[1] B. Ahmad, J. J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with
threepoint boundary conditions, Comput. Math. Appl., 58 (2009), 1838-1843.
[2] I. K. Argyros, Quadratic equations and applications to Chandrasekhars and related equations, Bull. Austral. Math.
Soc., 32 (1985), 275-292.
[3] J. Banas, B. Rzepka, Monotonic solutions of a quadratic integral equations of fractional order, J. Math. Anal.
Appl., 332 (2007), 1370-1378.
[4] J. Banas, A. Martinon, Monotonic solutions of a quadratic integral equation of volterra type, Comput. Math.
Appl., 47 (2004), 271-279.
[5] J. Banas, J. Caballero, J. Rocha, K. Sadarangani, Monotonic solutions of a class of quadratic integral equations
of volterra type, Comput. Math. Appl., 49(2005), 943-952.
[6] J. Banas, J. Rocha Martin, K. Sadarangani, On the solution of a quadratic integral equation of Hammerstein
type, Math. Comput. Modelling, 43 (2006), 97-104.
[7] J. Banas, B. Rzepka, Nondecreasing solutions of a quadratic singular Volterra integral equation, Math. Comput.
Modeling, 49 (2009), 488-496.
[8] C. Bai, J. Fang, The existence of a positive solution for a singular coupled system of nonlinear fractional differential
equations, Appl. Math. Comput., 150, (2004) 611-621.
[9] J. Caballero, A. B. Mingarelli, K. Sadarangani, Existence of solutions of an integral equation of chandrasekhar
type in the theory of radiative, Electron. J. Di. Equns., 57 (2006), 1-11.
[10] S. Chandrasekhar, Radiative transfer, Courier Corporation, USA, (1960).
[11] Y. Chen, H. An, Numerical solutions of coupled Burgers equations with time and space fractional derivatives,
Appl. Math. Comput., 200 (2008), 87-95.
[12] W. G. El-Sayed, B. Rzepka, Nondecreasing solutions of a quadratic integral equation of Urysohn type, Comput.
Math. Appl., 67 (51) (2006), 1065-1074.
[13] A. M. A. El-Sayed, H. H. G. Hashem, E. A. A. Ziada, Picard and Adomian methods for coupled systems of
quadratic integral equations of fractional order, J. Nonlinear Anal. Optim., 3 (2) (2012), 171-183.
[14] A. M. A. El-Sayed, H. H. G. Hashem, Existence results for coupled systems of quadratic integral equations of
fractional orders, Optim. Lett., 7 (2013), 1251-1260.
[15] V. Gaychuk, B. Datsko, V. Meleshko, Mathematical modeling of time fractional reaction-diffusion systems, J.
Math. Appl., 220,(2008), 215-225. 1
[16] V. D. Gejji, Positive solutions of a system of non-autonomous fractional differential equations, J. Math. Anal.
Appl., 302 (2005), 56-64.
[17] V. Gaychuk, B. Datsko, V. Meleshko, D. Blackmore, Analysis of the solutions of coupled nonlinear fractional
reaction-diffusion equations, Chaos Solitons, and Fract., 41 (2009), 1095-1104.
[18] H. A. H. Salem, On the quadratic integral equations and their applications, Comput. Math. Appl., 62 (2011),
2931-2943.
[19] H. H. G. Hashim, On successive approximation method for coupled systems of Chandrasekhar quadratic integral
equations, J. Egyptian Math. Soc., 23 (2015), 108-112.
[20] X. Su, Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl. Math.
Lett., 22 (2009), 64-69.