Fixed point theorems on a quaternion-valued G-metric spaces

Document Type: Original Article

Authors

Department of Mathematics, University of Lagos, Nigeria.

Abstract

In this paper, we introduce the concept of a quaternion-valued $G$-metric spaces which generalize real-valued $G$-metric spaces, complex-valued $G$-metric spaces, real-valued metric spaces and complex-valued metric spaces known in the literature. Analogous the Banach contraction principle, Kannan's and Chatterjea's fixed point theorem are proved. Our results generalize many known results in fixed point theory.

Keywords

[1] A. E. Ahmed, A. J. Asad, S. Omran, Fixed point theorems in quaternion-valued metric spaces, Abstract and Applied Analysis, 2014 (2014), Article ID 258985.
[2] A. Akbar, F. Brian, M. Khan, Common fixed point theorem in complex valued metric spaces, Numerical Functional Analysis and Optimizaton, 32 (3) (2011), 245{255.
[3] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fundamenta Mathematicae: (1922), 133{181.
[4] S. K. Chatterjea, Fixed point theorems, C. R. Acad. Bulgare Sci., 25 (1972), 727-730.
[5] K. S. Eke, J. O. Olaleru, Some fixed point results on ordered G - partial metric spaces, I CASTOR Journal of Mathematical Sciences, 7 (1) (2013), 65-78.
[6] R. Kannan, Some results on fi xed points, Bull. Calcutta Math. Soc., 10 (1968), 71-76.
[7] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Analysis, 7 (2) (2006), 289-297.