Suzuki type common fixed point theorems for four maps using a-admissible in partial ordered complex partial metric spaces

Document Type: Original Article

Authors

1 Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar-522510., A.P., India.

2 Department of Mathematics, NRI Institute of Technology, Agiripalli-521211, A.P., India.

Abstract

In this paper, we obtain Suzuki type common fixed point theorems for four maps using -admissible in
partial ordered complex partial metric spaces. Also, we give examples to illustrate our theorems.

Keywords


[1] M. Abbas, M. Arshad, A. Azam, Fixed points of asymptotically regular mappings in complex valued metric spaces,
Georgian Math. J., 20 (2013), 213-221.


[2] M. Abbas, Y. J. Cho, T. Nazir, Common fixed points of Ciric-type contractive mappings in two ordered generalized
metric spaces, Fixed Point Theory Appl., 2012 (2012), 17 pages.


[3] M. Abbas, B. Fisher, T. Nazir, Well-posedness and periodic point property of mappings satisfying a rational
inequality in an ordered complex valued metric spaces, Sci. Stud. Res. Ser. Math. Inform., 22 (2012), 5-24.


[4] M. Abbas, T. Nazir, S. Radenovic, Common fixed points of four maps in partially ordered metric spaces, Appl.
Math. Lett., 24 (2011), 1520-1526.
K. P. R. Rao, A. Sombabu, Commun. Nonlinear Anal. 5 (2018), 40-54.

[5] T. Abdeljawad, Meir-Keeler α-contractive fi xed and common fixed point theorem, Fixed Point Theory Appl., 2013
(2013), 10 pages.

[6] I. Altun, A. Erduran, Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory
Appl., 2011 (2011), 10 pages. 

[7] I. Altun, F. Sola, H. Simsek, Generalized contractions on partial metric spaces, Topology Appl., 157 (2010),
2778-2785.

[8] H. Aydi, Fixed point results for weakly contractive mappings in ordered partial metric spaces, J. Adv. Math. Stud.,
4 (2011), 1-12.

[9] A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Funct.
Anal. Optim., 32 (2011), 243-253.

[10] S. Banach, Surles operations densles ensembles abstracts.et leur application aux equations integrals, Fund. Math.,
3 (1922), 133-181.

[11] S. Chandok, D. Kumar, Some common fixed point results for rational type contraction mappings in complex valued
metric spaces, J. Operators, 2013 (2013), 6 pages.

[12] P. Dhivya, M. Marudai, Common fixed point theorems for mappings satisfying a contractive condition of rational
expression on an ordered complex partial metric space, Cogent Math., 4 (2017), 10 pages.

[13] E. Karapinar, Generalizations of Caristi Kirk's Theorem on Partial metric spaces, Fixed Point Theory Appl.,
2011 (2011), 7 pages.

[14] E. Karapinar, I. M. Erhan, Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett., 24
(2011), 1894-1899.

[15] E. Karapinar, P. Kumam, P. Salimi, On a-Ψ-Meir-Keeler contractive mappings, Fixed Point Theory Appl., 2013
(2013), 12 pages.

[16] C. Klin-eam, C. Suanoom, Some common fixed point theorems for generalized contractive type mappings on
complex valued metric spaces, Abstr. Appl. Anal., 2013 (2013), 6 pages.

[17] M. Kumar, P. Kumar, S. Kumar, Common fixed point theorems in complex valued metric spaces, J. Ana. Num.
Theor. 2 (2014), 103-109. 

[18] D. Ilic, V. Pavlovic, V. Rakocevic, Some new extensions of Banach's contraction principle to Partial metric
spaces, Appl. Math. Lett., 24 (2011), 1326-1330. 

[19] S. G. Matthews, Partial metric topology, Papers on general topology and applications (Flushing, NY, 1992), Ann.
New York Acad. Sci., 1994 (1994), 183-197. 

[20] H. K. Nashine, M. Imdad, M. Hasan, Common fixed point theorems under rational contractions in complex valued
metric spaces, J. Nonlinear Sci. Appl., 7 (2014), 42-50. 

[21] J. J. Nieto, R. Rodriguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to
ordinary di erential equations, Order, 22 (2005), 223-239.

[22] J. J. Nieto, R. Rodrguez-Lopez, Existence and Uniqueness of fixed point in partially ordered sets and applications
to ordinary differential equations, Acta Math. Sin. (Engl. Ser.), 23 (2007), 2205-2212.

[23] A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix
equations, Proc. Amer. Math. Soc., 132 (2004), 1435-1443.

[24] K. P. R. Rao, G. N. V. Kishore, A unique common fixed point theorem for four maps under ϕ-contractive
condition in partial metric spaces, Bull. Math. Anal. Appl., 3 (2011), 56-63.

[25] K. P. R. Rao, V. C. C. Raju, P. Ranga Swamy, S. Sadik, Common coupled fixed point theorems for four maps
using a-admissible functions in complex-valued b-metric spaces, Int. J. Pure Appl. Math., 108 (2016), 751-766.

[26] K. P. R. Rao, P. Ranga Swamy, M. Imdad, Suzuki type unique common fixed point theorems for four maps using
a-admissible functions in ordered partial metric spaces, J. Adv. Math. Stud., 9 (2016), 265-277.

[27] K. P. R. Rao, P. Ranga Swamy, S. Sadik, E. Taraka Ramudu, Suzuki type common fixed point theorems for four
maps using -admissible functions in partial ordered complex valued metric spaces, J. Prog. Res. Math., 7 (2016),928-939.

[28] K. P. R. Rao, K. R. K. Rao, V. C. C. Raju, A Suzuki type unique common coupled fixed point theorem in metric
spaces, Int. J. Inn. Res. Sci. Eng. Tech., 2 (2013), 5187-5192.

[29] F. Rouzkard, M. Imdad, Some common fixed point theorems on complex valued metric spaces, Comput. Math.
Appl., 64 (2012), 1866-1874.

[30] B. Samet, M. Rojovic, R. Lazovic, R. Stojiljkovic, Common fixed point results for non-linear contractions in
ordered partial metric spaces, Fixed Point Theory Appl., 2011 (2011), 14 pages. 2

[31] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for a-contractive type mappings, Nonlinear Anal., 75
(2012), 2154-2165.

[32] P. Shahi, J. Kumar, S. S. Bhatia, Coincidence and common fixed point results for generalized a-contractive
type mappings with applications, Bull. Belg. Math. Soc. Simon Stevin, 22 (2015), 299-318.

[33] N. Singh, D. Singh, A. Badal, V. Joshi, Fixed point theorems in complex valued metric spaces, J. Egyptian Math.
Soc., 24 (2016), 402-409.

[34] W. Sintunavarat, P. Kumam, Generalized common xed point theorems in complex valued metric spaces and
applications, J. Inequal. Appl., 2012 (2012), 12 pages.
K. P. R. Rao, A. Sombabu, Commun. Nonlinear Anal. 5 (2018), 40-54.

[35] K. Sitthikul, S. Saejung, Some fixed points in complex valued metric spaces, Fixed Point Theory Appl., 2012
(2012), 11 pages.

[36] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math.
Soc., 136 (2008), 1861-1869.

[37] T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313-5317.

[38] R. K. Verma, H. K. Pathak, Common fixed point theorems for a pair of mappings in complex valued metric spaces,
J. Math. Comput. Sci., 6 (2013), 18-26.