On entropy of action of amenable groups

Author

Department of Mathematics, Faculty of Science, University of Qom, Qom, Iran.

Abstract

In this paper, we assign a linear operator to the action of an amenable group on a compact metric space. Then we extract the entropy of the action in terms of the eigenvalues of the operator. In this way we present a spectral representation of the entropy of action of amenable groups.

1] R. L. Adler, A. G. Konheim, M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965),
309–319. 

[2] R. Bowen, Invariant measures for Markov maps of the interval, Comm. Math. Phys., 69 (1976), 1–17.

[3] M. Brin, A. Katok, On local entropy, Geometric dynamics, Lecture Notes in Math., Springer-Verlag, Berlin, 1007

(1983), 30–38. 

[4] J. N. Kapur, Generalized entropy of order α and type β, Math. Seminar, 4 (1967), 78–94. 

[5] A. N. Kolmogorov, New metric invariant of transitive dynamical systems and endomorphisms of Lebesgue spaces,
Dokl. Russ. Acad. Sci., 119 (1958), 861–864. 

[6] E. Lindenstrauss, Pointwise theorems for amenable groups, Electron. Res. Announc.Math. Sci., 5 (1999), 82–90.

[7] B. McMillan, The basic theorems of information theory. Ann. of Math. Statistics, 24 (1953), 196–219. 

[8] J. Moulin Ollagnier, Ergodic theory and statistical mechanics, Lecture Notes in Math., Springer-Verlag, Berlin,
1115 (1985). 

[9] R. Phelps, Lectures on Choquet’s theorem, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London
(1966). 

[10] M. Rahimi, A. Riazi, Entropy operator for continuous dynamical systems of finite topological entropy, Bull. Iranian
Math. Soc., 38 (2012), 883–892. 

[11] M. Rahimi, A. Riazi, Entropy functional for continuous systems of finite entropy, Acta Math. Sci. Ser. B Engl.
Ed., 32 (2012), 775–782. 

[12] P. N. Rathie, On a Generalized Entropy and a Coding Theorem, J. Appl. Probl., 7 (1970), 124–133. 

[13] A. Reyni, On measures of entropy and information, Proc. 4th Berk. Symp. Math Statist. and Probl., University
of California Press, 1 (1961), 547–461. 

[14] V. A. Rokhlin, Ya. G. Sinai, The structure and properties of invariant measurable partitions, Dokl. Akad. Nauk
SSSR, 141 (1961) 1038–1041. 

[15] C. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948), 379–423. 

[16] B. D. Sharma, I. J. Taneja, Entropy of type (α,β) and other generalized additive measures in information theory,
Metrika, 22 (1975), 205–215. 

[17] B. D. Sharma, I. J. Taneja, Three generalized additive measures of entropy, Elec. Inform. Kybern., 13 (1977),
419–433. 

[18] A. Shulman, Maximal ergodic theorems on groups, Dept. Lit. NIINTI, no. 2184, (1998). 

[19] Ya. G. Sinai, On the notion of entropy of a dynamical system. Dokl. Akad. Nauk, 124 (1959), 768–771. 

[20] A. Tempelman, Ergodic theorems for group actions, Mathematics and its Applications, Kluwer Academic Pub-
lishers Group, Dordrecht, (1992). 

[21] R. S. Varma, Generalizations of Reyni’s entropy of order α, J. Math. Sci., 1 (1966), 34–48 . 

[22] J. Von Neumann, Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. Sci., 18 (1932), 70–82. 

[23] P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-
Berlin, (1982). 

[24] N. Wiener, The ergodic theorem, Duke Math. J., 5 (1939), 1–18. 

[25] K. Yosida, Mean ergodic theorem in Banach spaces, Proc. Japan. Acad., 14 (1938), 292–294. 

[26] K. Yosida, S. Kakutani, Birkhoff‘s ergodic theorem and the maximal ergodic theorem, Proc. Japan. Acad., 15
(1939), 165–168.