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1. Introduction

In 1922, Banach established the most famous fundamental fixed-point theorem (so-called the Banach
contraction principle [1]) which has played an important role in various fields of applied mathematical
analysis. It is known that the Banach contraction principle has been extended in many various directions
by several authors(see [2, 3, 4, 6, 7, 8]). An interesting direction of research is the extension of the Banach
contraction principle of multi-valued maps, known as Nadler’s fixed-point theorem [9], Mizoguchi-Takahashi’s
fixed-point theorem [10], M. Berinde and V. Berinde [3], Ćirić [4], Reich [5], Daffer and Kaneko [6], Rhoades
[11], Amini-Harandi [1, 8], Moradi and Khojasteh [12], Du [7] and references therein. Let us recall some
basic notations needed in this paper.
Let (X, d) be a metric space. For each x ∈ X and A ⊆ X, let d(x,A) = infy∈A d(x, y). Denote by N (X)
the class of all nonempty subsets of X, C(X) the family of all nonempty closed subsets of X and CB(X) the
family of all nonempty closed and bounded subsets of X. A function H : CB(X)× CB(X) → [0,∞) defined
by

H(A,B) = max

{
sup
x∈B

D(x,A), sup
x∈A

D(x,B)

}
,
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is said to be the Hausdorff metric on CB(X) induced by d on X, where D(x,A) = inf{d(x, y) : y ∈ A} for
each A ∈ CB(X). A point v in X is a fixed-point of a map T if v = Tv (when T : X → X is a single-valued
map) or v ∈ Tv (when T : X → N (X) is a multi-valued map). The set of fixed points of T is denoted by
F(T ). Throughout this paper, R and N, denote the set of real and natural numbers, respectively.

Very recently, Du and Khojasteh [13] introduced the notion of manageable function as follows:

Definition 1.1. A function η : R× R → R is called manageable if the following conditions hold:

(η1) η(t, s) < s− t for all s, t > 0.

(η2) For any bounded sequence {tn} ⊂ (0,∞) and any nonincreasing sequence {sn} ⊂ (0,∞), it holds

lim sup
n→∞

tn + η(tn, sn)

sn
< 1.

We denote the set of all manageable functions by M̂an(R).

In that paper, the authors announced the following result.

Theorem 1.2 (Du and Khojasteh [13], Theorem 10). Let (X, d) be a metric space, T : X → N (X) be a

α-admissible multivalued map and η ∈ M̂an(R). Let

Ω = {(α(x, y)d(y, Ty), d(x, y)) ∈ [0,+∞)× [0,+∞) : x ∈ X and y ∈ Tx}.

If η(t, s) ≥ 0 for all (t, s) ∈ Ω and there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1, then the
following statements hold:

(a) There exists a Cauchy sequence {wn}n∈N in X such that:

(i) wn+1 ∈ Twn for all n ∈ N,
(ii) α(wn, wn+1) ≥ 1 for all n ∈ N,
(iii) lim

n→∞
d(wn, wn+1) = inf

n∈N
d(wn, wn+1) = 0.

(b) inf
x∈X

d(x, Tx) = 0; that is T has the approximate fixed point property on X.

Definition 1.3. Given a metric space (X, d), we say that a multivalued mapping T : X → CB(X) is

continuous if {Txn}
H−→ Tz for all sequence {xn} ⊆ X such that {xn}

d−→ z ∈ X.

2. Main Result

In order to extend the results of [13], we present the following statement, including its corresponding
proof (which is very similar to the proof of Theorem 1.2 in [13]).

Let denote by C(X) the family of all nonempty, closed subsets of (X, d) (notice that CB(X) is necessary
for defining the metric H : CB(X)× CB(X) → [0,∞)).

Theorem 2.1. Let (X, d) be a metric space, T : X → C(X) be an α-admissible multi-valued map and

η ∈ M̂an(R). Let

Ω =

{ (
α(x, y) d(y, Ty), d(x, y)

)
∈ (0,∞)× (0,∞)

∣∣∣∣ x ∈ X, y ∈ Tx, x ̸= y
d(y, Ty) > 0 and α(x, y) ≥ 1

}
.

If η(t, s) ≥ 0 for all (t, s) ∈ Ω and there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1, then the
following statements hold:
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(a) There exists a Cauchy sequence {xn}n∈N in X such that:

(i) xn+1 ∈ Txn for all n ∈ N,
(ii) α(xn, xn+1) ≥ 1 for all n ∈ N,
(iii) lim

n→∞
d(xn, xn+1) = inf

n∈N
d(xn, xn+1) = 0.

(b) inf
x∈X

d(x, Tx) = 0; that is T has the approximate fixed point property on X.

Remark 2.2. (1) Notice that, since the set Ω is smaller than in Theorem 1.2, then the contractivity condition
“η ≥ 0 in Ω” is weaker.

(2) We point out that the set Ω could be empty but, in this case, we will prove that {x0, x1} contains a
fixed point of T .

Proof. First of all, we prove the following two claims:
Claim 1. If there exists x ∈ X such that x ∈ Tx and α(x, x) ≥ 1, then conclusions (a) and (b) hold and

x is a fixed point of T verifying α(x, x) ≥ 1. It follows by taking xn = x for all n ∈ N.
Claim 2. If there exist x, y ∈ X such that y ∈ Tx ∩ Ty and α(x, y) ≥ 1, then conclusions (a) and (b)

hold and y is a fixed point of T verifying α(y, y) ≥ 1. In this case, consider the sequence {xn}n∈N in X
defined by x1 = x and xn = y for all n ≥ 2. As T is α-admissible, α(x, y) ≥ 1 and y ∈ Ty, we obtain
α(y, y) ≥ 1. Then Claim 1 is applicable to y.

Let x0 ∈ X and x1 ∈ Tx0 be the points (guaranteed by hypothesis) such that α(x0, x1) ≥ 1.

• If x1 = x0, then x0 ∈ Tx0, and it follows from Claim 1 that conclusions (a) and (b) hold and x0 is a
fixed point of T verifying α(x0, x0) ≥ 1.

• If x1 ∈ Tx1, then the proof is finished by Claim 2 using x = x0 and y = x1.

In the previous cases, Ω could be empty (but the proof is finished). Next, assume that x1 ̸= x0 and x1 /∈ Tx1.
Since Tx1 ∈ C(X), then we deduce that,

d(x0, x1) > 0 and d(x1, Tx1) > 0.

Since α(x0, x1) ≥ 1, it follows that,(
α(x0, x1) d(x1, Tx1), d(x0, x1)

)
∈ Ω, (2.1)

which means that Ω is not empty. In this case, let define λ : R× R → R by,

λ(t, s) =

 t+ η(t, s)

s
, if (t, s) ∈ Ω,

0, otherwise.

By (η1) and the fact that t > 0 and s > 0 for all (t, s) ∈ Ω, we know that,

0 < λ(t, s) < 1 for all (t, s) ∈ Ω. (2.2)

Since η ∈ M̂an(R) and η(t, s) ≥ 0 for all (t, s) ∈ Ω, we have that,

0 < t ≤ s λ(t, s) for all (t, s) ∈ Ω. (2.3)

By (2.1) and (2.2), we have,
0 < λ(α(x0, x1)d(x1, Tx1), d(x0, x1)) < 1.
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Take

ε1 =

(
α(x0, x1)√

λ(α(x0, x1)d(x1, Tx1), d(x0, x1))
− 1

)
d(x1, Tx1).

Then ε1 > 0. Since

d(x1, Tx1) < d(x1, Tx1) + ε1

=
α(x0, x1)√

λ(α(x0, x1)d(x1, Tx1), d(x0, x1))
d(x1, Tx1),

and d(x1, Tx1) is an infimum, there exists x2 ∈ Tx1 such that,

d(x1, x2) <
α(x0, x1)√

λ(α(x0, x1)d(x1, Tx1), d(x0, x1))
d(x1, Tx1).

Since T is α-admissible, α(x0, x1) ≥ 1 and x2 ∈ Tx1, we obtain α(x1, x2) ≥ 1.

• If x2 = x1, then Claim 1 guarantees that conclusions (a) and (b) hold, and x1 is a fixed point of T
verifying α(x1, x1) ≥ 1.

• If x2 ∈ Tx2, then the proof is finished by Claim 2 using x = x1 and y = x2.

On the contrary, assume that x2 ̸= x1 and x2 /∈ Tx2. Therefore d(x1, x2) > 0 and d(x2, Tx2) > 0. By
taking

ε2 =

(
α(x1, x2)√

λ(α(x1, x2)d(x2, Tx2), d(x1, x2))
− 1

)
d(x2, Tx2) > 0,

and taking into account that,

d(x2, Tx2) < d(x2, Tx2) + ε1

=
α(x1, x2)√

λ(α(x1, x2)d(x2, Tx2), d(x1, x2))
d(x2, Tx2),

there exists x3 ∈ Tx2 such that,

d(x2, x3) <
α(x1, x2)√

λ(α(x1, x2)d(x2, Tx2), d(x1, x2))
d(x2, Tx2).

Since T is α-admissible, α(x1, x2) ≥ 1 and x3 ∈ Tx2, we obtain α(x2, x3) ≥ 1. The cases x3 = x2 or
x3 ∈ Tx3 immediately finish the proof by using Claims 1 or 2. On the contrary, we continue assuming that
d(x2, x3) > 0 and d(x3, Tx3) > 0.

By repeating the previous process again and again, we construct recursively a sequence {xn} such that
xn+1 ∈ Txn and α(xn−1, xn) ≥ 1. It is possible that we can find n0 ∈ N such that xn0+1 = xn0 or
xn0+1 ∈ Txn0+1. In these cases, Claims 1 and 2 finish the proof and we conclude that T has a fixed point.
On the contrary case, if this process never ends, we can consider a sequence {xn}n∈N in X satisfying:

xn ∈ Txn−1, d(xn−1, xn) > 0, d(xn, Txn) > 0, α(xn−1, xn) ≥ 1 and

d(xn, xn+1) <
α(xn−1, xn)√

λ(α(xn−1, xn)d(xn, Txn), d(xn−1, xn))
d(xn, Txn). (2.4)

for each n ∈ N.
It follows that, (

α(xn−1, xn) d(xn, Txn), d(xn−1, xn)
)
∈ Ω for all n ∈ N.
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By (2.3), we have,

α(xn−1, xn) d(xn, Txn) ≤ d(xn−1, xn)λ(α(xn−1, xn) d(xn, Txn), d(xn−1, xn)) for each n ∈ N. (2.5)

Hence, for each n ∈ N, by combining (2.4) and (2.5), we get,

d(xn, xn+1) <
√

λ(α(xn−1, xn) d(xn, Txn), d(xn−1, xn)) d(xn−1, xn) (2.6)

which means that the sequence {d(xn−1, xn)}n∈N is strictly decreasing in (0,∞). So,

γ = lim
n→∞

d(xn, xn+1) = inf
n∈N

d(xn, xn+1) ≥ 0 exists.

By (2.5), we have,
α(xn−1, xn) d(xn, Txn) ≤ d(xn−1, xn) for all n ∈ N,

which means that {α(xn−1, xn) d(xn, Txn)}n∈N is a bounded sequence. By (η2), we have that,

lim sup
n→∞

λ(α(xn−1, xn) d(xn, Txn), d(xn−1, xn)) < 1. (2.7)

Now, we claim γ = 0. To prove it, suppose that γ > 0. Then, by (2.7) and taking limit superior in (2.6),
we get,

γ ≤
√

lim sup
n→∞

λ(α(xn−1, xn)d(xn, Txn), d(xn−1, xn)) γ < γ,

which is a contradiction. Hence we deduce that,

lim
n→∞

d(xn, xn+1) = inf
n∈N

d(xn, xn+1) = 0. (2.8)

To complete the proof of (a), it is sufficient to show that {xn}n∈N is a Cauchy sequence in X. For each
n ∈ N, let

ρn =
√

λ(α(xn−1, xn) d(xn, Txn), d(xn−1, xn)).

Then ρn ∈ (0, 1) for all n ∈ N. By (2.6), we obtain,

d(xn, xn+1) < ρn d(xn−1, xn) for all n ∈ N. (2.9)

From (2.7), we have lim sup
n→∞

ρn < 1, so there exists c ∈ [0, 1) and n0 ∈ N, such that,

ρn ≤ c for all n ∈ N with n ≥ n0. (2.10)

For any n ≥ n0, since ρn ∈ (0, 1) for all n ∈ N and c ∈ [0, 1), taking into account (2.9) and (2.10) conclude
that,

d(xn, xn+1) < ρn d(xn−1, xn) < . . . < ρnρn−1ρn−2 · . . . · ρn0 d(x0, x1) ≤ cn−n0+1d(x0, x1).

Put αn = cn−n0+1

1−c d(x0, x1), n ∈ N. For m,n ∈ N with m > n ≥ n0, we have from the last inequality that

d(xn, xm) ≤
m−1∑
j=n

d(xj , xj+1) < αn.

Since c ∈ [0, 1), lim
n→∞

αn = 0 and therefore,

lim sup
n→∞

{d(xn, xm) : m > n} = 0.

As a consequence, {xn} is a Cauchy sequence in X. Let wn = xn−1 for all n ∈ N. Then {wn}n∈N is the
desired Cauchy sequence in (a).

To see (b), since xn ∈ Txn−1 for each n ∈ N, we have,

inf
x∈X

d(x, Tx) ≤ d(xn, Txn) ≤ d(xn, xn+1) for all n ∈ N. (2.11)

Combining (2.8) and (2.11) yields,
inf
x∈X

d(x, Tx) = 0.

This completes the proof.
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2.1. Existence of fixed points under right-continuity

Definition 2.3. Let (X, d) be a metric space, let α : X ×X → R be a function and let T : X → CB(X)

be a multivalued mapping. We say that T is α-right-continuous if {Txn}
H−→ Tz for all sequence {xn} ⊆ X

such that {xn}
d−→ z ∈ X and α(xn, xn+1) ≥ 1 for all n ∈ N.

Obviously, every continuous multi-valued mapping is α-right-continuous when α = 1. In the following
result, we use that,

d(a,B) ≤ H(A,B) for all A,B ∈ CB(X) and all a ∈ A.

Theorem 2.4. Under the hypothesis of Theorem 2.1, additionally assume that (X, d) is complete and
T : X → CB(X) is α-right-continuous. Then the sequence {xn} converges to a fixed point of T .

Proof. Since {xn} is a Cauchy sequence in the complete metric space (X, d), there exists ω ∈ X such that

{xn} → ω. As T is α-right-continuous, we deduce that {Txn}
H−→ Tω. In particular, as d(xn, Tω) ≤

H(Txn+1, Tω) for all n ∈ N, we conclude that ω ∈ Tω = Tω, so ω is a fixed point of T .

2.2. A weaker appropriate condition

Definition 2.5. Let (X, d) be a metric space, let {xn} ⊆ X be a sequence, let α : X×X → R be a function
and let T : X → N (X) be a multivalued mapping. We will say that {xn} is an Picard sequence of (T, α) if
for all n ∈ N,

xn+1 ∈ Txn, xn ̸= xn+1 and α(xn, xn+1) ≥ 1.

Let consider the following property.

(A) For all ε > 0, all m ∈ N and all convergent Picard sequence {xn}n∈N of (T, α), there exists k ∈ N such
that k > m and d(xk, Tω) < ε (where ω = limn→∞ xn ∈ X).

In the following result, we do not assume that the range of T is included in CB(X) but in C(X).

Theorem 2.6. Under the hypothesis of Theorem 2.1, additionally assume that (X, d) is complete and
property (A) is satisfied. Then the sequence {xn} converges to a fixed point of T .

Proof. Since {xn} is a Cauchy sequence in the complete space (X, d), there exists ω ∈ X such that {xn} → ω.
By Theorem 2.1, {xn} is a Picard sequence of (T, α). By property (A) using {εk = 1/k > 0}k∈N, there exists
a subsequence {xn(k)}k∈N of {xn} such that {d(xn(k), Tω)} → 0. As {xn} converges to ω, then {xn(k)}k∈N
also converges to ω, so ω ∈ Tω = Tω and ω is a fixed point of T

Next, we show that Theorem 2.6 improves Theorem 2.4. Notice that the range of T must be included
in CB(X) is order to use the Hausdorff metric H.

Lemma 2.7. Let (X, d) be a metric, let α : X × X → R be a function and let T : X → CB(X) be a
multivalued mapping. If T is α-right-continuous, then property (A) is satisfied.

Proof. Let {xn} be an arbitrary Picard sequence of (T, α) such that {xn} → ω ∈ X. Since α(xn, xn+1) ≥ 1

for all n ∈ N, the α-right-continuity of T implies that {Txn}
H−→ Tz. In particular, d(xn+1, Tω) ≤

H (Txn, Tω) for all n ∈ N. As a consequence, {d(xn+1, Tω)} → 0. Therefore, for all ε > 0 and all m ∈ N,
there exists k ∈ N such that k > m and d(xk, Tω) < ε. Hence, property (A) is satisfied.
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2.3. Existence of fixed points under regularity

Definition 2.8. Let (X, d) be a metric space and let α : X ×X → R be a function. We will say that (X, d)
is α-regular if it satisfies the following property:

(R) If {zn}n∈N is a sequence in X such that {zn} → ω ∈ X and α(zn, zn+1) ≥ 1 for all n ∈ N, then
α(zn, ω) ≥ 1 for all n ∈ N.

In the following result, we guarantee that T has a fixed point.

Theorem 2.9. Let (X, d) be a complete metric space, let α : X ×X → R be a function, let T : X → C(X)

be an α-admissible multivalued map and let η ∈ M̂an(R) be a manageable function. If η(t, s) ≥ 0 for all

(t, s) ∈
{ (

α(x, y) d(y, Ty), d(x, y)
)
∈ (0,∞)× (0,∞)

∣∣∣∣ x, y ∈ X, x ̸= y
d(y, Ty) > 0 and α(x, y) ≥ 1

}
, (2.12)

(X, d) is α-regular and there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1, then T has at least a fixed
point (in fact, the sequence guaranteed by Theorem 2.1 converges to a fixed point of T ).

Proof. Let Ω′ be the subset of (0,∞) × (0,∞) given by (2.12). Notice that Ω ⊆ Ω′, where Ω is given in
Theorem 2.1. Therefore, the condition “η(t, s) ≥ 0 for all (t, s) ∈ Ω′” implies that “η(t, s) ≥ 0 for all
(t, s) ∈ Ω”. Hence, Theorem 2.1 is applicable, and its proof can be repeated here point by point.

Notice that, if we can apply Claim 1 or Claim 2, the considered sequence {xn}n≥2 is constant and its
limit is a fixed point of T . In this case, the proof is finished. Suppose that the process to consider the
sequence {xn} is not finite. In such a case, we have proved that Ω is not empty (so Ω′ is not empty) and
the sequence {xn} satisfies, for all n ∈ N,

xn ∈ Txn−1, d(xn−1, xn) > 0, d(xn, Txn) > 0, α(xn−1, xn) ≥ 1 and

d(xn, xn+1) <
α(xn−1, xn)√

λ(α(xn−1, xn)d(xn, Txn), d(xn−1, xn))
d(xn, Txn),

where λ is now defined replacing Ω by Ω′.

Since {xn} is a Cauchy sequence in the complete space (X, d), there exists ω ∈ X such that {xn} → ω.
As (X, d) is α-regular, we deduce that,

α(xn, ω) ≥ 1 for all n ∈ N.

Consider the set S = {n ∈ N : xn = ω}. We distinguish two cases.

Case 1. S is not finite. In this case, xn−1 ∈ Txn = Tω for all n ∈ S, that is {xn} cointains a subsequence
{xn(k)}k∈N such that xn(k) ∈ Tω for all k ∈ N. As {xn} converges to ω, then {xn(k)}k∈N also converges to

ω, so ω ∈ Tω = Tω and ω is a fixed point of T .

Case 2. S is finite. In this case, there exists n0 ∈ N such that xn ̸= ω for all n ≥ n0. We are also going
to show that ω ∈ Tω reasoning by contradiction. Assume that ω /∈ Tω, that is, d(ω, Tω) > 0. In this case,(

α(xn, ω) d(ω, Tω), d(xn, ω)
)
∈ Ω′ for all n ≥ n0.

In particular, for all n ≥ n0,

d(ω, Tω) ≤ α(xn, ω) d(ω, Tω) ≤ d(xn, ω)λ(α(xn, ω) d(ω, Tω), d(xn, ω)) ≤ d(xn, ω).

Letting n → ∞, we deduce that d(ω, Tω) = 0, which contradicts the fact that d(ω, Tω) > 0. As a
consequence, necessarily ω ∈ Tω.
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