, c, a) = GQ(a, c, b) = ...

for a, b.c ∈ X. GQ : X3 → H defined as follows:

GQ(q1, q2, q3) = 1 + |x2 − x1|+ |y3 − y2|+ |z1 − z3|

where
q1 = 1 + x1i+ y1j + z1k,
q2 = 1 + x2i+ y2j + z2k
q3 = 1 + x3i+ y3j + z3k
with x1 + x2 + x3 > 1, y1 + y2 + y3 > 1 and z1 + z2 + z3 = 1
GQ is a quanternion valued G-metric on X but not G - metric on X.

Now, the main theorems are stated with proofs:
Theorem 2.5. Let X be a complete GQ-metric space and T : X → X a map for which there exist a real
number k satisfying 0 ≤ k < 1, such that for each pair x, y, z ∈ X:
GQ(Tx, Ty, Tz) � kGQ(x, y, z) .

Then T has a unique fixed point.
Proof: Let x0 ∈ X be an arbitrary point and define the sequence {xn} by xn = Tnx0∀n ∈ N , then we have

GQ(xn, xn+1, xn+1) � kGQ(xn−1, xn, xn). (3.1)

We deduce that

GQ(xn, xn+1, xn+1) � kGQ(xn−1, xn, xn)

� k2GQ(xn−2, xn−1, xn−1)

GQ(xn, xn+1, xn+1) � k3GQ(xn−3, xn−2, xn−2)

GQ(xn, xn+1, xn+1) � knGQ(x0, x1, x1).

By repeated use of rectangle inequality with m > n, we have

GQ(xn, xm, xm) � GQ(xn, xn+1, xn+1) +GQ(xn+1, xn+2, xn+2)

+GQ(xn+2, xn+3, xn+3) + ...+GQ(xm−1, xm, xm).

From (3.2) and (3.3), we have

GQ(xn, xm, xm) � GQ(xn, xn+1, xn+1) +GQ(xn+1, xn+2, xn+2)

+GQ(xn+2, xn+3, xn+3) + ...+GQ(xm−1, xm, xm)

� [kn + kn+1 + kn+2 + ...+ km−1]GQ(x0, x1, x1)

� kn[1 + k + k2 + ...+ km−n−1]GQ(x0, x1, x1)

� [
kn

1− k
]GQ(x0, x1, x1).

Taking the limit of GQ(xn, xm, xm) as n,m→∞, we have

lim
n,m→∞

|GQ(xn, xm, xm)| = lim
n,m→∞

[
kn

1− k
]|GQ(x0, x1, x1)| = 0. (3.2)
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For n,m, l ∈ N

GQ(xn, xm, xl) � GQ(xn, xm, xm) +GQ(xm, xm, xl). (3.3)

Taking the limit of GQ(xn, xm, xl) as n,m, l→∞,
we have

GQ(xn, xm, xl) � lim
n,m,l→∞

|GQ(xn, xm, xm) +GQ(xm, xm, xl)| = 0. (3.4)

So, xn is a GQ-Cauchy Sequence.
By completeness of (X,GQ), there exist u ∈ X such that {xn} is GQ-convergent to u.
Suppose Tu 6= u

GQ(xn, Tu, Tu) � kGQ(xn−1, u, u). (3.5)

Taking the limit as n →∞, we get

GQ(u, Tu, Tu) � kGQ(u, u, u). (3.6)

Hence,
GQ(u, Tu, Tu) � 0. (3.7)

This is a contradiction. So, Tu = u.
To show the uniqueness, suppose v 6= u is such that Tv = v, then

GQ(Tu, Tv, Tv) � kGQ(u, v, v). (3.8)

Since Tu = u and Tv = v, we have
GQ(u, v, v) � 0. (3.9)

which implies that v = u

Remark 2. If ∀q = a + bi + cj + dk ∈ H, b = c = d = 0 in Theorem 2.5, Banach contraction princi-
ple in a real valued G-metric space is obtained. Setting d(x, y) = G(x, y, y), the theorem reduces to Banach
contraction principle in [3].

Theorem 2.6. Let X be a complete GQ - metric space and T : X → X a map for which there exist
a real number k satisfying 0 ≤ k < 1

2 , such that for each pair x, y, z ∈ X:
GQ(Tx, Ty, Tz) � k[GQ(x, Tx, Tx) +GQ(y, Ty, Ty) +GQ(z, Tz, Tz)] .

Then T has a unique fixed point.
Proof: Let x0 ∈ X be an arbitrary point and define the sequence {xn} by xn = Tnx0∀n ∈ N , then we have

GQ(xn, xn+1, xn+1) � k[GQ(xn−1, xn, xn) + 2GQ(xn, xn+1, xn+1)]

� k

1− 2k
GQ(xn−1, xn, xn).

Let q = k
1−2k

We deduce that

GQ(xn, xn+1, xn+1) � qGQ(xn−1, xn, xn)

� q2GQ(xn−2, xn−1, xn−1)

GQ(xn, xn+1, xn+1) � q3GQ(xn−3, xn−2, xn−2)

GQ(xn, xn+1, xn+1) � qnGQ(x0, x1, x1).

By repeated use of rectangle inequality with m > n, we have

GQ(xn, xm, xm) � GQ(xn, xn+1, xn+1) +GQ(xn+1, xn+2, xn+2)

+GQ(xn+2, xn+3, xn+3) + ...+GQ(xm−1, xm, xm).
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From (3.14) and (3.15), we have

GQ(xn, xm, xm) � GQ(xn, xn+1, xn+1) +GQ(xn+1, xn+2, xn+2)

+GQ(xn+2, xn+3, xn+3) + ...+GQ(xm−1, xm, xm)

� [qn + qn+1 + qn+2 + ...+ qm−1]GQ(x0, x1, x1)

� qn[1 + q + q2 + ...+ qm−n−1]GQ(x0, x1, x1)

� [
qn

1− q
]GQ(x0, x1, x1).

Taking the limit of GQ(xn, xm, xm) as n,m→∞, we have

lim
n,m→∞

|GQ(xn, xm, xm)| = lim
n,m→∞

[
qn

1− q
]|GQ(x0, x1, x1)| = 0. (3.10)

For n,m, l ∈ N
GQ(xn, xm, xl) � GQ(xn, xm, xm) +GQ(xm, xm, xl). (3.11)

Taking the limit of GQ(xn, xm, xl) as n,m, l→∞,
we have

GQ(xn, xm, xl) � lim
n,m,l→∞

|GQ(xn, xm, xm) +GQ(xm, xm, xl)| = 0. (3.12)

So, xn is a GQ-Cauchy Sequence.
By completeness of (X,GQ), there exist u ∈ X such that {xn} is GQ-convergent to u.
Suppose Tu 6= u

GQ(xn, Tu, Tu) � k[GQ(xn−1, xn, xn) + 2GQ(u, Tu, Tu)]. (3.13)

Taking the limit as n→∞, we get

GQ(u, Tu, Tu) � 2kGQ(u, Tu, Tu). (3.14)

Hence,
GQ(u, Tu, Tu) � 0. (3.15)

This is a contradiction. So, Tu = u.
To show the uniqueness, suppose v 6= u is such that Tv = v, then

GQ(Tu, Tv, Tv) � k[GQ(u, Tu, Tu) + 2GQ(v, Tv, Tv)]. (3.16)

Since Tu = u and Tv = v, we have
GQ(u, v, v) � 0. (3.17)

which implies that v = u

Remark 3. If ∀q = a + bi + cj + dk ∈ H, b = c = d = 0 in Theorem 2.6, Kannan’s fixed point the-
orem in a real valued G-metric space is obtained. Setting d(x, y) = G(x, y, y), the theorem reduces to
Kannan’s fixed point theorem in [6].

Theorem 2.7. Let X be a complete GQ - metric space and T : X → X a map for which there exist
a real number k satisfying 0 ≤ k < 1

2 , such that for each pair x, y, z ∈ X:
GQ(Tx, Ty, Tz) � k[GQ(x, Ty, Ty) +GQ(y, Tx, Tx) +GQ(z, Tx, Tx)] .

Then T has a unique fixed point.
Proof: Let x0 ∈ X be an arbitrary point and define the sequence {xn} by xn = Tnx0∀n ∈ N , then we have

GQ(xn, xn+1, xn+1) � kGQ(xn−1, xn+1, xn+1)

� k[GQ(xn−1, xn, xn) +GQ(xn, xn+1, xn+1)]

� k

1− k
GQ(xn−1, xn, xn).
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Let q = k
1−k

We deduce that

GQ(xn, xn+1, xn+1) � qGQ(xn−1, xn, xn)

� q2GQ(xn−2, xn−1, xn−1)

GQ(xn, xn+1, xn+1) � q3GQ(xn−3, xn−2, xn−2)

GQ(xn, xn+1, xn+1) � qnGQ(x0, x1, x1).

By repeated use of rectangle inequality, we have

GQ(xn, xm, xm) � GQ(xn, xn+1, xn+1) +GQ(xn+1, xn+2, xn+2)

+GQ(xn+2, xn+3, xn+3) + ...+GQ(xm−1, xm, xm).

From (3.26) and (3.27), we have

GQ(xn, xm, xm) � GQ(xn, xn+1, xn+1) +GQ(xn+1, xn+2, xn+2)

+GQ(xn+2, xn+3, xn+3) + ...+GQ(xm−1, xm, xm)

� [qn + qn+1 + qn+2 + ...+ qm−1]GQ(x0, x1, x1)

� qn[1 + q + q2 + ...+ qm−n−1]GQ(x0, x1, x1)

� [
qn

1− q
]GQ(x0, x1, x1).

Taking the limit of QGb(xn, xm, xm) as n,m→∞, we have

lim
n,m→∞

|GQ(xn, xm, xm)| = lim
n,m→∞

[
qn

1− q
]|GQ(x0, x1, x1)| = 0. (3.18)

For n,m, l ∈ N
GQ(xn, xm, xl) � GQ(xn, xm, xm) +GQ(xm, xm, xl). (3.19)

Taking the limit of GQ(xn, xm, xl) as n,m, l→∞,
we have

GQ(xn, xm, xl) � lim
n,m,l→∞

|GQ(xn, xm, xm) +GQ(xm, xm, xl)| = 0. (3.20)

So, xn is a GQ-Cauchy Sequence.
By completeness of (X,GQ), there exist u ∈ X such that {xn} is GQ-convergent to u.
Suppose Tu 6= u

GQ(xn, Tu, Tu) � k[GQ(xn−1, Tu, Tu) +GQ(u, xn, xn) +GQ(u, xn, xn)]. (3.21)

Taking the limit as n →∞, we get

GQ(u, Tu, Tu) � kGQ(u, Tu, Tu). (3.22)

Hence,
GQ(u, Tu, Tu) � 0. (3.23)

This is a contradiction. So, Tu = u.
To show the uniqueness, suppose v 6= u is such that Tv = v, then

GQ(Tu, Tv, Tv) � k[GQ(u, Tv, Tv) + 2GQ(v, Tu, Tu)]. (3.24)

Since Tu = u and Tv = v, we have
GQ(u, v, v) � 0. (3.25)
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which implies that v = u

Remark 4. If ∀q = a + bi + cj + dk ∈ H, b = c = d = 0 in Theorem 2.7, Chatterjea’s fixed point
theorem in a real valued G-metric space is obtained. Setting d(x, y) = G(x, y, y), the theorem reduces to
Chatterjea’s fixed point theorem in [4].

Corollary 2.8. Let X be a complete GQ - metric space and T : X → X a map for which there exist
the real numbers a, b, c satisfying 0 ≤ a < 1, b ≤ 1

2 and c < 1
2 such that for each pair x, y, z ∈ X at least

one of the following is true.
(GQZ1) GQ(Tx, Ty, Tz) � aGQ(x, y, z)
(GQZ2) GQ(Tx, Ty, Tz) � b[GQ(x, Tx, Tx) +GQ(y, Ty, Ty) +GQ(z, Tz, Tz)]
(GQZ3) GQ(Tx, Ty, Tz) � c[GQ(x, Ty, Ty) +GQ(y, Tx, Tx) +GQ(z, Tx, Tx)].

Then T has a unique fixed point.
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