[1] T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications,
Nonlinear Anal., 65 (2006), 1379-1393.
[2] Lj. B. Ciric, S. N. Jesic, J. S. Ume, On random coincidence for a pair of measurable mappings, J. Inequal. Appl.,
2006 (2006), 1-12. Article ID 81045.
[3] Lj. B. Ciric, V. Lakshmikantham, Coupled random fixed point theorems for nonlinear contractions in partially
ordered metric spaces, Stochastic Anal. Appl., 27 (2009), 1246-1259.
[4] B. C. Dhage, Generalized metric space and mapping with fixed point, Bulletin of the Calcutta Mathematical
Society, 84 (1992), 329-336.
[5] N. V. Dung, On coupled common fixed points for mixed weakly monotone maps in partially ordered S-metric
spaces, Fixed Point Theory Appl., 48 (2013), 1-17.
[6] S. Gahler, 2-metrische Raume und ihre topologische Struktur, Math. Nachr., 26 (1963), 115-148.
[7] M. E. Gordji, E. Akbartabar, Y. J. Cho, and M. Remezani, Coupled common fixed point theorems for mixed
weakly monotone mappings in partially ordered metric spaces, Fixed Point Theory Appl., 2012 (2012), 12 pages.
[8] A. Gupta, A common unique random fixed point theorems in S metric spaces, Mathematical Theory and Modeling,
5(9) (2015), 139-150.
[9] A. Gupta, E. Karapinar, On random coincidence point and random coupled fixed point theorems, Palest. J. Math.,
4(2) (2015), 348-359.
[10] V. Gupta, R. Deep, Some coupled fixed point theorems in partially ordered S metric spaces, Miskolc Math. Notes, 16(1) (2015), 181-194.
[11] C. J. Himmelberg, Measurable relations, Fund. Math., 87 (1975), 53-72.
[12] S. Itoh, A random fixed point theorem for a multi-valued contraction mapping, Pacific J. Math., 68 (1977), 85-90.
[13] B. Jiang, S. Xu, L. Shi, Coupled coincidence points for mixed monotone random operators in partially ordered
metric spaces, Abstr. Appl. Anal.,2014 (2014), 9 pages.
[14] V. Lakshmikantham, Lj. B.Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered
metric spaces, Nonlinear Anal., 70 (2009), 4341-4349.
[15] S. Mehta, A. D. Singh, Coupled random fixed point theorems in partially ordered metric spaces, Advances in Fixed
Point Theory, 2(2) (2012), 176-196.
[16] Z. Mustafa, B. Sims, Some remarks concerning D-metric spaces. Proceedings of the International Conferences on Fixed Point Theory and Applications, Yokohama Publ., Yokohama, (2003), 189-198.
[17] S. R. Singh, R. D. Daheriya and M. Ughade, Common random fixed point theorems for contractions of rational
type in ordered metric spaces, International Journal of Advanced Mathematical Sciences, 4(2) (2016), 37{43. 2
[18] S. R. Singh, M. Ughade and R. D. Daheriya, Some fixed point results in ordered s-metric spaces, Asian Research
Journal of Mathematics ,1(3) (2016), 1-19.
[19] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear and Convex Anal., 7(2)
(2006), 289-297.
[20] J. J. Nieto, A. Ouahab and R. Rodrguez-Lopez, Random fixed point theorems in partially ordered metric spaces,
Fixed Point Theory Appl., 2016 (2016), 19 pages.
[21] J. J. Nieto, R. Rodrguez-Lopez, Contractive mappings theorems in partially ordered sets and applications to
ordinary differential equations, Order, 22 (2005), 223-239.
[22] J. J. Nieto, R. Rodrguez-Lopez, Existence and uniqueness of fixed point in partially ordered sets and applications
to ordinary differential equations, Acta Math. Sin. Engl. Ser., 23 (2007), 2205-2212.
[23] N. S. Papageorgiou, Random fixed point theorems for measurable multifunctions in Banach spaces, Proc. Amer.
Math. Soc., 97 (1986), 507-514.
[24] A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix
equations, Proc. Amer. Math. Soc., 132(5) (2004), 1435-1443.
[25] J. Rocha, B. Rzepka, and K. Sadarangani, Fixed point theorems for contraction of rational type with PPF dependence in Banach spaces, J. Funct. Spaces, 2014 (2014), 8 pages.
[26] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Bech.,
64(3) (2012), 258-266.
[27] V. M. Sehgal, S. P. Singh, On random approximations and a random fixed point theorem for set-valued mappings,
Proc. Amer. Math. Soc., 95 (1985), 91-94.
[28] W. Shatanawi, Z. Mustafa, On coupled random fixed point results in partially ordered metric spaces, Matemat.
Bech., 64(2) (2012), 139-146.
[29] R. Shrivastava, R. Bhardwaj, M. Sharma, On quadruple random fixed point theorems in partially ordered metric
spaces, Journal of Information Engineering and Applications, 4(11) (2014), 42-52.
[30] D. H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optim., 15 (1977), 859-903.
[31] X.-H. Zhu and J.-Z. Xiao, Random periodic point and fixed point results for random monotone mappings in ordered
polish spaces, Fixed Point Theory Appl., 2010 (2010), 13 pages.