[1] G. V. R. Babu, P. Subhashini, Coupled common fixed points for a pair of compatible maps satisfying Geraghty
contraction in partially ordered metric spaces, Int. J. Math. Sci. Comput., 2 (2012), 41-48.
[2] T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications,
Nonlinear Anal., 65 (2006), 1379-1393.
[3] V. Berinde, Coupled coincidence point theorems for mixed monotone nonlinear operators, Comput. Math. Appl.,64 (2012), 1770-1777.
[4] V. Berinde, M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric
spaces, Nonlinear Anal., 74 (2011), 4889-4897.
[5] M. Borcut, V. Berinde, Tripled coincidence theorems for contractive type mappings in partially ordered metric
spaces, Appl. Math. Comput., 218 (2012), 5929-5936.
[6] M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604-608.
[7] M. E. Gordji, M. Ramezani, Y. J. Cho, S. Pirbavafa, A generalization of Geraghty's theorems in partially ordered
metric spaces and applications to ordinary differential equations, Fixed Point Theory Appl., 2012 (2012), 9 pages.
[8] V. Lakshmikantham, L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric
spaces, Nonlinear Anal., 70 (2009), 4341-4349.
[9] A. Roldan, J. Martinez-Moreno, C. Roldan, E. Karapinar, Some remarks on multidimensional fixed point theorems,
Fixed Point Theory, 14 (2014), 545-558.
[10] S. Radenovic, A note on tripled coincidence and tripled common fixed point theorems in partially ordered metric
spaces, Appl. Math. Comput., 236 (2014), 367-372
[11] Y. Sang, Q. Meng, Fixed point theorems with generalized alternating distance functions in partially ordered metric
spaces via w-distance and applications, Fixed Point Theory Appl., 2015 (2015), 25 pages.
[12] R. Vats, K. Tas, V. Sihag, A. Kumar, Tripled fixed point theorems via -series in partially ordered metric spaces,
J. Ineq. Appl., 2014 (2014), 12 pages.