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Abstract

We consider a boundary value problem associated to a Sturm-Liouville differential inclusion with ”maxima”
and we prove a Filippov type existence result for this problem.
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1. Introduction

Differential equations with maximum have proved to be strong tools in the modelling of many physical
problems: systems with automatic regulation, problems in control theory that correspond to the maximal
deviation of the regulated quantity etc.. As a consequence there was an intensive development of the theory
of differential equations with ”maxima” [2, 3, 6, 7, 9–13] etc..

A classical example is the one of an electric generator ([2]). In this case the mechanism becomes active
when the maximum voltage variation is reached in an interval of time. The equation describing the action
of the regulator has the form

x′(t) = ax(t) + b max
s∈[t−h,t]

x(s) + f(t),

where a, b are constants given by the system, x(.) is the voltage and f(.) is a perturbation given by the
change of voltage.

In the theory of ordinary differential equations it is wellknown that any linear real second-order differ-
ential equation may be written in the self adjoint form −(r(t)x′)′ + q(t)x = 0. This equation together with
boundary conditions of the form a1x(0) − a2x′(0) = 0, b1x(T ) − b2x′(T ) = 0 is called the Sturm–Liouville
problem. This is the reason why differential inclusions of the form (r(t)x′)′ ∈ F (t, x) are usually called
Sturm-Liouville type differential inclusions, even if the boundary value problems associated are not as at the
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original Sturm–Liouville problem. Recent results on Sturm–Liouville differential inclusions may be found in
[8].

In this paper we study the following problem

(p(t)x′(t))′ ∈ F (t, x(t), max
s∈[a,t]

x(s), max
s∈[t,b]

x(s)) a.e. ([a, b]), x(a) = α, x(b) = β, (1.1)

where p(.) : [a, b]→ R is a continuous mapping, α, β ∈ R and F : [a, b]×R×R×R→ P(R) is a set-valued
map.

Several existing results for problem (1.1) obtained using fixed point approaches may be found in our
previous paper [4]. The aim of the present note is to show that Filippov’s ideas ([5]) can be suitably
adapted in order to obtain the existence of solutions of problem (1.1). We recall that for a differential
inclusion defined by a lipschitzian set-valued map with nonconvex values Filippov’s theorem ([5]) consists
in proving the existence of a solution starting from a given ”quasi” solution. Moreover, the result provides
an estimate between the starting ”quasi” solution and the solution of the differential inclusion. At the same
time, it is known that concerning the existence of solutions for initial value problems or boundary value
problems associated to differential inclusions, Filippov’s type approach provides better results than the fixed
point approach using Covitz-Nadler set-valued contraction principle.

The paper is organized as follows: in Section 2 we recall some preliminary facts that we need in the
sequel and in Section 3 we prove our main result.

2. Preliminaries

In this section we sum up some basic facts that we are going to use later.

Let (X, d) be a metric space. The Pompeiu-Hausdorff distance of the closed subsets A,B ⊂ X is defined
by dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A}, where d(x,B) = inf{d(x, y); y ∈
B}. Let I := [a, b] and denote by L(I) the σ-algebra of all Lebesgue measurable subsets of I. Denote by
P(R) the family of all nonempty subsets of R and by B(R) the family of all Borel subsets of R. For any
subset A ⊂ R we denote by clA the closure of A and by co(A) the closed convex hull of A.

As usual, we denote by C(I,R) the Banach space of all continuous functions x(.) : I → R endowed with
the norm |x|C = supt∈I |x(t)| and by L1(I,R) the Banach space of all integrable functions x(.) : I → R

endowed with the norm |x|1 =
∫ b
a |x(t)|dt. The Banach space of all absolutely continuous functions x(.) :

I → R will be denoted by AC(I,R).

We recall, first, a selection result (e.g., [1]) which is a version of the celebrated Kuratowski and Ryll-
Nardzewski selection theorem.

Lemma 2.1. Consider X a separable Banach space, B is the closed unit ball in X, H : I → P(X) is a
set-valued map with nonempty closed values and g : I → X,L : I → R+ are measurable functions. If

H(t) ∩ (g(t) + L(t)B) 6= ∅ a.e.(I),

then the set-valued map t→ H(t) ∩ (g(t) + L(t)B) has a measurable selection.

Let I(.) : R → P(R) a set-valued map with compact convex values defined by I(t) = [a(t), b(t)], where
a(.), b(.) : R→ R are continuous functions with a(t) ≤ b(t) ∀t ∈ R. For x(.) : R→ R continuous we define
(maxI)(t) = maxs∈I(t) x(s). Therefore, maxI : C(R,R) → C(R,R) is an operator whose properties are
summarized in the next lemma proved in [11].

Lemma 2.2. If x(.), y(.) ∈ C(R,R), then one has

i) |maxs∈I(t) x(s)−maxs∈I(t) y(s)| ≤ maxs∈I(t) |x(s)− y(s)| ∀t ∈ R.

ii) maxt∈K |maxs∈I(t) x(s)−maxs∈I(t) y(s)| ≤ maxs∈∪t∈KI(t) |x(s)− y(s)| ∀t ∈ R.
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Remark 2.3. We recall that if f(.) ∈ L1([a, b],R) then the solution x(.) ∈ C2([a, b],R) of problem (p(t)x′(t))′

= f(t), t ∈ [a, b] with boundary conditions x(a) = α, x(b) = β is given by

x(t) = Q(t)−
∫ b

a
G(t, s)f(s)ds, t ∈ [a, b],

where S(t, σ) :=
∫ t
σ

1
p(s)ds, t, σ ∈ [a, b], Q(t) = S(t,a)

S(b,a)(β−α), G(t, σ) =
S(t,a)S(b,σ)−S(t,σ)S(b,a)χ[0,t](σ)

S(b,a) and χU (.)
is the characteristic function of the set U .

In what follows we assume that p(.) : [a, b] → (0,∞) is a continuous function such that |S(t, σ)| ≤ m0

∀t, σ ∈ [a, b]. Denote m1 := supt∈[a,b] |Q(t)| and M1 := supt,σ∈[a,b] |G(t, σ)|.
Denote also Q1(t) = S(t,a)

S(b,a)(β1 − α1), α1, β1 ∈ R. Obviously, |Q(t)−Q1(t)| ≤ m0
|S(b,a)|(|β − β1|+ |α− α1|)

∀t ∈ [a, b].

3. The main results

In order to obtain our existence result for problem (1.1) we introduce the following hypothesis on F .

Hypothesis 3.1. i) F : I × R × R × R → P(R) has nonempty closed values and for every x, y, z ∈ R,
F (., x, y, z) is measurable.

ii) There exists l1, l2, l3 ∈ L1(I,R+) such that for almost all t ∈ I,

dH(F (t, x1, y1, z1), F (t, x2, y2, z2)) ≤ l1(t)|x1 − x2|+ l2(t)|y1 − y2|+ l3(t)|z1 − z2|

∀ x1, x2, y1, y2, z1, z2 ∈ R.

Theorem 3.2. Assume that Hypothesis 3.1 is satisfied and M1(|l1|1 + |l2|1 + |l3|1) < 1. Let y(.) ∈ C(I,R)
with y(a) = α1, y(b) = β1 be such that there exists q(.) ∈ L1(I,R+) verifying d((p(t)y′(t))′, F (t, y(t),
maxs∈[a,t] y(s),maxs∈[t,b] y(s))) ≤ q(t) a.e. (I).

Then there exists x(.) a solution of problem (1.1) satisfying

|x− y|C ≤
1

1−M1(|l1|1 + |l2|1 + |l3|1)
[

m0

|S(b, a)|
(|β − β1|+ |α− α1|) + |q|1]. (3.1)

Proof. We set x0(.) = y(.), f0(.) = (p(.)y′(.))′.

The set-valued map t→ F (t, x0(t),maxs∈[a,t] x0(s),maxs∈[t,b] x0(s)) is measurable with closed values and

F (t, x0(t), max
s∈[a,t]

x0(s), max
s∈[t,b]

x0(s)) ∩ {(p(t)x′0(t))′ + q(t)[−1, 1]} 6= ∅ a.e. (I).

It follows from Lemma 2.1 that there exists a measurable function f1(.) such that f1(t) ∈ F (t, x0(t),
maxs∈[a,t] x0(s),maxs∈[t,b] x0(s)) a.e. (I) and, for almost all t ∈ I, |f1(t) − (p(t)y′(t))′| ≤ q(t). Define

x1(t) = Q(t)−
∫ b
a G(t, s)f1(s)ds, t ∈ I and for all t ∈ I one has

|x1(t)− y(t)| ≤ m0

|S(b, a)|
(|β − β1|+ |α− α1|) +M1|q|1.

Thus |x1 − y|C ≤ m0
|S(b,a)|(|β − β1|+ |α− α1|) +M1|q|1.

The set-valued map t → F (t, x0(t),maxs∈[a,t] x0(s),maxs∈[t,b] x0(s)) is measurable. Moreover, the map
t→ l1(t)|x1(t)− x0(t)|+ l2(t)|maxs∈[a,t] x1(s)−maxs∈[a,t] x0(s)|+ l3(t)|maxs∈[t,b] x1(s)−maxs∈[t,b] x0(s)| is
measurable. By the lipschitzianity of F (t, ., ., .) we have that for almost all t ∈ I

d(f1(t), F (t, x1(t), max
s∈[a,t]

x1(s), max
s∈[t,b]

x1(s))) ≤ dH(F (t, x0(t), max
s∈[a,t]

x0(s), max
s∈[t,b]

x0(s)), F (t, x1(t), max
s∈[a,t]

x1(s),



Aurelian Cernea, Commun. Nonlinear Anal. 6(1) (2019), 13–17 16

max
s∈[t,b]

x1(s))) ≤ l1(t)|x1(t)− x0(t)|+ l2(t)| max
s∈[a,t]

x0(s)− max
s∈[a,t]

x1(s)|+ l3(t)| max
s∈[t,b]

x0(s)− max
s∈[t,b]

x1(s)|.

Therefore,

F (t, x1(t),maxs∈[a,t] x1(s),maxs∈[t,b] x1(s)) ∩ {f1(t) + (l1(t)|x1(t)− x0(t)|+
l2(t)|maxs∈[0,t] x1(s)−maxs∈[0,t] x0(s)|+ l3(t)|maxs∈[t,b] x0(s)−maxs∈[t,b] x1(s)|)[−1, 1]} 6= ∅.

From Lemma 2.1 we deduce the existence of a measurable function f2(.) such that f2(t) ∈ F (t, x1(t),
maxs∈[a,t] x1(s),maxs∈[t,b] x1(s)) a.e. (I) and for almost all t ∈ I

|f1(t)− f2(t)| ≤ d(f1(t), F (t, x1(t),maxs∈[a,t] x1(s),maxs∈[t,b] x1(s))) ≤ dH(F (t, x0(t),maxs∈[a,t] x0(s),

maxs∈[t,b] x0(s)), F (t, x1(t),maxs∈[a,t] x1(s),maxs∈[t,b] x1(s)) ≤ l1(t)|x1(t)− x0(t)|+ l2(t)|maxs∈[a,t] x0(s)

−maxs∈[a,t] x1(s)|+ l3(t)|maxs∈[t,b] x0(s)−maxs∈[t,b] x1(s)|.

Define x2(t) = Q(t)−
∫ b
a G(t, s)f2(s)ds, t ∈ I and one has

|x1(t)− x2(t)| ≤
∫ b
a |f1(s)− f2(s)|ds ≤M1

∫ b
a [l1(s) + l2(s) + l3(s)]|x1 − x0|Cds

≤M1(|l1|1 + |l2|1 + |l3|1)[ m0
|S(b,a)|(|β − β1|+ |α− α1|) + |q|1].

Assume that for some n ≥ 1 we have constructed (xi(.))
n
i=1 with xn satisfying

|xn − xn−1|C ≤ [M1(|l1|1 + |l2|1 + |l3|1)]n−1[
m0

|S(b, a)|
(|β − β1|+ |α− α1|) + |q|1].

The set-valued map t → F (t, xn(t),maxs∈[a,t] xn(s),maxs∈[t,b] xn(s)) is measurable. At the same time,
the map t → l1(t)|xn(t) − xn−1(t)| + l2(t) · |maxs∈[a,t] xn(s) − maxs∈[a,t] xn−1(s)| + l3(t)|maxs∈[t,b] xn(s) −
maxs∈[t,b] xn−1(s)| is measurable. As before, by the lipschitzianity of F (t, ., ., .) we have that for almost all
t ∈ I

F (t, xn(t),maxs∈[a,t] xn(s),maxs∈[t,b] xn(s)) ∩ {fn(t) + (l1(t)|xn(t)− xn−1(t)|+
l2(t)|maxs∈[0,t] xn(s)−maxs∈[0,t] xn−1(s)|+ l3(t)|maxs∈[t,b] xn(s)−maxs∈[t,b] xn−1(s)|)[−1, 1]} 6= ∅.

Using again Lemma 2.1 we deduce the existence of a measurable function fn+1(.) such that fn+1(t) ∈
F (t, xn(t),maxs∈[a,t] xn(s),maxs∈[t,b] xn(s)) a.e. (I) and for almost all t ∈ I

|fn+1(t)− fn(t)| ≤ d(fn+1(t), F (t, xn+1(t),maxs∈[a,t] xn+1(s),maxs∈[t,b] xn+1(s))) ≤ dH(F (t, xn(t),

maxs∈[a,t] xn(s),maxs∈[t,b] xn(s)), F (t, xn+1(t),maxs∈[a,t] xn+1(s),maxs∈[t,b] xn+1(s)) ≤ l1(t)|xn+1(t)− xn(t)|
+l2(t)|maxs∈[a,t] xn+1(s)−maxs∈[a,t] xn(s)|+ l3(t)|maxs∈[t,b] xn+1(s)−maxs∈[t,b] xn(s)|.

Define

xn+1(t) = Q(t)−
∫ b

a
G(t, s)fn+1(s)ds, t ∈ I (3.2)

and one has

|xn+1(t)− xn(t)| ≤
∫ b
a |fn+1(s)− fn(s)|ds ≤M1

∫ b
a [l1(s) + l2(s) + l3(s)]|xn − xn−1|Cds ≤

M1(|l1|1 + |l2|1 + |l3|1)[ m0
|S(b,a)|(|β − β1|+ |α− α1|) + |q|1].

Therefore (xn(.))n≥0 is a Cauchy sequence in the Banach space C(I,R), so it converges to x(.) ∈ C(I,R).
Since, for almost all t ∈ I, we have

|fn+1(t)− fn(t)| ≤ l1(t)|xn(t)− xn−1(t)|+ l2(t)|maxs∈[a,t] xn(t)−maxs∈[a,t] xn−1(t)|+
l3(t)|maxs∈[t,b] xn(t)−maxs∈[t,b] xn−1(t)| ≤ [l1(t) + l2(t) + l3(t)]|xn − xn−1|C ,
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{fn(.)} is a Cauchy sequence in the Banach space L1(I,R) and thus it converges to f(.) ∈ L1(I,R).
We note that one may write

|
∫ b
a G(t, s)fn(s)ds−

∫ b
a G(t, s)f(s)ds| ≤M1

∫ b
a |fn(s)− f(s)|ds ≤

M1

∫ b
a [l1(s) + l2(s) + l3(s)]|xn+1 − x|Cds ≤ (|l1|1 + |l2|1 + |l3|1).|xn+1 − x|C .

Therefore, one may pass to the limit in (3.2) and we get x(t) = Q(t)−
∫ b
a G(t, s)f(s)ds. Moreover, since

the values of F (., ., ., .) are closed and fn+1(t) ∈ F (t, xn(t),maxs∈[a,t] xn(s),maxs∈[t,b] xn(s)) a.e. (I) passing
to the limit we obtain f(t) ∈ F (t, x(t),maxs∈[a,t] x(s),maxs∈[t,b] x(s)) a.e. (I).

It remains to prove the estimate (3.1). One has

|xn − x0|C ≤ |xn − xn−1|C + ...+ |x2 − x1|C + |x1 − x0|C ≤ [M1(|l1|1 + |l2|1 + |l3|1)]n−1[ m0
|S(b,a)|(|β − β1|+

|α− α1|) + |q|1] + ...M1(|l1|1 + |l2|1 + |l3|1)[ m0
|S(b,a)|(|β − β1|+ |α− α1|) + |q|1] + [ m0

|S(b,a)|(|β − β1|+ |α−
α1|) + |q|1] ≤ 1

1−(|l1|1+|l2|1+|l3|1) [
m0
|S(b,a)|(|β − β1|+ |α− α1|) + |q|1].

Passage to the limit in the last inequality completes the proof.

Remark 3.3. A similar existence result for problem (1.1) as in Theorem 3.2 may be found in [4], namely
Theorem 3.3. The approach in [4] which uses fixed point techniques, apart from the requirement that the
values of F (., .) are compact, does not provides a priori bounds for solutions as in (3.1).
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