Common and coupled random fixed point theorems in S-metric spaces

Document Type: Original Article

Authors

1 Department of Mathematics, Faculty of Science, Assuit University, Assuit 71516, Egypt.

2 epartment of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt.

Abstract

The aim of this paper is to prove some common and coupled random fixed point theorems for a pair
of weakly monotone random operators satisfying some rational type contraction in the setting of partially
ordered S-metric space. Our results extend and generalize many existing results in the literature. Moreover, an example is given to support our results. Finally, the results are used to prove the existence and uniqueness of the solution of some random functional equations.

Keywords


[1] T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications,
Nonlinear Anal., 65 (2006), 1379-1393.

[2] Lj. B. Ciric, S. N. Jesic, J. S. Ume, On random coincidence for a pair of measurable mappings, J. Inequal. Appl.,
2006 (2006), 1-12. Article ID 81045.

[3] Lj. B. Ciric, V. Lakshmikantham, Coupled random fixed point theorems for nonlinear contractions in partially
ordered metric spaces, Stochastic Anal. Appl., 27 (2009), 1246-1259.

[4] B. C. Dhage, Generalized metric space and mapping with fixed point, Bulletin of the Calcutta Mathematical
Society, 84 (1992), 329-336.

[5] N. V. Dung, On coupled common fixed points for mixed weakly monotone maps in partially ordered S-metric
spaces, Fixed Point Theory Appl., 48 (2013), 1-17.

[6] S. Gahler, 2-metrische Raume und ihre topologische Struktur, Math. Nachr., 26 (1963), 115-148.

[7] M. E. Gordji, E. Akbartabar, Y. J. Cho, and M. Remezani, Coupled common fixed point theorems for mixed
weakly monotone mappings in partially ordered metric spaces, Fixed Point Theory Appl., 2012 (2012), 12 pages.

[8] A. Gupta, A common unique random fixed point theorems in S metric spaces, Mathematical Theory and Modeling,
5(9) (2015), 139-150.

[9] A. Gupta, E. Karapinar, On random coincidence point and random coupled fixed point theorems, Palest. J. Math.,
4(2) (2015), 348-359. 

[10] V. Gupta, R. Deep, Some coupled fixed point theorems in partially ordered S metric spaces, Miskolc Math. Notes, 16(1) (2015), 181-194.

[11] C. J. Himmelberg, Measurable relations, Fund. Math., 87 (1975), 53-72.

[12] S. Itoh, A random fixed point theorem for a multi-valued contraction mapping, Pacifi c J. Math., 68 (1977), 85-90.

[13] B. Jiang, S. Xu, L. Shi, Coupled coincidence points for mixed monotone random operators in partially ordered
metric spaces, Abstr. Appl. Anal.,2014 (2014), 9 pages.

[14] V. Lakshmikantham, Lj. B.Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered
metric spaces, Nonlinear Anal., 70 (2009), 4341-4349.

[15] S. Mehta, A. D. Singh, Coupled random fixed point theorems in partially ordered metric spaces, Advances in Fixed
Point Theory, 2(2) (2012), 176-196.

[16] Z. Mustafa, B. Sims, Some remarks concerning D-metric spaces. Proceedings of the International Conferences on Fixed Point Theory and Applications, Yokohama Publ., Yokohama, (2003), 189-198.

[17] S. R. Singh, R. D. Daheriya and M. Ughade, Common random fixed point theorems for contractions of rational
type in ordered metric spaces, International Journal of Advanced Mathematical Sciences, 4(2) (2016), 37{43. 2

[18] S. R. Singh, M. Ughade and R. D. Daheriya, Some fixed point results in ordered s-metric spaces, Asian Research
Journal of Mathematics ,1(3) (2016), 1-19.

[19] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear and Convex Anal., 7(2)
(2006), 289-297.

[20] J. J. Nieto, A. Ouahab and R. Rodrguez-Lopez, Random fixed point theorems in partially ordered metric spaces,
Fixed Point Theory Appl., 2016 (2016), 19 pages.

[21] J. J. Nieto, R. Rodrguez-Lopez, Contractive mappings theorems in partially ordered sets and applications to
ordinary differential equations, Order, 22 (2005), 223-239.

[22] J. J. Nieto, R. Rodrguez-Lopez, Existence and uniqueness of fixed point in partially ordered sets and applications
to ordinary differential equations, Acta Math. Sin. Engl. Ser., 23 (2007), 2205-2212.

[23] N. S. Papageorgiou, Random fixed point theorems for measurable multifunctions in Banach spaces, Proc. Amer.
Math. Soc., 97 (1986), 507-514.

[24] A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix
equations, Proc. Amer. Math. Soc., 132(5) (2004), 1435-1443.

[25] J. Rocha, B. Rzepka, and K. Sadarangani, Fixed point theorems for contraction of rational type with PPF dependence in Banach spaces, J. Funct. Spaces, 2014 (2014), 8 pages.

[26] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Bech.,
64(3) (2012), 258-266.

[27] V. M. Sehgal, S. P. Singh, On random approximations and a random fixed point theorem for set-valued mappings,
Proc. Amer. Math. Soc., 95 (1985), 91-94.

[28] W. Shatanawi, Z. Mustafa, On coupled random fixed point results in partially ordered metric spaces, Matemat.
Bech., 64(2) (2012), 139-146.

[29] R. Shrivastava, R. Bhardwaj, M. Sharma, On quadruple random fixed point theorems in partially ordered metric
spaces, Journal of Information Engineering and Applications, 4(11) (2014), 42-52.

[30] D. H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optim., 15 (1977), 859-903.

[31] X.-H. Zhu and J.-Z. Xiao, Random periodic point and fixed point results for random monotone mappings in ordered
polish spaces, Fixed Point Theory Appl., 2010 (2010), 13 pages.