[1] J. Banas, K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics,
60, Marcel Dekker, New York, (1980).
[2] J. Banas, M. Lecko, Fixed points of the product of operators in Banach algebra, Panamer. Math. J., 12 (2002),
101-109.
[3] J. Banas, M. Mursaleen, Sequence spaces, and measures of noncompactness with applications to differential and
integral equations, Springer, New York, (2014).
[4] J. Banas, B. Rzepka, An application of a measure of noncompactness in the study of asymptotic stability, Appl.
Math. Lett., 16 (2003), 1-6.
[5] J. Banas, B. Rzepka, On existence and asymptotic stability of solutions of a nonlinear integral equation, J. Math.
Anal. Appl., 284 (2003), 165-173.
[6] J. Banas, B. Rzepka, On local attractivity and asymptotic stability of solutions of a quadratic Volterra integral
equation, Appl. Math. Comput., 213 (2009), 102-111.
[7] J. Banas, K. Sadarangani, Solutions of some functional-integral equations in Banach algebra, Math. Comput.
Modeling, 38 (2003), 245-250.
[8] S. Chandrasekhar, Radiative Transfer, Oxford Univ Press, London, (1950).
[9] B. C. Dhage, On {condensing mappings in Banach algebras, Math. Student, 63 (1994), 146-152.
[10] D. Guo, V. Lakshmikantham, X. Z. Liu, Nonlinear Integral Equations in Abstract Spaces, Kluwer, Dordrecht,
[11] S. Hu, M. Khavani, W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Anal., 34 (1989),
261-266.
[12] K. Maleknejad, R. Mollapourasl, K. Nouri, Study on existence of solutions for some nonlinear functional integral
equations, Nonlinear Anal., 69 (8) (2008), 2582-2588.
[13] K. Maleknejad, K. Nouri, R. Mollapourasl, Existence of solutions for some nonlinear integral equations, Commun.
Nonlinear Sci. Numer. Simul., 14 (2009), 2559-2564.
[14] K. Maleknejad, K. Nouri, R. Mollapourasl, Investigation on the existence of solutions for some nonlinear
functional- integral equations, Nonlinear Anal., 71 (2009), 1575-1578.
[15] J. J. Nieto, R. Rodriguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary
differential equations, 22 (2005), 223-239.
[16] J. J. Nieto, R. Rodriguez-Lopez, Existence and uniqueness of fixed point in partially ordered sets and applications
to ordinary differential equations, Acta Math. Sin.(Engl. Ser.), 23 (2007), 2205-2212.
[17] A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix
equations, Proc. Amer. Math. Soc., 132 (2004), 1435-1443.
[18] B. Samet, C. Vetro, Coupled fixed point theorems for multi-valued nonlinear contraction mappings in partially
ordered metric spaces, Nonlinear Anal., 74 (2011), 4260-4268.