

**Communications in Nonlinear Analysis** 



Journal Homepage: www.cna-journal.com

# Some notes on the paper [Further discussion on modified multivalued $\alpha_*$ - $\psi$ -contractive type mappings]

B. Mohammadi<sup>a,\*</sup>, V. Parvaneh<sup>b</sup>

<sup>a</sup>Department of Mathematics, Marand Branch, Islamic Azad University, Marand, Iran. <sup>b</sup>Department of Mathematics, Gilan-E-Gharb Branch, Islamic Azad University, Gilan-E-Gharb, Iran

## Abstract

In this paper, we show that the claim of the paper [Ali *et al.*, Further discussion on modified multivalued  $\alpha_*-\psi$ -contractive type mappings, Filomat 29 (2015)] which says that the notion of  $\alpha_*-\eta$ - $\psi$ -contractive multivalued mappings can not be rduced into  $\alpha_*-\psi$ -contractive multi-valued mappings, is not true. Also, we provide a common fixed point result for an  $\alpha_*$ -admissible countable family of multi-valued mappings. Finally, we show that the common fixed point result of Ali *et al.* for a countable family of multi-valued mappings using  $\alpha_*$ -admissible mappings with respect to  $\eta$  can be reduced to  $\alpha_*$ -admissible mappings without using the auxiliary function  $\eta$ .

Keywords:  $\alpha_*-\psi$ -contractive,  $\alpha_*-\eta-\psi$ -contractive, common fixed point, multi-valued mapping. 2010 MSC: 47H10, 47H04

## 1. Introduction

Recently, Samet *et al.* [19] introduced the notion of  $\alpha$ - $\psi$ -contractive self-mappings via  $\alpha$ -admissible self mappings. In fact, in this paper, the authors proved existence and uniqueness of a fixed point for mappings satisfying only a locally contraction. In [17] Salimi *et al.* introduced the notion of modified  $\alpha$ - $\psi$ -contractive mappings using another auxiliary function  $\eta$ . In this paper, the authors established some fixed point theorems for such (single-valued) mappings in the setting of complete metric spaces. Later, Mohammadi and Rezapour [16] and independently, Berzig and Karapinar[10], noticed that modified (singlevalued)  $\alpha$ - $\psi$ -contractive type mappings can be considered as a particular case of  $\alpha$ - $\psi$ -contractive mappings. In 2013, Mohammadi and Rezapour [15], introduced the notion of  $\alpha$ - $\psi$ -contractive multi-valued mappings via  $\alpha$ -admissible multi-valued mappings. In the same year, Asl *et al.* [9] provided the notion of  $\alpha_*$ - $\psi$ -contractive multi-valued mappings via  $\alpha_*$ -admissible multi-valued mappings. In [6], Ali *et al.* introduced the notion

<sup>\*</sup>Corresponding author

Email addresses: bmohammadi@marandiau.ac.ir (B. Mohammadi), zam.dalahoo@gmail.com (V. Parvaneh )

of modified  $\alpha_* \cdot \psi$ -contractive ( $\alpha_* \cdot \eta \cdot \psi$ -contractive) multi-valued mappings and  $\alpha_*$ -admissible multi-valued mappings with respect to  $\eta$  and claimed that this notion is a proper generalization of the notion  $\alpha_* \cdot \psi$ contractive multi-valued mappings. In other words, they claimed that the notion of modified multivalued  $\alpha_* \cdot \psi$ -contractive mapping can not be reduced into multivalued  $\alpha_* \cdot \psi$ -contractive mapping. In addition, they investigated the existence of a common fixed point for a sequence of multivalued  $\alpha_* - \eta \cdot \psi$ -contractive mappings. In this paper, we show that this notion can be considered as a particular case of the old result  $\alpha_* \cdot \psi$ -contractive multi-valued mappings. So, the auxiliary function  $\eta$  is not needed.

### 2. Preliminaries

Let (X, d) be a metric space. Througout this paper denote by CL(X) the set of all nonempty closed subsets of X. Denote by  $\Psi$  the family of all nondecreasing functions  $\psi : [0, +\infty) \to [0, +\infty)$  such that  $\sum_{n=1}^{+\infty} \psi^n(t) < +\infty$  for all t > 0. It is well known that  $\psi(t) < t$  for all t > 0 and  $\psi(0) = 0$ . For any  $A, B \in CL(X)$ , let the mapping  $H : CL(X) \times CL(X) \to [0, \infty]$  defined by

$$H(A,B) = \begin{cases} \max\{\sup_{a \in A} d(a,B), \sup_{b \in B} d(b,A)\}, & if \ the \ maximum \ exists \\ \infty, & otherwise, \end{cases}$$

be the generalized Pompeiu-Hausdorff metric induced by d, where  $d(a, B) = \inf\{d(a, b) : b \in B\}$  is the distance from a to  $B \subseteq X$ .

**Definition 2.1.** [9] Let (X, d) be a metric space and  $\alpha : X \times X \to [0, \infty)$  be a function. A mapping  $G: X \to CL(X)$  is called  $\alpha_*$ -admissible if

$$\alpha(x, y) \ge 1 \Longrightarrow \alpha_*(Gx, Gy) \ge 1,$$

where

$$\alpha_*(Gx, Gy) = \inf\{\alpha(a, b) | a \in Gx, b \in Gy\}.$$

**Definition 2.2.** [9] Let (X, d) be a metric space. A mapping  $G : X \to CL(X)$  is called  $\alpha_*$ - $\psi$ -contractive if there exist  $\alpha : X \times X \to [0, \infty)$  and  $\psi \in \Psi$  such that

$$\alpha_*(Gx, Gy)H(Gx, Gy) \le \psi(d(x, y)),$$

for all  $x, y \in X$ .

Hussain *et al.* [11] extended the notions of  $\alpha_*$ -admissibility with respect to  $\eta$  and modified  $\alpha_*$ - $\psi$ contractivity to multi-valued mappings as follows.

**Definition 2.3.** [11] Let (X, d) be a metric space and  $\alpha, \eta : X \times X \to [0, \infty)$  be two functions. A mapping  $G: X \to CL(X)$  is called  $\alpha_*$ -admissible with respect to  $\eta$  if

$$\alpha(x,y) \ge \eta(x,y) \Longrightarrow \alpha_*(Gx,Gy) \ge \eta_*(Gx,Gy), \tag{2.1}$$

where

$$\alpha_*(Gx, Gy) = \inf\{\alpha(a, b) | a \in Gx, b \in Gy\}$$

and

$$\eta_*(Gx, Gy) = \sup\{\eta(a, b) | a \in Gx, b \in Gy\}.$$

**Definition 2.4.** [11] Let (X, d) be a metric space. A mapping  $G : X \to CL(X)$  is called modified  $\alpha_*$ - $\psi$ contractive ( $\alpha_*$ - $\eta$ - $\psi$ -contractive) if there exist  $\alpha, \eta : X \times X \to [0, \infty)$  and  $\psi \in \Psi$  such that

$$\alpha_*(Gx, Gy) \ge \eta_*(Gx, Gy) \Longrightarrow H(Gx, Gy) \le \psi(d(x, y)),$$

for all  $x, y \in X$ .

#### 3. Main results

In [6] Ali *et al.* considering a multi-valued mapping  $G : X \to CL(X)$  observed that the value of H(Gx, Gy) may be infinite for some choice of  $x, y \in X$ . Consequently, they claimed that an  $\alpha_* - \eta - \psi$ contractive multi-valued mapping may not imply an  $\alpha_* - \psi$ -contractive multi-valued mapping, in general. Indeed, they claimed that if one define

$$\beta(x,y) = \begin{cases} 1, & if \ \alpha(x,y) \ge \eta(x,y) \\ 0, & otherwise, \end{cases}$$

then (2.1) reduces into

$$\beta_*(Gx, Gy)H(Gx, Gy) \le \psi(d(x, y)).$$

for all  $x, y \in X$ . For  $\beta_*(Gx, Gy) = 1$ , we have  $H(Gx, Gy) \leq \psi(d(x, y))$ . For  $\beta_*(Gx, Gy) = 0$ , we have  $0.H(Gx, Gy) \leq \psi(d(x, y))$ . Now, here is the point. All *et al.* claimed that if  $H(Gx, Gy) = \infty$ , then  $0.\infty$  is an indeterminate form. But it should be noted that the form  $0.\infty$  is an indeterminate form if  $0 = 0^+$  be a limitative amount. In the case where 0 be exactly 0 and not a limitative amount, we have  $0.\infty = 0$ . This is the point that Ali *et al.* did not note. Thus, we think that the case  $0.H(Gx, Gy) = 0 \leq \psi(d(x, y))$  is true even if  $H(Gx, Gy) = \infty$ . Therefore, the notion of  $\alpha_* - \eta - \psi$ -contractive multi-valued mappings can be considered as a particular case of  $\alpha_* - \psi$ -contractive multi-valued mappings.

In [6] Ali *et al.* gave the following definition.

**Definition 3.1.** Let  $\{G_i : X \to CL(X)\}_{i=1}^{\infty}$  be a sequence of multi-valued mappings on a metric space (X, d). Let  $\alpha, \eta : X \times X \to [0, \infty)$  be two functions. Then,  $\{G_i\}_{i=1}^{\infty}$  is called  $\alpha_*$ -admissible with respect to  $\eta$  if

$$\alpha(x,y) \ge \eta(x,y) \Longrightarrow \alpha(u,v) \ge \eta(u,v), \forall u \in G_i x, v \in G_j y,$$
(3.1)

for each  $i, j \in \mathbb{N}$ .

**Theorem 3.2.** [6] Let (X, d) be a complete metric space and let the sequence  $\{G_i : X \to CL(X)\}_{i=1}^{\infty}$  be  $\alpha_*$ -admissible with respect to  $\eta$  such that

$$x, y \in X, \alpha(x, y) \ge \eta(x, y) \Longrightarrow H(G_i x, G_j y) \le \psi(d(x, y)), \tag{3.2}$$

for each  $i, j \in \mathbb{N}$  and  $\psi$  be strictly increasing function in  $\Psi$ . Assume that the following conditions hold:

- (i) there exist  $x_0 \in X$  and  $y_i \in G_i x_0$  for each  $i \in \mathbb{N}$  such that  $\alpha(x_0, y_i) \geq \eta(x_0, y_i)$ ;
- (ii) if  $\{x_i\}$  is a sequence in X with  $x_i \to x$  as  $i \to \infty$  and  $\alpha(x_{i-1}, x_i) \ge \eta(x_{i-1}, x_i)$  for each  $i \in \mathbb{N}$ , then we have  $\alpha(x_{i-1}, x) \ge \eta(x_{i-1}, x)$  for each  $i \in \mathbb{N}$ .

Then, the mappings  $\{G_i\}$  for  $i \in \mathbb{N}$ , have a common fixed point.

Now, we give the following definition and theorem.

**Definition 3.3.** Let  $\{G_i : X \to CL(X)\}_{i=1}^{\infty}$  be a sequence of multi-valued mappings on a metric space (X, d). Let  $\alpha : X \times X \to [0, \infty)$  be a function. Then,  $\{G_i\}_{i=1}^{\infty}$  is called  $\alpha_*$ -admissible if

$$\alpha(x,y) \ge 1 \Longrightarrow \alpha(u,v) \ge 1, \forall u \in G_i x, v \in G_j y, \tag{3.3}$$

for each  $i, j \in \mathbb{N}$ .

**Theorem 3.4.** Let (X,d) be a complete metric space and let the sequence  $\{G_i : X \to CL(X)\}_{i=1}^{\infty}$  be  $\alpha_*$ -admissible such that

$$x, y \in X, \alpha(x, y) \ge 1 \Longrightarrow H(G_i x, G_j y) \le \psi(d(x, y)), \tag{3.4}$$

for each  $i, j \in \mathbb{N}$  and  $\psi$  be strictly increasing function in  $\Psi$ . Assume that the following conditions hold:

- (i) there exist  $x_0 \in X$  and  $y_i \in G_i x_0$  for each  $i \in \mathbb{N}$  such that  $\alpha(x_0, y_i) \geq 1$ ;
- (ii) if  $\{x_i\}$  is a sequence in X with  $x_i \to x$  as  $i \to \infty$  and  $\alpha(x_{i-1}, x_i) \ge 1$  for each  $i \in \mathbb{N}$ , then we have  $\alpha(x_{i-1}, x) \ge 1$  for each  $i \in \mathbb{N}$ .

Then, the mappings  $\{G_i\}$  for  $i \in \mathbb{N}$ , have a common fixed point.

*Proof.* By hypothesis, there exist  $x_0 \in X$  and  $x_1 \in G_1 x_0$  such that  $\alpha(x_0, x_1) \ge 1$ . If  $x_1 \in G_i x_1$  for each  $i \in \mathbb{N}$ , then  $x_1$  is a common fixed point of  $G_i$ . Let  $x_1 \notin G_2 x_1$ . Then, from (3.4), we have

$$0 < d(x_1, G_2 x_1) < q d(x_1, G_2 x_1) \le q H(G_1 x_0, G_2 x_1) \le q \psi(d(x_0, x_1))$$

Thus, there exists  $x_2 \in G_2 x_1$  such that

$$0 < d(x_1, x_2) < q\psi(d(x_0, x_1))$$

Since,  $\psi$  is strictly increasing, we get  $\psi(d(x_1, x_2)) < \psi(q\psi(d(x_0, x_1)))$ .

Put  $q_1 = \frac{\psi(q\psi(d(x_0,x_1)))}{\psi(d(x_1,x_2))}$ . Then  $q_1 > 1$ . Since the sequence  $\{G_i\}$  is  $\alpha_*$ -admissible, then  $\alpha(x_1,x_2) \ge 1$ . If  $x_2 \in G_i x_2$  for each  $i \in \mathbb{N}$ , then  $x_2$  is a common fixed point of  $\{G_i\}$ . Let  $x_2 \notin G_3 x_2$ . Then, we have

$$0 < d(x_2, G_3x_2) < q_1d(x_2, G_3x_2) \le q_1H(G_2x_1, G_3x_2) \le q_1\psi(d(x_1, x_2)) = \psi(q\psi(d(x_0, x_1)))$$

Now, there exists  $x_3 \in G_3 x_2$  such that

$$0 < d(x_2, x_3) < \psi(q\psi(d(x_0, x_1))).$$

Since,  $\psi$  is strictly increasing, we get  $\psi(d(x_2, x_3)) < \psi^2(q\psi(d(x_0, x_1)))$ . Put  $q_2 = \frac{\psi^2(q\psi(d(x_0, x_1)))}{\psi(d(x_2, x_3))}$ . Then  $q_2 > 1$ . Also, since the sequence  $\{G_i\}$  is  $\alpha_*$ -admissible, then  $\alpha(x_2, x_3) \ge 1$ . If  $x_3 \in G_i x_3$  for each  $i \in \mathbb{N}$ , then  $x_3$  is a common fixed point of  $\{G_i\}$ . Let  $x_3 \notin G_4 x_3$ . For  $q_2 > 1$ , we have

 $0 < d(x_3, G_4x_3) < q_2d(x_3, G_4x_3) \le q_2H(G_3x_2, G_4x_3) \le q_2\psi(d(x_2, x_3)) = \psi^2(q\psi(d(x_0, x_1))).$ 

Now, there exists  $x_4 \in G_4 x_3$  such that

$$0 < d(x_3, x_4) < \psi^2(q\psi(d(x_0, x_1))).$$

Continuing in the same way, we get a sequence  $\{x_i\}$  in X such that  $x_i \in G_i x_{i-1}, \alpha(x_{i-1}, x_i) \ge 1$  and  $d(x_i, x_{i+1}) < \psi^{i-1}(q\psi(d(x_0, x_1)))$  for each  $i \in \mathbb{N}$ . Let j > i. we have

$$d(x_i, x_j) \le \sum_{n=i}^{j-1} d(x_n, x_{n+1}) < \sum_{n=i}^{j-1} \psi^{n-1}(q\psi(d(x_0, x_1)))$$

Since  $\psi \in \Psi$ , then we have  $\lim_{i,j\to\infty} d(x_i, x_j) = 0$ . Hence  $\{x_i\}$  is a Cauchy sequence in (X, d). By completeness of (X, d), there exists  $x \in X$  such that  $x_i \to x$  as  $i \to \infty$ . By hypothesis (*ii*), we have  $\alpha(x_{i-1}, x) \ge 1$  for each  $i \in \mathbb{N}$ . Now, for each n = 1, 2, 3, ... we have

$$d(x_i, G_n x^*) \le H(G_i x_{i-1}, G_n x^*) \le \psi(d(x_{i-1}, x^*)).$$

Letting  $i \to \infty$  in above inequality, we have  $d(x^*, G_n x^*) = 0$  for each  $n \in \mathbb{N}$ . Since  $G_n x^*$  is closed, we conclude that  $x^* \in G_n x^*$  for each  $n \in \mathbb{N}$ , that is,  $x^*$  is a common fixed point of  $\{G_i\}$ .

Now, we show that Theorem 3.2 is a particular case of 3.4. To see this, define

$$\beta(x,y) = \begin{cases} 1, & if \ \alpha(x,y) \ge \eta(x,y) \\ 0, & otherwise. \end{cases}$$

Let  $\{G_i\}_{i=1}^{\infty}$  is  $\alpha_*$ -admissible with respect to  $\eta$ . Now, if  $\beta(x, y) \geq 1$ , then  $\alpha(x, y) \geq \eta(x, y)$  and so  $\alpha(u, v) \geq \eta(u, v), \forall u \in G_i x, v \in G_j y$ . Thus,  $\beta(u, v) \geq 1, \forall u \in G_i x, v \in G_j y$ , that is,  $\{G_i\}_{i=1}^{\infty}$  is  $\beta_*$ -admissible. Now, let (3.2) holds. Then, if  $\beta(x, y) \geq 1$ , we get  $\alpha(x, y) \geq \eta(x, y)$ . By (3.2), we obtain  $H(G_i x, G_j y) \leq \psi(d(x, y))$ . Thus (3.4) holds. Obviously, the conditions (i) and (ii) in Theorem 3.2 reduces into the conditions (i) and (ii) of Theorem 3.4 with function  $\beta$  instead of  $\alpha$ . This, arguments show that the conditions of Theorem 3.2 leads to the conditions of Theorem 3.4, that is, Theorem 3.2 is a particular case of 3.4.

#### 4. Consequences

In this paper, we showed that the auxiliary function  $\eta$  in the notion  $\alpha_* - \eta - \psi$ -contractive multi-valued mappings is not need in general, as well as, olready we have shown it in [16] for self-mappings.

#### Acknowledgement

This study was supported by Marand Branch, Islamic Azad University, Marand, Iran.

### References

- M. U. Ali, T. Kamran, Multivalued F-contractions and related fixed point theorems with an application, Filomat, 4 (2016), 3779-3793.
- [2] M. U. Ali, T. Kamran, E. Karapinar, (α, ψ, ξ)-contractive multi-valued mappings, Fixed Point Theory Applications, 2014 2014 :7.
- [3] M. U. Ali, T. Kamran, E. Karapinar, A new approach to  $(\alpha, \psi)$ -contractive nonself multivalued mappings, Journal Inequalities and Applications, 2014 **2014** :71.
- [4] M. U. Ali, T. Kamran, On  $(\alpha^*, \psi)$ -contractive multi-valued mappings, Fixed Point Theory and Applications, 2013 2013 :137.
- [5] M. U. Ali, T. Kamran, W. Sintunavarat, P. Katchang, Mizoguchi-Takahashis fixed point theorem with α, η functions, Abstract and Applied Analysis, 2013 (2013), Article ID 418798.
- [6] M. U. Ali, T. Kamran, E. Karapinar, Further discussion on modified multivalued  $\alpha_*$ - $\psi$ -contractive type mappings, Filomat, **29** (2015), 1893-1900. 1, 3, 3.2
- H. Alikhani, Sh. Rezapour, N. Shahzad, Fixed points of a new type of contractive mappings and multifunctions, Filomat, 27 (2013), 1315-1319.
- [8] P. Amiri, S. Rezapour, N. Shahzad, Fixed points of generalized α-ψ-contractions, Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A Mate doi: 10.1007/s13398-013-0123-9.
- [9] J. H. Asl, S. Rezapour, N. Shahzad, On fixed points of  $\alpha$ - $\psi$ -contractive multifunctions, Fixed Point Theory and Applications, 2012 2012 :212. 1, 2.1, 2.2
- [10] M. Berzig, E. Karapinar, Note on "Modified  $\alpha$ - $\psi$ -contractive mappings with application", Thai Journal of Mathematics (2014) In press. 1
- [11] N. Hussain, P. Salimi, A. Latif, Fixed point results for single and set-valued  $\alpha$ - $\eta$ - $\psi$ -contractive mappings, Fixed Point Theory and Applications, 2013 **2013** :212. 2, 2.3, 2.4
- [12] E. Karapinar,  $\alpha$ - $\psi$ -Geraghty contraction type mappings and some related fixed point results, Filomat, **28** (2014) 3748.
- [13] E. Karapinar, B. Samet, Generalized  $\alpha$ - $\psi$ -contractive type mappings and related fixed point theorems with applications, Abstract Applied Analysis, **2012** (2012) Article id: 793486.
- [14] G. Minak, I. Altun, Some new generalizations of Mizoguchi-Takahashi type fixed point theorem, Journal Inequalities and Applications, 2013 2013:493.
- [15] B. Mohammadi, S. Rezapour, N Shahzad, Some results on fixed points of  $\alpha$ - $\psi$ -Ciric generalized multifunctions, Fixed Point Theory and Applications, 2013 2013 :24. 1
- [16] B. Mohammadi, S. Rezapour, On modified α-φ-contractions, Journal of Advanced Mathematical Studies, 6 (2013), 162-166. 1, 4
- [17] P. Salimi, A. Latif, N. Hussain, Modified  $\alpha$ - $\psi$ -contractive mappings with applications, Fixed Point Theory and Applications, 2013 **2013**:151. 1
- [18] P. Salimi, C. Vetro, P. Vetro, *Fixed point theorems for twisted*  $(\alpha, \beta)$ - $\psi$ -contractive type mappings and applications, Filomat, **27** (2013), 605-615.
- [19] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Analysis, 75 (2012), 2154-2165. 1