Fixed Point Results for Multivalued Operator in G–metric Space

A. Guptaa, T. Singhb, R. Kaurc, S. Manrod,*

aDepartment of Mathematics, Sagar Institute of Engineering, Technology and Research, Ratibad Bhopal (M.P.), India
bDepartment of Mathematics, Desh Bhagat University, Mandi Gobindgarh, Punjab, India
cDepartment of Mathematics, Desh Bhagat University, Mandi Gobindgarh, Punjab, India
dDepartment of Mathematics, Thapar University, Patiala, Punjab, India.

Abstract

In this paper, we shall give some results on fixed points of multivalued operator on G–metric spaces by using the method of Kikkawa [6]. Our results generalize and extend some old fixed point theorems to the multivalued case.

Keywords: Fixed point, G-metric space, Multivalued operator.

2010 MSC: 47H09, 47H10, 54H25.

1. Introduction and preliminaries

Mustafa and Sims [8] introduced the notion of G-metric space. Based on the notion of generalized metric space or G–metric space, many authors obtained some fixed point theorems for self mapping under some contractive conditions (e.g., [1, 9, 10, 11, 12]). Consistent with Mustafa and Sims [8], the following definitions and results will be needed in the sequel.

Definition 1.1. [8] Let X be a non empty set, $G : X \times X \times X \to \mathbb{R}^+$ be a function satisfying the following properties:

(G_1) $G(x,y,z) = 0$ if $x = y = z$,
(G_2) $0 < G(x,x,y)$ for all $x, y \in X$ with $x \neq y$,
(G_3) $G(x,y,z) \leq G(x,y) + G(y,z)$ for all $x, y, z \in X$ with $x \neq y$,
(G_4) $G(x,y,z) = G(x,z,y) = G(y,z,x) = \ldots$ (symmetry in all three variables),
(G_5) $G(x,y) \leq G(x,a) + G(a,y)$ for all $x, y, a \in X$ (rectangle inequality).

*Corresponding author.

Email addresses: dranimeshgupta10@gmail.com (A. Gupta), drtejwant1@rediffmail.com (T. Singh), bhullarrajvir@yahoo.com (R. Kaur), sauvmanro@hotmail.com (S. Manro)

Received 2019-07-13
Then the function G is called a generalized metric, or, more specially, a G-metric on X, and the pair (X, G) is called a G-metric space.

Definition 1.2. [8] Let (X, G) be a G-metric space, and let $\{x_n\}$ be a sequence of points of X, therefore, we say that $\{x_n\}$ is G-convergent to $x \in X$ if $\lim_{n,m \to +\infty} G(x, x_n, x_m) = 0$, that is, for any $\epsilon > 0$, there exists a positive integer N such that $G(x, x_n, x_m) < \epsilon$ for all $n, m \geq N$. We call x the limit of the sequence and write $x_n \to x$ or $\lim_{n \to +\infty} x_n = x$.

Lemma 1.3. [8] Let (X, G) be a G-metric space. The following statements are equivalent:

1. $\{x_n\}$ is G-convergent to x,
2. $G(x_n, x_n, x) \to 0$ as $n \to +\infty$,
3. $G(x_n, x, x) \to 0$ as $n \to +\infty$,
4. $G(x_n, x_m, x) \to 0$ as $n, m \to +\infty$.

Definition 1.4. [8] Let (X, G) be a G-metric space. A sequence $\{x_n\}$ is called a G-Cauchy sequence if, for any $\epsilon > 0$, there exists a positive integer N such that $G(x_n, x_m, x_l) < \epsilon$ for all $n, m, l \geq N$, that is, $G(x_n, x_m, x_l) \to 0$ as $n, m, l \to +\infty$.

Lemma 1.5. [8] Let (X, G) be a G-metric space. The following statements are equivalent:

1. The sequence $\{x_n\}$ is G-Cauchy,
2. for any $\epsilon > 0$, there exists a positive integer N such that $G(x_n, x_m, x_l) < \epsilon$ for all $n, m, l \geq N$.

Definition 1.6. [8] A G-metric space (X, G) is called G-complete if every G-Cauchy sequence is G-convergent in (X, G).

Every G-metric on X defines a metric d_G on X given by

$$d_G = G(x, y, y) + G(y, x, x) \text{ for all } x, y \in X.$$

Lemma 1.7. [8] If (X, G) is a G-metric space, then $G(x, y, y) = 2G(y, x, x)$ for all $x, y \in X$.

Lemma 1.8. [8] If (X, G) is a G-metric space, then $G(x, x, y) = G(x, x, z) + G(z, z, y)$ for all $x, y, z \in X$.

Nadler [13] initiated the study of fixed points for multi-valued contraction mappings. There are many works about fixed point for multivalued mappings (cited in [7, 2, 3, 4, 5]) and weakly Picard maps (see in [15, 16, 17]).

We shall denote the set of all nonempty closed subset of X by $P_d(X)$. Also, we shall denote the set of fixed points of a multifunction T by $Fix(T)$. Let X be a nonempty set and consider the space \mathbb{R}^m endowed with the usual component-wise partial order. We denote by $M_{m,m}(\mathbb{R}^+)$ the set of all $m \times m$ matrices with positive elements and by I the identity $m \times m$ matrix. A matrix $A \in M_{m,m}(\mathbb{R}^+)$ is said to be converges to zero whenever $A^\lambda \to 0$.

Theorem 1.9. [14] Let $A \in M_{m,m}(\mathbb{R}^+)$. The following are equivalent:

(i) $A^n \to 0$.
(ii) The eigen values of A are in the open unit disc, i.e., $|\lambda| < 1$, for all $\lambda \in C$ with $\det(A - \lambda I) = 0$.
(iii) The matrix $(I - A)$ is non-singular and $(I - A)^{-1} = I + A + A^2 + \ldots + A^n + \ldots$.
(iv) The matrix $(I - A)$ is non-singular and $(I - A)^{-1}$ has nonnegative elements.
(v) $A^n q \to 0$ and $qA^n \to 0$, for all $q \in \mathbb{R}^m$.

By using Theorem 1.9(v), we have $-A$ converges to zero whenever A is converges to zero. Again, Theorem 1.9 implies that $(I + A)$ is invertible and $(I + A)^{-1} \leq (I - A)^{-1}$.
2. Main Result

Theorem 2.1. Let \((X, G)\) be a complete G– metric space, a matrix \(A \in M_{m,m}(\mathbb{R}^+)\) converges to zero and \(T : X \times X \to P_{cl}(X)\) a multivalued operator. Suppose that for each \(x, y, z, x', y', z' \in X\),

\[
(I + A^{-1})[G(x, T(x, x')), T^2(x, x')) + G(x', T(x', x), T^2(x', x)) \leq (I - A^{-1})[G(x, y, z) + G(x', y', z')]
\]

implies that for each \(u \in T(x, x'), u' \in T(x', x), v \in T(y, y'), v' \in T(y', y)\) there exist \(w \in T(z, z')\) such that

\[
G(u, v, w) + G(u', v', w') \leq A[G(x, y, z) + G(x', y', z')].
\] (2.1)

Then \(T\) has a coupled fixed point.

Proof. For each \((x, x') \in X \times X,\)

\[
(I + A^{-1})[G(x, T(x, x'), T^2(x, x')) + G(x', T(x', x), T^2(x', x))] \\
\leq (I - A^{-1})[G(x, y, z) + G(x', y', z')].
\]

Let \((x_0, x'_0) \in X \times X\) and take \(x_1 \in T(x_0, x'_0), x'_1 \in T(x'_0, x_0), x_2 \in T(x_1, x'_1), x'_2 \in T(x'_1, x_1)\). If \(x_0 = x_1 = x_2\) and \(x'_0 = x'_1 = x'_2\) then \((x_0, x'_0)\) is a coupled fixed point of \(T\). Let any one of \(x_0, x_1, x_2\) and \(x'_0, x'_1, x'_2\) be not equal to other, from (2.1), there exist \(x_3 \in T(x_2, x'_2), x'_3 \in T(x'_2, x_2)\) such that

\[
G(x_1, x_2, x_3) + G(x'_1, x'_2, x'_3) \leq A[G(x_0, x_1, x_2) + G(x'_0, x'_1, x'_2)].
\] (2.2)

If \(x_1 = x_2 = x_3\) and \(x'_1 = x'_2 = x'_3\) then \((x_1, x'_1)\) is a coupled fixed point of \(T\). Let any one of \(x_1, x_2, x_3\) and \(x'_1, x'_2, x'_3\) be not equal to other, from (2.1) and (2.2), there exist \(x_4 \in T(x_5, x'_5), x'_4 \in T(x'_5, x_5)\) such that

\[
G(x_2, x_3, x_4) + G(x'_2, x'_3, x'_4) \leq A[G(x_1, x_2, x_3) + G(x'_1, x'_2, x'_3)] \\
\leq A^2[G(x_0, x_1, x_2) + G(x'_0, x'_1, x'_2)].
\] (2.3)

Now by induction, we construct sequences \(\{x_n\}_{n \geq 0}, \{x'_n\}_{n \geq 0}\) in \(X\) such that \(x_{n+1} \in T(x_n, x'_n), x'_{n+1} \in T(x'_n, x_n)\) and

\[
G(x_n, x_{n+1}, x_{n+2}) + G(x'_n, x'_{n+1}, x'_{n+2}) \leq A^n[G(x_0, x_1, x_2) + G(x'_0, x'_1, x'_2)]
\] (2.4)

for all \(n \geq 0\). From Theorem 1.9, for all \(m, n \in \mathbb{N}, n < m\) and by (G₃) and (G₅) we obtain

\[
G(x_n, x_m, x_m) + G(x'_n, x'_m, x'_m) \leq G(x_n, x_{n+1}, x_{n+1}) + G(x_{n+1}, x_{n+2}, x_{n+2}) + G(x_{n+2}, x_{n+3}, x_{n+3}) \\
+ \cdots + G(x_{m-1}, x_m, x_m) + G(x'_n, x'_{n+1}, x'_{n+1}) + G(x'_{n+1}, x'_{n+2}, x'_{n+2}) \\
+ G(x'_{n+2}, x'_{n+3}, x'_{n+3}) + \cdots + G(x'_m, x'_m, x'_m)
\]

that is,

\[
[G(x_n, x_m, x_m) + G(x'_n, x'_m, x'_m)] \to 0 \text{ as } n \to \infty.
\]

Hence \(\{x_n\}_{n \geq 0}, \{x'_n\}_{n \geq 0}\) are Cauchy sequence in the complete G– metric space \((X, G)\). Choose \((x^*, x'^*) \in X \times X\) such that \(x_n \to x^*\) and \(x'_n \to x'^*\) as \(n \to \infty\). We claim that \((x, x') \in (X \times X) \setminus \{(x^*, \{x'^*\})\},\)

\[
[G(x^*, T(x, x'), T(x, x')) + G(x'^*, T(x', x'), T(x', x'))] \leq A[G(x^*, x, x) + G(x'^*, x', x')].
\] (2.5)
Let \((x, x') \in (X \times X) \setminus \{(x^*), \{x'^*\}\} \). Choose a natural number \(N\) such that
\[[G(x_n, x^*, x^*) + G(x_n', x'^*, x'^*)] < \frac{1}{4} [G(x, x^*, x^*) + G(x', x'^*, x'^*)] \]
for all \(n \geq N\). Hence, for each \(n \geq N\) we have
\[
G(x_n, T(x_n, x'_n), T(x_n, x'_n)) + G(x'_n, T(x_n, x'_n), T(x_n, x'_n)) \leq G(x_n, x_{n+1}, x_{n+1}) + G(x'_n, x'_{n+1}, x'_{n+1}) \\
\leq G(x_n, x^*, x^*) + G(x^*, x_{n+1}, x_{n+1}) \\
+ G(x'_n, x'^*, x'^*) + G(x'^*, x'_{n+1}, x'_{n+1}) \\
\leq G(x_n, x^*, x^*) + 2G(x_{n+1}, x^*, x^*) \\
+ G(x'_n, x'^*, x'^*) + 2G(x'_{n+1}, x'^*, x'^*) \\
\leq \frac{3}{4} [G(x, x^*, x^*) + G(x', x'^*, x'^*)] \\
\leq G(x, x^*, x^*) + G(x', x'^*, x'^*) \\
- \frac{1}{4} [G(x, x^*, x^*) + G(x', x'^*, x'^*)] \\
\leq G(x, x^*, x^*) + G(x', x'^*, x'^*) \\
- [G(x_n, x^*, x^*) + G(x'_n, x'^*, x'^*)] \\
G(x_n, T(x_n, x'_n), T(x_n, x'_n)) + G(x'_n, T(x_n, x'_n), T(x_n, x'_n)) \leq G(x_n, x^*, x^*) + G(x'_n, x'^*, x'^*). \\
\]
Thus
\[
(I + A)^{-1} [G(x_n, T(x_n, x'_n), T(x_n, x'_n)) + G(x'_n, T(x_n, x'_n), T(x_n, x'_n))] \leq \leq (I - A)^{-1} [G(x_n, x, x) + G(x'_n, x', x')] \\
\leq (I - A)^{-1} [G(x_n, x, x) + G(x'_n, x', x')] \\
\]
for \(n \geq N\).
Since \(x_{n+1} \in T(x_n, x'_n)\), \(x'_{n+1} \in T(x'_n, x_n)\), by using (2.1), for each \(n \geq N\) there exist \(u_n \in T(x, x')\) and \(u'_n \in T(x', x)\) such that
\[
G(u_n, x_{n+1}, x_{n+1}) + G(u'_n, x'_{n+1}, x'_{n+1}) \leq A[G(x_n, x, x) + G(x'_n, x', x')]. \\
\]
Hence
\[
G(x_{n+1}, T(x, x'), T(x, x')) + G(x'_{n+1}, T(x', x), T(x', x)) \leq A[G(x_n, x, x) + G(x'_n, x', x')] \\
\]
and so
\[
\lim_{n \to \infty} [G(x_{n+1}, T(x, x'), T(x, x')) + G(x'_{n+1}, T(x', x), T(x', x))] \leq \lim_{n \to \infty} [G(x_n, x, x) + G(x'_n, x', x')]. \\
\]
Thus
\[
G(x^*, T(x, x'), T(x, x')) + G(x'^*, T(x', x), T(x', x)) \leq A[G(x^*, x, x) + G(x'^*, x', x')] \\
\]
for all \((x, x') \in (X \times X) \setminus \{(x^*), \{x'^*\}\} \).
Now we show that for each \((x, x') \in X \times X\) and \(u \in T(x, x')\), \(u' \in T(x', x)\) there exist \(v \in T(x^*, x'^*), v' \in T(x'^*, x^*)\) such that
\[
G(u, v, v') \leq A[G(x, x^*, x^*) + G(x', x'^*, x'^*)]. \\
\]
If \(x_n \to x^* \) and \(x'_n \to x'^* \) we have nothing to prove. Let \(x \neq x^* \) and \(x' \neq x'^* \). By definition of \(G(x^*, T(x, x'), T(x, x')) \), \(G(x'^*, T(x', x), T(x', x)) \) and for each \(n \geq 1 \) there exist \(y_n \in T(x, x') \) and \(y'_n \in T(x', x) \) such that
\[
G(x^*, y_n, y_n) + G(x'^*, y'_n, y'_n) \leq G(x^*, T(x, x'), T(x, x')) + G(x'^*, T(x', x), T(x', x)) + \frac{1}{n}[G(x, x^*, x^*) + G(x', x'^*, x'^*)].
\]
Hence we have
\[
G(x, T(x, x'), T(x, x')) + G(x', T(x', x), T(x', x)) \leq G(x^*, y_n, y_n) + G(x'^*, y'_n, y'_n) + G(x, x^*, x^*) + G(x', x'^*, x'^*) + \frac{1}{n}[G(x, x^*, x^*) + G(x', x'^*, x'^*)].
\]
From (2.5),
\[
(I + A)^{-1}[G(x, T(x, x'), T(x, x')) + G(x', T(x', x), T(x', x))] \leq G(x, x^*, x^*) + \frac{1}{n}(I + A)^{-1}G(x, x^*, x^*) + G(x', x'^*, x'^*) + \frac{1}{n}(I + A)^{-1}G(x', x'^*, x'^*)
\]
for all \(n \geq 1 \).
Thus
\[
(I + A)^{-1}[G(x, T(x, x'), T(x, x')) + G(x', T(x', x), T(x', x))] \leq G(x, x^*, x^*) + G(x'^*, x'^*) + \frac{1}{n}(I - A)^{-1}[G(x, x^*, x^*) + G(x', x'^*, x'^*)].
\]
Now by using (2.1), for each \(u \in T(x, x') \), \(u' \in T(x', x) \), there exist \(v \in T(x^*, x'^*) \), \(v' \in T(x'^*, x^*) \) such that
\[
G(u, v, v) + G(u', v', v') \leq A[G(x, x^*, x^*) + G(x'^*, x'^*)].
\]
Since \(x_{n+1} \in T(x_n, x'_n) \) and \(x'_{n+1} \in T(x'_n, x_n) \) for all \(n \geq 1 \), there exist \(v_n \in T(x^*, x'^*) \) and \(v'_n \in T(x'^*, x^*) \) such that
\[
G(v, x_n, x_{n+1}) + G(v', x'_n, x'_{n+1}) \leq A[G(x_n, x^*, x^*) + G(x'_n, x'^*, x'^*)].
\]
Hence
\[
G(v, x^*, x^*) + G(v', x'^*, x'^*) \leq G(v, x_{n+1}, x_{n+1}) + G(x_{n+1}, x^*, x^*) + G(v', x'_{n+1}, x'_{n+1}) + G(x'_{n+1}, x'^*, x'^*) + AG(x_n, x^*, x^*) + AG(x'_n, x'^*, x'^*) + AG(x_{n+1}, x^*, x^*) + AG(x'_{n+1}, x'^*, x'^*)
\]
for all \(n \geq 1 \). Therefore \(v_n \to x^* \) and \(v'_n \to x'^* \).
Since \(v_n \in T(x^*, x'^*) \) and \(v'_n \in T(x'^*, x^*) \) for all \(n \geq 1 \) and \(T(x^*, x'^*) \) is a closed subset of \(X \times X \), \(x^* \in T(x^*, x'^*) \) and \(x'^* \in T(x'^*, x^*) \).

Theorem 2.2. Let \((X, G)\) be a complete \(G^-\) metric space, a matrix \(A \in M_{m,m}(\mathbb{R}^+) \) converges to zero and \(T: X \times X \to P_{\mathcal{D}}(X) \) a multivalued operator. Suppose that for each \(x, y, z, x', y', z' \in X \),
\[
(I + A)^{-1} \max\{G(x, T(x, x')), T^2(x, x'))\} \leq (I - A)^{-1} \max\{G(x, y, z), G(x', y', z')\}
\]

implies that for each \(u \in T(x, x'), u' \in T(x', x), v \in T(y, y'), v' \in T(y', y) \) there exist \(w \in T(z, z'), w' \in T(z', z) \) such that

\[
\max\{G(u, v, w), G(u', v', w')\} \leq A \max \left\{ \begin{array}{l}
G(x, y, z), G(x, T(x, x'), T(x, x')),
G(y, T(y, y'), T(y, y')), G(z, T(z, z'), T(z, z')),
G(x', y', z'), G(x', T(x', x), T(x', x)),
G(y', T(y', y), T(y', y)), G(z', T(z', z), T(z', z))
\end{array} \right\}.
\] (2.6)

Then \(T \) has a coupled fixed point.

Proof. For each \((x, x') \in X \times X \),

\[
(I + A^{-1})[G(x, T(x, x'), T^2(x, x')) + G(x', T(x', x), T^2(x', x'))] \\
\leq (I - A^{-1})[G(x, T(x, x'), T^2(x, x')) + G(x', T(x', x), T^2(x', x'))].
\]

Let \((x_0, x_0') \in X \times X \) and take \(x_1 \in T(x_0, x_0'), x_1' \in T(x_0', x_0), x_2 \in T(x_1, x_1'), x_2' \in T(x_1', x_1). \) If \(x_0 = x_1 = x_2 \) and \(x_0' = x_1' = x_2' \) then \((x_0, x_0') \) is a coupled fixed point of \(T \). Let any one of \(x_0, x_1, x_2 \) and \(x_0', x_1', x_2' \) be not equal to other. From (2.6) there exist \(x_3 \in T(x_2, x_2'), x_3' \in T(x_2', x_2) \) such that

\[
\max\{G(x_1, x_2, x_3), G(x_1', x_2', x_3')\} \leq A \max \left\{ \begin{array}{l}
G(x_0, x_1, x_2), G(x_0, T(x_0, x_0'), T(x_0, x_0')),
G(x_1, T(x_1, x_1'), T(x_1, x_1')),
G(x_2, T(x_2, x_2'), T(x_2, x_2')),
G(x_0', x_1', x_2'), G(x_0', T(x_0', x_0), T(x_0', x_0)),
G(x_1', T(x_1', x_1), T(x_1', x_1)),
G(x_2', T(x_2', x_2), T(x_2', x_2))
\end{array} \right\}.
\] (2.7)

\[
\max\{G(x_1, x_2, x_3), G(x_1', x_2', x_3')\} \leq A \max \left\{ \begin{array}{l}
G(x_0, x_1, x_2), G(x_0, x_1, x_2), G(x_1, x_2, x_2), G(x_2, x_3, x_3),
G(x_0', x_1', x_2'), G(x_0', x_1', x_1'), G(x_1', x_2', x_2'), G(x_2', x_3', x_3')
\end{array} \right\}.
\] (2.8)

If \(x_1 = x_2 = x_3 \) and \(x_1' = x_2' = x_3' \) then \((x_1, x_1') \) is a coupled fixed point of \(T \). Let any one of \(x_1, x_2, x_3 \) and \(x_1', x_2', x_3' \) be not equal to other, from (2.1) and (2.8) there exist \(x_4 \in T(x_5, x_5'), x_4' \in T(x_5', x_5) \) such that
Now by induction we construct sequences \(\{x_n\}_{n \geq 0} \), \(\{x'_n\}_{n \geq 0} \) in \(X \) such that \(x_{n+1} \in T(x_n, x'_n) \), \(x'_{n+1} \in T(x'_n, x_n) \) and

\[
\max\{G(x_n, x_{n+1}, x_{n+2}), G(x'_n, x'_{n+1}, x'_{n+2})\} \leq A^n \max\{G(x_0, x_1, x_2), G(x'_0, x'_1, x'_2)\} \quad (2.10)
\]

which gives

\[
G(x_n, x_{n+1}, x_{n+2}) \leq A^n G(x_0, x_1, x_2) \quad (2.11)
\]

and

\[
G(x'_n, x'_{n+1}, x'_{n+2}) \leq A^n G(x'_0, x'_1, x'_2) \quad (2.12)
\]

for all \(n \geq 0 \).

From Theorem 1.9, for all \(m, n \in N \), \(n < m \) and by \((G_3)\) and \((G_5)\) we obtain

\[
\max\{G(x_n, x_m, x_m), G(x'_n, x'_m, x'_m)\} \leq (A^n + A^{n+1} + A^{n+2} + \cdots + A^{m-1}) \max\{G(x_0, x_1, x_2), G(x'_0, x'_1, x'_2)\} \\
\leq A^n (I + A + A^2 + \cdots + A^{m-1-n}) \max\{G(x_0, x_1, x_2), G(x'_0, x'_1, x'_2)\} \\
\leq A^n (I - A)^{-1} \max\{G(x_0, x_1, x_2), G(x'_0, x'_1, x'_2)\}
\]

that is, \(\max\{G(x_0, x_1, x_2), G(x'_0, x'_1, x'_2)\} \to 0 \) as \(n \to \infty \).

Hence \(\{x_n\}_{n \geq 0}, \{x'_n\}_{n \geq 0} \) are Cauchy sequence in the complete \(G \)-metric space \((X, G)\). Choose \((x^*, x'^*) \in X \times X\) such that \(x_n \to x^* \) and \(x'_n \to x'^* \) as \(n \to \infty \). We claim that \((x, x') \in (X \times X) \setminus \{\{x^*\}, \{x'^*\}\}\),

\[
\max\{G(x^*, T(x, x'), T(x, x'))\}, G(x'^*, T(x, x'), T(x, x'))\} \leq A \max\{G(x^*, x, x), G(x'^*, x, x')\} \quad (2.13)
\]

Let \((x, x') \in (X \times X) \setminus \{\{x^*\}, \{x'^*\}\}\). Choose a natural number \(N \) such that

\[
\max\{G(x_n, x^*, x^*), G(x'_n, x'^*, x'^*)\} < \frac{1}{4} \max\{G(x, x^*, x^*), G(x', x'^*, x'^*)\}
\]

for all \(n \geq N \). Hence, for each \(n \geq N \) we have

\[
\max\{G(x_n, T(x_n, x_n'), T(x_n, x_n'))\}, G(x'_n, T(x_n, x'_n), T(x_n, x'_n))\} \leq \max\{G(x, x^*, x^*), G(x', x'^*, x'^*)\} \\
\quad - \max\{G(x_n, x^*, x^*), G(x'_n, x'^*, x'^*)\} \\
\max\{G(x_n, T(x_n, x_n'), T(x_n, x_n'))\}, G(x'_n, T(x_n, x'_n), T(x_n, x'_n))\} \leq \max\{G(x_n, x^*, x^*), G(x'_n, x'^*, x'^*)\}
\]
Thus
\[(I + A)^{-1} \max\{G(x_n, T(x_n, x'_n), T(x_n, x'_n)), G(x'_n, T(x_n, x'_n), T(x_n, x'_n))\} \leq (I - A)^{-1} \max\{G(x_n, T(x_n, x'_n), T(x_n, x'_n)), G(x'_n, T(x_n, x'_n), T(x_n, x'_n))\} \leq (I - A)^{-1} \max\{G(x_n, x, x'), G(x'_n, x, x')\}\]

for \(n \geq N\). Since \(x_{n+1} \in T(x_n, x'_n), x'_{n+1} \in T(x'_n, x_n)\), by using (2.1) for each \(n \geq N\) there exist \(u_n \in T(x, x')\) and \(u'_n \in T(x', x)\) such that

\[G(u_n, x_{n+1}, x_{n+1}) + G(u'_n, x'_{n+1}, x'_{n+1}) \leq A[G(x_n, x, x) + G(x'_n, x', x')].\]

Hence
\[
\max\{G(x_{n+1}, T(x, x')), (T(x, x')), G(x'_{n+1}, T(x', x), T(x', x'))\} \leq A \max\{G(x_n, x, x), G(x'_n, x', x')\}
\]

and so
\[
\lim_{n \to \infty} \max\{G(x_{n+1}, T(x, x'), (T(x, x')), G(x'_{n+1}, T(x', x), T(x', x'))\} \leq \lim_{n \to \infty} \max\{G(x_n, x, x), G(x'_n, x', x')\}.
\]

Thus
\[
\max\{G(x^*, T(x, x'), T(x, x'))\}, G(x'^*, T(x', x), T(x', x'))\} \leq A \max\{G(x^*, x, x), G(x'^*, x', x')\}
\]

for all \((x, x') \in X \times X \setminus \{(x^*, \{x'^*\})\}).

Now we show that for each \((x, x') \in X \times X\) and \(u \in T(x, x')\), \(u' \in T(x', x)\) there exist \(v \in T(x^*, x'^*)\), \(v' \in T(x'^*, x^*)\) such that

\[
\max\{G(u, v, v), G(u', v', v')\} \leq A \max\{G(x^*, x^*), G(x'^*, x'^*)\}.
\]

If \(x_n \to x^*\) and \(x'_n \to x'^*\) we have nothing to prove. Let \(x \neq x^*\) and \(x' \neq x'^*\). By definition of \(G(x^*, T(x, x'), T(x, x'))\), \(G(x'^*, T(x', x), T(x', x'))\) and for each \(n \geq 1\) there exist \(y_n \in T(x, x')\) and \(y'_n \in T(x', x)\) such that

\[
\max\{G(x^*, y_n, y_n), G(x'^*, y'_n, y'_n)\} \leq \max\{G(x^*, T(x, x'), T(x, x')), G(x'^*, T(x', x), T(x', x))\} + \frac{1}{n} \max\{G(x^*, x^*), G(x'^*, x'^*)\}.
\]

Hence from 2.13, we have

\[
(I + A)^{-1} \max\{G(x, T(x, x'), T(x, x')), G(x', T(x', x), T(x', x'))\} \leq \max\{G(x, x^*, x^*), G(x', x'^*, x'^*)\} + \frac{1}{n} (I + A)^{-1} \max\{G(x, x^*, x'^*), G(x, x^*), G(x', x'^*, x'^*)\},
\]

for all \(n \geq 1\). Thus
\[
(I + A)^{-1} \max\{G(x, T(x, x'), T(x, x')), G(x', T(x', x), T(x', x'))\} \leq \max\{G(x, x^*, x^*), G(x', x'^*, x'^*)\} \leq (I - A)^{-1} \max\{G(x, x^*, x^*), G(x', x'^*, x'^*)\}
\]

Now by using (2.1) for each \(u \in T(x, x')\), \(u' \in T(x', x)\) there exist \(v \in T(x^*, x'^*)\), \(v' \in T(x'^*, x^*)\) such that

\[
\max\{G(u, v, v), G(u', v', v')\} \leq A \max\{G(x^*, x^*), G(x'^*, x'^*)\}.
\]
Since $x_{n+1} \in T(x_n, x'_n)$ and $x'_{n+1} \in T(x'_n, x_n)$ for all $n \geq 1$, there exist $v_n \in T(x^*, x'^*)$ and $v'_n \in T(x'^*, x^*)$ such that

$$\max \{G(v, x_n, x_{n+1}), G(v', x'_n, x'_{n+1})\} \leq A \max \{G(x_n, x^*, x^*), G(x'_n, x'^*, x'^*)\}.$$

Hence

$$\max \{G(v_n, x^n, x'^*), G(v'_n, x'^n, x'^*)\} \leq A \max \{G(x_n, x_{n+1}, x_{n+1}) + G(x_{n+1}, x^*, x^*), G(v'_n, x'_{n+1}, x'_{n+1}) + G(x'_{n+1}, x'^*, x'^*)\} \leq A \max \{G(x_n, x^n, x'^*), G(x'_n, x'^n, x'^*)\} \leq A \max \{G(x_n, x^*, x^*), G(x'_n, x'^*, x'^*)\}$$

for all $n \geq 1$. Therefore $v_n \to x^*$ and $v'_n \to x'^*$.

Since $v_n \in T(x^*, x'^*)$ and $v'_n \in T(x'^*, x^*)$ for all $n \geq 1$ and $T(x^*, x'^*)$ is a closed subset of $X \times X$, $x^* \in T(x^*, x'^*)$ and $x'^* \in T(x'^*, x^*)$, that is, $G(x_n, x_m, x_m) \to 0$ as $n \to \infty$.

Hence $\{x_n\}_{n \geq 0}$ is Cauchy sequence in the complete $G-$ metric space (X, G). Choose $x^* \in X$ such that $x_n \to x^*$ as $n \to \infty$. We claim that $x \in X \setminus \{x^*\}$.
Theorem 2.3. Let \((X, G)\) be a complete \(G\)-metric space, a matrix \(A \in M_{m,m}(\mathbb{R}^+\)) converges to zero and
\(T : X \times X \to P_d(X)\) a multivalued operator and \(F : \mathbb{R}^m_+ \to \mathbb{R}^m_+\) an increasing sublinear continuous function such that
\(F(0) = 0\) and \(F(t) > 0\) for all \(t = (t_i)_{i=1}^m \in \mathbb{R}^m_+\) where
\[
\mathbb{R}^m_+ = \{(t_1, ..., t_m) : t_i > 0, \text{ for } i = 1, 2, 3, ..., m\}.
\]
Suppose that for each \(x, y, z, x', y', z' \in X,\)
\((I + A^{-1})F(\max\{G(u, v, w), G(u', v', w')\}) \leq (I - A^{-1})F(\max\{G(x, y, z), G(x', y', z')\})\) implies that for each \(u \in T(x, x'), u' \in T(x', v), v \in T(y, y'), v' \in T(y', y)\) there exist \(w \in T(z, z'), w' \in T(z', z)\) such that
\[
F(\max\{G(u, v, w), G(u', v', w')\}) \leq AF\left(\max\left\{\begin{array}{l}
G(x, y, z), G(x, T(x, x'), T(x, x')),
G(y, T(y, y'), T(y, y')), G(z, T(z, z'), T(z, z')),
G(x', y', z'), G(x', T(x', x), T(x', x)),
G(y', T(y', y), T(y', y'), G(z', T(z', z'), T(z', z'))
\end{array}\right\}\right).
\]
Then \(T\) has a coupled fixed point.

Proof. For each \((x, x') \in X \times X,\)
\((I + A^{-1})F(\max\{G(x, T(x, x'), T^2(x, x'))\}) \leq (I - A^{-1})F(\max\{G(x', T(x', x), T^2(x', x'))\}).\)
Let \((x_0, x_0') \in X \times X\) and take \(x_1 \in T(x_0, x_0'), x_1' \in T(x_0', x_0), x_2 \in T(x_1, x_1'), x_2' \in T(x_1', x_1).\) If \(x_0 = x_1 = x_2\) and \(x_0' = x_1' = x_2'\) then \((x_0, x_0')\) is a coupled fixed point of \(T.\) Let any one of \(x_0, x_1, x_2, x_0', x_1', x_2'\) be not equal to other. From (2.6), there exist \(x_3 \in T(x_2, x_2'), x_3' \in T(x_2, x_2)\) such that
\[
F(\max\{G(x_1, x_2, x_3), G(x_1', x_2, x_3')\}) \leq AF\left(\max\left\{\begin{array}{l}
G(x_0, x_1, x_2), G(x_0, T(x_0, x_0'), T(x_0, x_0')),
G(x_1, T(x_1, x_1'), T(x_1, x_1')), G(x_2, T(x_2, x_2'), T(x_2, x_2')),
G(x_0', x_1', x_2'), G(x_0, T(x_0', x_0), T(x_0', x_0)),
G(x_1', T(x_1', x_1), T(x_1', x_1')), G(x_2', T(x_2', x_2), T(x_2', x_2))
\end{array}\right\}\right).
\]
If \(x_1 = x_2 = x_3\) and \(x_1' = x_2' = x_3'\) then \((x_1, x_1')\) is a coupled fixed point of \(T.\) Let any one of \(x_1, x_2, x_3\) and \(x_1', x_2', x_3'\) be not equal to other, from (2.1) and (2.8) there exist \(x_4 \in T(x_5, x_5), x_4' \in T(x_5', x_5')\) such that
\[
F(\max\{G(x_2, x_3, x_4), G(x_2', x_3', x_4')\}) \leq AF(\max\{G(x_1, x_2, x_3), G(x_1', x_2', x_3')\}) \leq AF(\max\{G(x_0, x_1, x_2), G(x_0', x_1', x_2')\}).
\]
Now by induction we construct sequences \(\{x_n\}_{n \geq 0}, \{x'_n\}_{n \geq 0}\) in \(X\) such that \(x_{n+1} \in T(x_n, x_n'), x_{n+1}' \in T(x_n', x_n)\) and
\[
F(\max\{G(x_n, x_{n+1}, x_{n+2}), G(x_n', x_{n+1}', x_{n+2}')\}) \leq A^n F(\max\{G(x_0, x_1, x_2), G(x_0', x_1', x_2')\})
\]
for all \(n \geq 0.\) Since \(A\) converges to zero,
\[
F(\max\{G(x_n, x_{n+1}, x_{n+2}), G(x_n', x_{n+1}', x_{n+2}')\}) \to 0.
\]
We claim that
\[
\max\{G(x_n, x_{n+1}, x_{n+2}), G(x_n', x_{n+1}', x_{n+2}')\} \to 0.
\]
If
\[
\max\{G(x_n, x_{n+1}, x_{n+2}), G(x_n', x_{n+1}', x_{n+2}')\} \to 0
\]
is not true, then there exists $\gamma \in \mathbb{R}_+^n$ such that for each $k > 0$ there is an integer number $n_k \geq k$ such that

$$\max \{G(x_{n_k}, x_{n_k+1}, x_{n_k+2}), G(x_{n_k}', x_{n_k+1}', x_{n_k+2}')\} \geq \gamma.$$

Hence,

$$0 < F(\gamma) \leq F(\max \{G(x_n, x_{n+1}, x_{n+2}), G(x_n', x_{n+1}', x_{n+2}')\}) \to 0.$$

This contradiction shows that

$$\max \{G(x_n, x_{n+1}, x_{n+2}), G(x_n', x_{n+1}', x_{n+2}')\} \to 0.$$

Now, from sublinearity of F Theorem (1.9), for all $m, n \in N$, $n < m$ and by (G_3) and (G_5) we obtain

$$F(\max \{G(x_n, x_m, x_m), G(x_n', x_m', x_m')\}) \leq A^m(I - A)^{-1}F(\max \{G(x_0, x_1, x_2), G(x_0', x_1', x_2')\})$$

that is

$$F(\max \{G(x_n, x_m, x_m), G(x_n', x_m', x_m')\}) \to 0$$

as $n \to \infty$ and so

$$\max \{G(x_n, x_m, x_m), G(x_n', x_m', x_m')\} \to 0.$$

If $x_n \to x^*$ and $x_n' \to x'^*$ we have nothing to prove. Let $x \neq x^*$ and $x' \neq x'^*$. By definition of $G(x^*, T(x, x'), T(x, x'))$, $G(x'^*, T(x', x), T(x', x))$ and for each $n \geq 1$ there exist $y_n \in T(x, x')$ and $y_n' \in T(x', x)$ such that

$$\max \{G(x^*, y_n, y_n), G(x'^*, y_n', y_n')\} \leq \max \{G(x^*, T(x, x'), T(x, x')), G(x'^*, T(x', x), T(x', x))\}$$

$$+ \frac{1}{n} \max \{G(x, x^*, x^*), G(x', x'^*, x'^*)\}.$$

Hence from (2.13), we have

$$(I + A)^{-1} \max \{G(x, T(x, x'), T(x, x')), G(x', T(x', x), T(x', x))\} \leq \max \{G(x, x^*, x^*), G(x', x'^*, x'^*)\}$$

$$+ \frac{1}{n} \max \{G(x, x^*, x^*), G(x', x'^*, x'^*)\},$$

for all $n \geq 1$. Thus

$$(I + A)^{-1} \max \{G(x, T(x, x'), T(x, x')), G(x', T(x', x), T(x', x))\} \leq \max \{G(x, x^*, x^*), G(x', x'^*, x'^*)\}$$

$$\leq (I - A)^{-1} \max \{G(x, x^*, x^*), G(x', x'^*, x'^*)\}.$$

Now by using (2.1) for each $u \in T(x, x')$, $u' \in T(x', x)$ there exist $v \in T(x^*, x'^*)$, $v' \in T(x'^*, x^*)$ such that

$$\max \{G(u, v, v), G(u', v', v')\} \leq A \max \{G(x, x^*, x^*), G(x', x'^*, x'^*)\}.$$

Since $x_{n+1} \in T(x_n, x'_n)$ and $x'_{n+1} \in T(x'_n, x_n)$ for all $n \geq 1$, there exist $v_n \in T(x^*, x'^*)$ and $v'_n \in T(x'^*, x^*)$ such that

$$\max \{G(v, x_n, x_{n+1}), G(v', x'_n, x'_{n+1})\} \leq A \max \{G(x_n, x^*, x^*), G(x'_n, x'^*, x'^*)\}.$$

Hence
\[
\max \{G(v_n, x^*, x^*), G(v'_n, x^*, x^*)\} \leq \max \{G(v_n, x_{n+1}, x_{n+1}) + G(x_{n+1}, x^*, x^*), G(v'_n, x'_{n+1}, x'_{n+1}) + G(x'_{n+1}, x^*, x^*)\} \\
\leq A \max \{G(x_n, x^*, x^*) + G(x_{n+1}, x^*, x^*), G(x'_n, x^*, x^*) + G(x'_{n+1}, x^*, x^*)\}
\]
for all \(n \geq 1 \). Therefore \(v_n \to x^* \) and \(v'_n \to x'^* \).

Since \(v_n \in T(x^*, x'^*) \) and \(v'_n \in T(x^*, x'^*) \) for all \(n \geq 1 \) and \(T(x^*, x'^*) \) is a closed subset of \(X \times X \), so \(x^* \in T(x^*, x'^*) \) and \(x'^* \in T(x^*, x'^*) \). That is \(G(x_n, x_{n}, x_m) \to 0 \) as \(n \to \infty \).

Hence \(\{x_n\}_{n \geq 0}, \{x'_n\}_{n \geq 0} \) are Cauchy sequence in the complete \(G \)-metric space \((X, G) \). Choose \((x^*, x'^*) \in X \times X \) such that \(x_n \to x^* \) and \(x'_n \to x'^* \) as \(n \to \infty \). We claim that \((x, x') \in (X \times X) \setminus (\{x^*\}, \{x'^*\})\).

\[
F(\max \{G(x^*, T(x, x'), T(x', x')), G(x'^*, T(x, x'), T(x', x'))\}) \leq AF(\max \{G(x^*, x, x), G(x'^*, x', x')\})
\]

Let \((x, x') \in (X \times X) \setminus (\{x^*\}, \{x'^*\})\). Choose a natural number \(N \) such that

\[
\max \{G(x_n, x^*, x^*), G(x'_n, x'^*, x'^*)\} < \frac{1}{4} \max \{G(x, x^*, x^*), G(x', x'^*, x'^*)\}
\]

for all \(n \geq N \). Hence, for each \(n \geq N \) we have

\[
F(\max \{G(x_n, T(x_n, x'_n), T(x_n, x'_n)), G(x'_n, T(x_n, x'_n), T(x_n, x'_n))\}) \leq F(\max \{G(x_n, x^*, x^*), G(x'_n, x'^*, x'^*)\})
\]

Thus

\[
(I + A)^{-1} F(\max \{G(x_n, T(x_n, x'_n), T(x_n, x'_n)), G(x'_n, T(x_n, x'_n), T(x_n, x'_n))\})
\]

\[
\leq (I - A)^{-1} F(\max \{G(x_n, T(x_n, x'_n), T(x_n, x'_n)), G(x'_n, T(x_n, x'_n), T(x_n, x'_n))\})
\]

\[
\leq (I - A)^{-1} F(\max \{G(x_n, x, x), G(x'_n, x', x')\})
\]

for \(n \geq N \). Since \(x_{n+1} \in T(x_n, x'_n) \), \(x'_{n+1} \in T(x'_n, x_n) \), by using (2.1) for each \(n \geq N \) there exist \(u_n \in T(x, x') \) and \(u'_n \in T(x', x) \) such that

\[
F(\max \{G(u_n, x_{n+1}, x_{n+1}), G(u'_n, x'_{n+1}, x'_{n+1})\}) \leq AF(\max \{G(x_n, x, x), G(x'_n, x', x')\})
\]

Hence

\[
F(\max \{G(x_{n+1}, T(x, x'), T(x, x')), G(x'_n, T(x, x'), T(x', x'))\}) \leq AF(\max \{G(x_n, x, x), G(x'_n, x', x')\})
\]

and so

\[
\lim_{n \to \infty} F(\max \{G(x_{n+1}, T(x, x'), T(x, x')), G(x'_n, T(x', x), T(x', x'))\}) \leq \lim_{n \to \infty} F(\max \{G(x_n, x, x), G(x'_n, x', x')\})
\]

Thus

\[
F(\max \{G(x^*, T(x, x'), T(x, x')), G(x'^*, T(x', x), T(x', x'))\}) \leq AF(\max \{G(x^*, x, x), G(x'^*, x', x')\})
\]

for all \((x, x') \in (X \times X) \setminus (\{x^*\}, \{x'^*\})\).

Now we show that for each \((x, x') \in X \times X \) and \(u \in T(x, x') \), \(u' \in T(x', x) \) there exist \(v \in T(x^*, x'^*) \), \(v' \in T(x'^*, x^*) \) such that

\[
F(\max \{G(u, v, v), G(u', v', v')\}) \leq AF(\max \{G(x, x^*, x^*), G(x', x'^*, x'^*)\})
\]

From (2.20),
\[(I + A)^{-1}F(\max\{G(x, T(x, x')), T(x, x')\}, G(x', T(x', x), T(x', x')))\]
\[\leq F(\max\{G(x, T(x, x')), T(x, x')\}, G(x', T(x', x), T(x', x')))\]
\[+ \frac{1}{n} (I + A)^{-1}F(\max\{G(x, T(x, x'), T(x, x')\}, G(x', T(x', x), T(x', x')))\]

for all \(n \geq 1\).

Thus
\[(I + A)^{-1}F(\max\{G(x, T(x, x'), T(x, x')\}, G(x', T(x', x), T(x', x')))\]
\[\leq F(\max\{G(x, x^*, x^*), G(x', x^*, x^*)\})\]
\[\leq (I - A)^{-1}F(\max\{G(x, x^*, x^*), G(x', x^*, x^*)\}).\]

Now by using (2.15), for each \(u \in T(x, x'), u' \in T(x', x)\) there exist \(v \in T(x^*, x^*)\), \(v' \in T(x'^*, x^*)\) such that
\[F(\max\{G(u, v, v), G(u', v', v')\}) \leq AF(\max\{G(x, x^*, x^*), G(x', x'^*, x'^*)\}).\]

Since \(x_{n+1} \in T(x_n, x'_n)\), \(x'_{n+1} \in T(x'_n, x_n)\) for all \(n \geq 1\), there exist \(v_n \in T(x^*, x^*)\), \(v'_n \in T(x'^*, x^*)\) such that
\[F(\max\{G(v, x_n, x_{n+1}), G(v', x'_n, x'_{n+1})\}) \leq AF(\max\{G(x, x^*, x^*), G(x', x'^*, x'^*)\}).\]

Hence
\[F(\max\{G(v, x_n, x^*), G(v'_n, x'^*, x'^*)\}) \leq F(\max\{G(v, x_{n+1}, x_{n+1}), G(v'_n, x'_{n+1}, x'_{n+1})\})\]
\[+ F(\max\{G(x_{n+1}, x^*, x^*), G(x'_{n+1}, x'^*, x'^*)\})\]
\[\leq AF(\max\{G(x, x^*, x^*), G(x', x'^*, x'^*)\})\]
\[+ F(\max\{G(x_{n+1}, x^*, x^*), G(x'_{n+1}, x'^*, x'^*)\})\]

for all \(n \geq 1\). Therefore \(v_n \rightarrow x^*\) and \(v'_n \rightarrow x'^*\).

Since \(v \in T(x^*, x^*)\), \(v' \in T(x'^*, x^*)\) for all \(n \geq 1\) and \(T(x^*, x^*)\) is a closed subset of \(X \times X\), \(x^* \in T(x^*, x^*)\) and \(x'^* \in T(x'^*, x^*)\).

\[\square\]

3. Acknowledgement

The fourth (corresponding) author Dr Saurabh Manro is thankful to the National Board of Higher Mathematics for Post-Doctorate Fellowship.

References

