**Authors**

Faculty of Mathematics, K. N. Toosi University of Technology, Tehran, Iran

**Abstract**

In this paper a nonlinear inverse heat conduction problem in one dimensional space is considered. This

inverse problem reformulate as an auxiliary inverse problem. Ill-posedness is identified as one of the main

characteristics of the inverse problems. So, a numerical algorithm based on the combination of discrete

mollification and space marching method is applied to conquer ill-posedness of the auxiliary inverse problem.

Moreover, a proof of stability and convergence of the aforementioned algorithm is provided. Eventually, the

efficiency of this method is illustrated by a numerical example.

**Keywords**

[1] C. D. Acosta, C. E. Mejia, Stabilization of explicit methods for convection diffusion equations by discrete mollifi-

cation, Comput. Math. Appl., 55 (2008), 368–380.

cation, Comput. Math. Appl., 55 (2008), 368–380.

[2] J. V. Beck, B. Blackwell, C.R. St Clair Jr., Inverse Heat Conduction: Ill-Posed Problems, John Wiley and Sons,

New York, (1985).

New York, (1985).

[3] J. V. Beck, Surface heat flux determination using an integral method, Nucl. Eng. Des., 7 (1968), 170–178.

[4] J. R. Cannon, The One-Dimensional Heat Equation, Addison-Wesley, Menlo Park, CA, (1984).

[5] J. R. Cannon, P. Duchateau, An inverse problem for a nonlinear diffusion equation, SIAM J. Appl. Math., 39

(2) (1980), 272–289.

(2) (1980), 272–289.

[6] C. Coles, D. A. Murio, Identification of Parameters in the 2-D IHCP, Comput. Math. Appl., 40 (2000) 939–956.

[7] G. A. Doral, D. A. Tortorellit, Transient inverse heat conduction problem solutions via Newton’s method, Int. J.

Heat Mass Transfer., 40 (17) (1997), 4115–4127.

[7] G. A. Doral, D. A. Tortorellit, Transient inverse heat conduction problem solutions via Newton’s method, Int. J.

Heat Mass Transfer., 40 (17) (1997), 4115–4127.

[8] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J., (1964).

[9] M. Garshasbi, H. Dastour, Estimation of unknown boundary functions in an inverse heat conduction problem

using a molified marching scheme, Numer. Algorithms., 68 (2015), 769–790.

using a molified marching scheme, Numer. Algorithms., 68 (2015), 769–790.

[10] J. M. Gutierrez, J. A. Martin, A. Corz, A sequential algorithm of inverse heat conduction problems using singular

value decomposition, Int. J. Therm. Sci., 44 (2005), 235–244.

value decomposition, Int. J. Therm. Sci., 44 (2005), 235–244.

[11] P. C. Hansen, The truncated SVD as a method for regularization, BIT Numer. Math., 27 (4) (1987), 534–553.

[12] P. C. Hansen, Rank-deficient and Discrete Ill-posed Problems: Numerical Aspects of Linear Inversion, SIAM

Monographs on Mathematical Modeling and Computation. Society for Industrial and Applied Mathematics

(SIAM), Philadelphia, PA, (1998).

Monographs on Mathematical Modeling and Computation. Society for Industrial and Applied Mathematics

(SIAM), Philadelphia, PA, (1998).

[13] D. N. Hao, A mollification method for ill-posed problems, Numer. Math., 68 (1994), 469–506.

[14] D. N. Hao, N. T. Thanh, H. Sahli , Splitting-based conjugate gradient method for a multi-dimensional linear

inverse heat conduction problem, J. Comput. Appl. Math., 232 (2009), 361–377.

inverse heat conduction problem, J. Comput. Appl. Math., 232 (2009), 361–377.

[15] C. C. Ji, P. C. Tuan, H. Y. Jang, A recursive least-squares algorithm for on-line 1-D inverse heat conduction

estimation, Int. J. Heat Mass Transfer., 40 (9) (1997), 2081–2096.

estimation, Int. J. Heat Mass Transfer., 40 (9) (1997), 2081–2096.

[16] C. E. Mejia, D. A. Murio, Numerical solution of generalized IHCP by discrete mollification, Comput. Math. Appl.,

32 (2) (1996), 33–50.

32 (2) (1996), 33–50.

[17] C. E. Mejia, D. A. Murio, Mollified hyperbolic method for coefficient identification problems, Comput. Math.

Appl., 26 (5) (1993), 1–12.

Appl., 26 (5) (1993), 1–12.

[18] C. E. Mejia, C. D. Acosta, K. I. Saleme, Numerical identification of a nonlinear diffusion coeficient by discrete

mollification, Comput. Math. Appl., 62 (2011), 2187–2199.

mollification, Comput. Math. Appl., 62 (2011), 2187–2199.

[19] D. A. Murio, Mollification and space marching, In: Woodbury, K (ed.) Inverse Engineering Handbook. CRC

Press (2002).

Press (2002).

[20] M. N. Ozisik, Heat Conduction, Wiley, NewYork, (1980).

[21] M. Prudhomme, T. H. Nguyen, On the iterative regularization of inverse heat conduction problems by conjugate

gradient method, Int. Comm. Heat Mass Transfer., 25 (7) (1998), 999–1108.

gradient method, Int. Comm. Heat Mass Transfer., 25 (7) (1998), 999–1108.

[22] J. R. Shenefelt, R. Luck, R. P. Taylor, J. T. Berry, Solution to inverse heat conduction problems employing

singular value decomposition and model reduction, Int. J. Heat Mass Transfer., 45 (2002), 67–74.

singular value decomposition and model reduction, Int. J. Heat Mass Transfer., 45 (2002), 67–74.

[23] A. N. Tikhonov, On the regularization of ill-posed problems, Dokl. Akad. Nauk SSSR, 153 (1963), 49–52.

[24] A. N. Tikhonov, On the solution of ill-posed problems and the method of regularization, Dokl. Akad. Nauk SSSR,

151 (1963), 501–504.

151 (1963), 501–504.

[25] A. N. Tikhonov, V. Arsenin, F. John, Solutions of ill-posed problems, Wiley, (1977).

Winter and Spring 2016

Pages 129-138