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Abstract

A class of generalized nonexpansive mappings in Banach spaces is considered and a new monotone hybrid
algorithm is presented for finding a common element of the zero point set of a maximal monotone operator
and the fixed point set of a generalized nonexpansive mapping. Under certain conditions on the associated
parameters, a strong convergence result is established. Moreover, the obtained result is applied to prove
a strong convergence theorem for finding a common element of the zero point set of a maximal monotone
operator and the fixed point set of a generalized nonexpansive mapping in a Hilbert space.
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1. Introduction

Let E be Banach space and its dual will be denoted by E∗. Let A ⊂ E×E∗ be a monotone mapping. If
0 ∈ Ax, then x is called a zero of A. A fundamental problem in nonlinear analysis and optimization problem
is finding such a point. For instance, let ψ : E → R ∪ {∞} be a proper lower semicontinuous (lsc) and
convex function. The subdifferential of ψ, ∂ψ ⊂ E × E∗, is defined at x ∈ E by

∂ψ(x) := {x∗ ∈ E∗ : ψy − ψx ≥ 〈y − x, x∗〉 , ∀ y ∈ E} .

The monotonicity nature of ∂ψ is well known and that 0 ∈ ∂ψ(x) if and only if x∗ is a minimizer of ψ.
Stipulating ∂ψ := A, it implies that in this case, finding a solution of the inclusion 0 ∈ Ax corresponds
to finding a minimizer of ψ. Moreover, any maximal monotone mapping A ⊂ R × R is known to be a

∗Corresponding author
Email address: moaibinu@yahoo.com / mathewa@dut.ac.za (M. O. Aibinu)

Received 2022-08-27



M. O. Aibinu, Commun. Nonlinear Anal. 1 (2023), 1–12 2

subdifferential of a proper, convex, and lsc function (See, e.g., [8] Corollary 4.5, p. 170). A prominent
method for solving such fundamental problem in general, is known as Proximal Point Algorithm (PPA). Let
Jrn denote the resolvent of A, for x1 ∈ E, PPA is given by

xn+1 = Jrnxn, n ∈ N,

where {rn} ⊂ {0,∞} . PPA has been studied widely in the literature, both in a Hilbert space (See, e.g.,
[12, 23, 24]) and Banach spaces (See, e.g., [13, 20, 26]). Typically, most paramount nonlinear problems of
mathematics often reduce to finding the fixed points of a certain operator with contractive type conditions.
Consequently, how to find the fixed points of such mappings are of great interest to many mathematicians.
Therefore, various modifications of Mann iteration (see e.g., [17]) and Ishikawa iteration (see e.g., [11]) have
been introduced for the study of nonlinear equations of nonexpansive type (see e.g., [9, 19, 6, 1, 2, 3]).

The hybrid iteration method with generalized projection was introduced for finding the fixed point of
relatively nonexpansive mapping T in a uniformly convex and uniformly smooth Banach space E, where T
is a self mapping of K, while K is a nonempty closed convex subset of E (See e.g., [18]). For x1 = x ∈ K

and n ∈ N, the iteration is given by

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
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

un = J−1 (λnJxn + (1− λn)JTxn) ,

Kn = {u ∈ Kn−1 ∩Qn−1 : ϕ(u, un) ≤ ϕ(u, xn)}

Qn = {u ∈ Kn−1 ∩Qn−1 : 〈xn − u, Jx− Jxn〉 ≥ 0}

xn+1 = ΠKn∩Qn
x,

where J is the duality mapping on E and {λn} ⊂ [0, 1]. Under the condition that lim sup
n→∞

λn < 1, the

sequence of iteration converges strongly to a fixed point of T.
An important generalization of the class of relatively nonexpansive mappings is the class of hemi-

relatively nonexpansive mappings. The above hybrid method iteration method is applicable to relatively
nonexpansive mapping, but it is not suitable for hemi-relatively nonexpansive mapping (See e.g., [14]). A
modification of hybrid iteration method, which is known as monotone hybrid method was introduced for
finding a fixed point of a closed hemi-relatively nonexpansive mapping in a uniformly convex and uniformly
smooth Banach space E (See, e.g., [27]). It is defined as follow: x1 = x ∈ K chosen arbitrarily, then
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







x1 = x ∈ K,K0 = Q0 = K,

un = J−1 (λnJxn + (1− λn)JTxn) ,

Kn = {u ∈ Kn−1 ∩Qn−1 : ϕ(u, un) ≤ ϕ(u, xn)}

Qn = {u ∈ Kn−1 ∩Qn−1 : 〈xn − u, Jx− Jxn〉 ≥ 0}

xn+1 = ΠKn∩Qn
x, n ∈ N.

Given lim sup
n→∞

λn < 1, the sequence of iteration converges strongly to a fixed point of T.

For finding a common element of the zero point set of a maximal monotone operator and the fixed point
set of a relatively nonexpansive mapping in a Banach space, the following iteration, which is being referred
to as hybrid method was considered.

Let K be a nonempty closed convex subset of a uniformly convex and uniformly smooth Banach space
E. Let A ⊂ E × E∗ be a monotone operator satisfying D(A) ⊂ K and for all r > 0, let Jr = (J + rA)−1 J.

Let T be a relatively nonexpansive mapping of K to itself such that F (T )∩A−10 6= ∅. For x1 = x ∈ K and
n ∈ N, the sequence {xn} is defined by


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

















un = J−1 (λnJxn + (1− λn)JTJrnxn) ,

Kn = {u ∈ Kn−1 ∩Qn−1 : ϕ(u, un) ≤ ϕ(u, xn)}

Qn = {u ∈ Kn−1 ∩Qn−1 : 〈xn − u, Jx− Jxn〉 ≥ 0}

xn+1 = ΠKn∩Qn
x,
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where J is the duality mapping on E and {λn} ⊂ [0, 1] and {rn} is a sequence in [a,∞) for some a > 0. Given
that lim inf

n→∞
(1− λn) > 0, the strong convergence of the sequence of iteration to ΠF (T )∩A−1x was established,

where ΠF (T )∩A−1 is the generalized projection from K onto F (T ) ∩A−10 (See e.g., [14]).

Finding a common element of the zero point set of a maximal monotone operator and the fixed point
set of a hemi-relatively nonexpansive mapping in a Banach space by using the hybrid method has also been
considered. It is an extention of the above result and a strong convergence result was obtained (See e.g.,
[14]).

Motivated by the previous results in this direction, this paper will consider the class of generalized
nonexpansive mappings in Banach spaces (See, e.g., [4, 19, 25, 21, 5]). The goal is to find a common element
of the zero point set of a maximal monotone operator and the fixed point set of a generalized nonexpansive
mapping in a Banach space. A new monotone hybrid algorithm is presented and the conditions which
guarantee the strong convergence of the generated sequence are established.

2. Preliminaries

Throughout this paper, the sets of all positive integers and real numbers will be denoted respectively
by N and R. Suppose E∗ is the dual of a real Banach space E. The strong convergence of a given sequence
{xn} of E to a given point p ∈ E will be denoted by xn → x. Let D(E) be the unit sphere centered at the
origin of E. Then, E is said to be smooth if the limit

lim
θ→∞

‖x+ θy‖ − ‖x‖

θ

exists for all x, y ∈ D(E). The space E is said to be uniformly smooth if the limit exists uniformly in
x, y ∈ D(E). The space E is strictly convex if ‖x+y

2 ‖ < 1 whenever x, y ∈ D(E) and x 6= y. It is said to be
uniformly convex if for each ǫ ∈ (0, 2], there exists δ > 0 such that ‖x+y

2 ‖ < 1− δ whenever x, y ∈ D(E) and
‖x− y‖ ≥ ǫ.

Definition 2.1. The normalized duality mapping J from E to 2E
∗

is defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x∗‖ = ‖x‖} ∀ x ∈ E.

J is known to be uniformly norm-to-norm continuous on bounded sets of E if E is uniformly smooth. Let
E be a smooth Banach space. The function ϕ : E × E → R is defined by

ϕ(x, y) = ‖x‖2 − 2 〈x, Jy〉+ ‖y‖2,

for all x, y ∈ E. Observe that in a framework of Hilbert space, ϕ(x, y) = ‖x− y‖2 ≥ 0. For all x, y, z ∈ E,

the following are well known

(i) (‖x‖ − ‖y‖)2 ≤ ϕ(x, y) ≤ (‖x‖+ ‖y‖)2 ,

(ii) ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2 〈x− z, Jz − Jy〉 ,

(iii) ϕ(x, y) = 〈x, Jx− Jy〉+ 〈x− y, Jy〉 ≤ ‖x‖‖Jx− Jy‖+ ‖x− y‖‖y‖.

Definition 2.2. Nonexpansive mappings: Let K be a closed subset of a Banach space E. A self-mapping
T of K is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ ∀ x, y ∈ K.

A self-mapping T : K → K is hemi-relatively nonexpansive if F (T ) 6= ∅ and

ϕ(p, Tx) ≤ ϕ(p, x) for all x ∈ K and p ∈ F (T ),
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where F (T ) = {x ∈ K : x = Tx} . A point p ∈ K is said to be an asymptotic fixed point of T if K contains
a sequence {xn} which converges weakly to p and lim

n→∞
‖xn − Txn‖ = 0. Denote the set of all asymptotic

fixed points of T by F̂ (T ). If F̂ (T ) = F (T ) 6= ∅, then a hemi-relative nonexpansive mapping T : K → K is
said to be relatively nonexpansive. Interested readers on asymptotic behavior of a relatively nonexpansive
mapping are referred to [7]. A mapping T : K → E is called generalized nonexpansive whenever F (T ) 6= ∅
and

ϕ(p, Tx) ≤ ϕ(p, x) for all x ∈ K and p ∈ F (T ).

Definition 2.3. Monotone mappings: Let A ⊂ E × E∗ with domain D(A) = {x ∈ E : Ax 6= ∅} and
range R(A) = ∪{Ax : x ∈ D(A)} be a multi-valued mapping. A−10 will denote the set of all points x ∈ E

such that 0 ∈ Ax. A is said to be monotone provided that 〈x− y, x∗ − y∗〉 ≥ 0, (x, x∗), (y, y∗) ∈ A. A is
said to be strictly monotone if 〈x− y, x∗ − y∗〉 > 0, (x, x∗), (y, y∗) ∈ T (x = y). A is said to be maximal if its
graph G(T ) = {(x, x∗) : x∗ ∈ Ax} is not properly contained in the graph of any other monotone mapping.
If A is maximal monotone, then the solution set A−10 is closed and convex. It is well known that if E is a
strictly convex, smooth, and reflexive Banach space, then a multi-valued monotone mapping A is maximal
if and only if R(J + rA) = E∗ for all r > 0, where R(J + rA) is the range of J + rA (For more details, see,
e.g., [22]).

Definition 2.4. Resolvent: Let E be a strictly convex, smooth, and reflexive Banach space and A ⊂ E×E∗

a maximal monotone mapping. Given r > 0 and x ∈ E, then there exists a unique xr ∈ D(A) such that
Jx ∈ Jxr + rAxr. Thus one can define a single-valued mapping Jr : E → D(A), which is being called the
resolvent of A by

Jrx = {z ∈ D(A) : Jx ∈ Jz + rAz} .

Jrx consists of one point and for all r > 0, A−10 = F (Jr), where F (Jr) is the set of fixed points of Jr. Also,
for all r > 0 and x ∈ E, the Yosida approximation Ar : C → E∗ is defined by

Arx =
1

r
(J − JJr)x.

For all r > 0 and x ∈ E, the following hold (See e.g, [16, 10])

(i) ϕ(p, Jrx) + ϕ(Jrx, x) ≤ ϕ(p, x) for all p ∈ A−10.

(ii) (Jrx,Arx) ∈ A.

Definition 2.5. Metric projection: Let K be a nonempty closed convex subset of a Hilbert space H. A
mapping PK : H → K of H onto K satisfying

‖x− PKx‖ = min
y∈K

‖x− y‖,

is called the metric projection. This set is known to be singleton. The metric projection has the important
property that; for x ∈ H and x0 ∈ K,x0 = PKx if and only if

〈x− x0, x0 − y〉 ≥ 0 ∀ y ∈ K.

Definition 2.6. Generalized projection: Let K be nonempty subset of a Banach space E. A mapping
ΠK : E → K of E onto K satisfying

ϕ(ΠKx, x) = min
y∈K

ϕ(y, x),

is called the generalized projection and it known to be singleton.
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Definition 2.7. Retraction: Let K be nonempty subset of a Banach space E. A mapping R : E → K is
called sunny if

R(Rx+ α(x−Rx)) = Rx,

for all x ∈ E and all α ≥ 0. If Rx = x for all x ∈ K, it is also called a retraction. A retraction which is
also sunny and nonexpansive is called a sunny nonexpansive retraction. If E is a smooth Banach space,
the sunny nonexpansive retraction of E onto K is denoted by RK . K is said to be a sunny generalized
nonexpansive retract of E provided that there exists a sunny generalized nonexpansive retraction R from E

onto K.

Reference will be made to the following results on sunny generalized nonexpansive retraction (See e.g,
[10, 15]).

Lemma 2.8. Let K be a nonempty closed subset of a smooth and strictly convex Banach space E. Let RK

be a retraction of E onto K. Then RK is sunny and generalized nonexpansive if and only if

〈x−RKx, JRKx− Jy〉 ≥ 0

for each x ∈ E and y ∈ K.

Lemma 2.9. Let K be a nonempty closed subset of a smooth and strictly convex Banach space E such that
there exists a sunny generalized nonexpansive retraction R from E onto K and let (x, z) ∈ E×K. Then the
following hold:

(i) z = Rx if and only if 〈x− z, Jy − Jz〉 ≤ 0 for all y ∈ K;

(ii) ϕ(x,RKy) + ϕ(RKy, y) ≤ ϕ(x, y).

Lemma 2.10. Let E be a smooth, strictly convex and reflexive Banach space and let K be a nonempty
closed subset of E. Then the following are equivalent:

(i) K is a sunny generalized nonexpansive retract of E;

(ii) K is a generalized nonexpansive retract of E;

(iii) JK is closed and convex.

The following well known results will also be needed.

Lemma 2.11. Let E be a uniformly convex and smooth Banach space and let {un} and {vn} be two sequences
in E such that either {un} or {vn} is bounded. If lim

n→∞
ϕ(un, vn) = 0, then lim

n→∞
‖un − vn‖ = 0 (See [13]).

Lemma 2.12. Let E be a uniformly convex and smooth Banach space and let r > 0. Then there exists a
strictly increasing, continuous and convex function g : [0, 2r] → [0,∞) such that g(0) = 0 and

g (‖x− y‖) ≤ ϕ(x, y)

for all x, y ∈ Br(0), where Br(0) = {z ∈ E : ‖z‖ ≤ r} (See e.g, [13]).

3. Main Results

Lemma 3.1. Let E be a strictly convex, smooth, and reflexive Banach space and let A ⊂ E × E∗ be a
maximal monotone mapping with A−10 6= ∅. For each r > 0, let Jr : E → E be the resolvent of A. Then Jr
is a generalized nonexpansive mapping.
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Proof. Let x ∈ E, y ∈ F (Jr) and r > 0. Since A is maximal monotone, recall that A−10 = F (Jr). Apply
Definition 2.4(i) to have

ϕ(y, Jrx) + ϕ(Jrx, x) ≤ ϕ(y, x) for all y ∈ A−10.

By Definition 2.1(i), ϕ(Jrx, x) ≥ 0. Consequently

ϕ(y, Jrx) ≤ ϕ(y, x).

Lemma 3.2. Let K be a nonempty closed subset of a smooth and strictly convex Banach space E. Let RK

be a sunny generalized nonexpansive retraction from E onto K. Then for all x, y ∈ E,

ϕ(x,RKy) ≤ ϕ(x, y).

Proof. By Lemma 2.9 (ii),

ϕ(x,RKy) + ϕ(RKy, y) ≤ ϕ(x, y) ∀ x, y ∈ E.

By Definition 2.1(i), ϕ(RKy, y) ≥ 0. Wherefore,

ϕ(x,RKy) ≤ ϕ(x, y).

Theorem 3.3. Let K be a nonempty closed convex subset of a uniformly convex and uniformly smooth
Banach space E. Let A ⊂ E × E∗ be a maximal monotone mapping and for all r > 0, the resolvent
Jr : E → E is associated to A. Let RK : E → K be a sunny and generalized nonexpansive retraction from
E onto K and T : K → E be a closed generalized nonexpansive mapping such that F (T ) ∩ A−10 6= ∅. For
each n ∈ N, the sequence {xn} is generated as by


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























x1 = x ∈ K, K0 = Q0 = K,

un = J−1 (λnJxn + (1− λn)JTRK (Jrnxn)) ,

vn = J−1 (βnJun + (1− βn)JTRK (Jrnxn)) ,

Kn = {u ∈ Kn−1 ∩Qn−1 : ϕ(u, vn) ≤ ϕ(u, xn)}

Qn = {u ∈ Kn−1 ∩Qn−1 : 〈xn − u, Jx− Jxn〉 ≥ 0}

xn+1 = RKn∩Qn
x,

where J is the duality mapping on E, {λn} and {βn} are sequences in [0, 1] such that lim inf
n→∞

(1 − λn) > 0

and lim
n→∞

βn = 1, while {rn} is a sequence in [a,∞) for some a > 0. Then the sequence {xn} converges

strongly to RF (T )∩A−10x, where RF (T )∩A−10 is the sunny nonexpansive retraction from K onto F (T )∩A−10.

Proof. Step 1: We show that JKn and JQn are closed and convex for all n ∈ N. It is obvious from the
definition of Kn and Qn that JKn is closed and JQn is closed and convex for each n ∈ N. The task is to
show that JKn is convex.

Observe that

ϕ(u, vn) ≤ ϕ(u, xn)

implies that for all u ∈ JKn,

‖xn‖
2 − ‖vn‖

2 − 2 〈u, Jxn − Jvn〉 ≥ 0,

which is affine in u, and thus JKn is convex. Consequently by Lemma 2.10, Kn ∩Qn is a closed and convex
subset of E for all n ∈ N.
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Step 2: We show that F (T ) ∩ A−10 ⊂ Kn ∩ Qn. Let p ∈ F (T ) ∩ A−10 and put zn = RK (Jrnxn) . By
the generalized nonexpansive property of T and Jrn , we have

ϕ (p, un) = ϕ
(

p, J−1 (λnJxn + (1− λn)JTzn)
)

= ‖p‖2 − 2 〈p, λnJxn + (1− λn)JTzn〉+ ‖λnJxn + (1− λn)JTzn‖
2

≤ ‖p‖2 − 2λn 〈p, Jxn〉 − 2(1− λn) 〈p, JTzn〉+ λn‖xn‖
2 + (1− λn)‖Tzn‖

2

= λnϕ (p, xn) + (1− λn)ϕ (p, Tzn)

≤ λnϕ (p, xn) + (1− λn)ϕ (p, zn) (3.1)

= λnϕ (p, xn) + (1− λn)ϕ (p,RK (Jrnxn))

≤ λnϕ (p, xn) + (1− λn)ϕ (p, Jrnxn)

≤ λnϕ (p, xn) + (1− λn)ϕ (p, xn)

= ϕ (p, xn) .

Therefore,

ϕ (p, vn) = ϕ
(

p, J−1 (βnJvn + (1− βn)JTzn)
)

= ‖p‖2 − 2 〈p, βnJvn + (1− βn)JTzn〉+ ‖βnJvn + (1− βn)JTzn‖
2

≤ ‖p‖2 − 2βn 〈p, Jvn〉 − 2(1 − βn) 〈p, JTzn〉+ βn‖vn‖
2 + (1− βn)‖Tzn‖

2

= βnϕ (p, vn) + (1− βn)ϕ (p, Tzn)

≤ βnϕ (p, vn) + (1− βn)ϕ (p, zn)

= βnϕ (p, vn) + (1− βn)ϕ (p,RK (Jrnxn))

≤ βnϕ (p, vn) + (1− βn)ϕ (p, Jrnxn)

≤ βnϕ (p, vn) + (1− βn)ϕ (p, xn)

≤ βnϕ (p, xn) + (1− βn)ϕ (p, xn)

= ϕ (p, xn) .

So p ∈ Kn for all n ∈ N, which indicates that F (T )∩A−10 ⊂ Kn. Next is to show that F (T )∩A−10 ⊂ Qn for
all n ∈ N. Recall that by the strictly convexity property of E since E is uniformly convex, J is one-to-one.
Therefore, for each n ∈ N, J (Kn ∩Qn) = JKn∩JQn is closed convex. By Lemma 2.10, Kn∩Qn is a sunny
generalized nonexpansive retract of E. To apply induction to show that F (T ) ∩ A−10 ⊂ Qn for all n ∈ N,

observe that for n = 1, by definition, F (T )∩A−10 ⊂ K = K0∩Q0. Assume that F (T )∩A−10 ⊂ Kk−1∩Qk−1

for some k ∈ N. Since xk = RKk−1∩Qk−1
x, applying Lemma 2.8 gives

〈x− xk, Jxk − Ju〉 ≥ 0,

for all u ∈ Kn−1 ∩Qn−1. Given that F (T ) ∩A−10 ⊂ Kk−1 ∩Qk−1, then

〈x− xk, Jxk − Ju〉 ≥ 0, ∀ u ∈ F (T ) ∩A−10. (3.2)

The definition of Qn and the inequality (3.2) implies that F (T )∩A−10 ⊂ Qk and consequently F (T )∩A−10 ⊂
Qn for all n ∈ N. Therefore, for all n ∈ N, F (T ) ∩ A−10 ⊂ Kn ∩ Qn and this justifies that {xn} is well
defined.

Step 3: Next is to show that xn → RF (T )∩A−10x as n→ ∞. The definition of Qn implies that xn = RQn
x.

Apply Lemma 2.9(ii) to obtain

ϕ(x, xn) = ϕ(x,RQn
x) ≤ ϕ(x, u) − ϕ(RQn

x, u) ≤ ϕ(x, u),

for all F (T ) ∩A−10 ⊂ Qn, that is, {ϕ(x, xn)} is bounded. Furthermore, by definition of ϕ, it is known that
{xn} , {un} and {zn} are bounded. Therefore, lim

n→∞
ϕ(x, xn) exists. For any positive integer k and for each
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n ∈ N, it can be obtained from xn = RQn
x that

ϕ (xn, xn+k) = ϕ (RQn
x, xn+k)

≤ ϕ (x, xn+k)− ϕ (x,RQn
x)

≤ ϕ (x, xn+k)− ϕ (x, xn) ,

consequently,

lim
n→∞

ϕ(xn, xn+k) = 0. (3.3)

On the grounds that {xn} is bounded, there exists r > 0 such that {xn}Br(0). By Lemma 2.12, there
exists a strictly increasing, convex and continuous function g : [0, 2r] → [0,∞) such that for m,n ∈ N with
m > n,

g (‖xm − xn‖) ≤ ϕ (xm, xn) ≤ ϕ (xm, x0)− ϕ (xn, x0) .

It can be deduced from the property of g that {xn} is a Cauchy sequence. Thus there exists ν ∈ K so that
xn → ν. By considering xn+1 = RKn∩Qn

x ∈ Kn and by the definition of Kn,

ϕ (xn+1, xn)− ϕ (xn+1, vn) ≥ 0, ∀ n ∈ N. (3.4)

By (3.3) and (3.4), it can be concluded that lim
n→∞

ϕ(xn+1, xn) = lim
n→∞

ϕ (xn+1, vn) = 0. In light of uniform

convexity and smoothness of E, apply Lemma 2.11 to get

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

‖xn+1 − vn‖ = 0,

thus

lim
n→∞

‖xn − vn‖ = 0.

The norm-to-norm uniform continuity of J on bounded sets leads to

lim
n→∞

‖Jxn+1 − Jxn‖ = lim
n→∞

‖Jxn+1 − Jvn‖ = ‖Jxn − Jvn‖ = 0. (3.5)

On account of the fact that {un} and {Tzn} are bounded and βn → 1 as n→ ∞, it can be deduced that

‖Jun − Jvn‖ = (1− βn)‖Jun − JTzn‖ → 0,

thus

‖Jxn+1 − Jun‖ ≤ ‖Jxn+1 − Jvn‖+ ‖Jvn − Jun‖ → 0 as n→ ∞, (3.6)

and by the norm-to-norm uniform continuity of J−1 on bounded sets,

lim
n→∞

‖xn+1 − un‖ = 0.

Moreover,

‖Jxn+1 − Jun‖ = ‖Jxn+1 − λnJxn − (1− λn)JTzn‖

= ‖(1− λn) (Jxn+1 − JTzn)− λn (Jxn − Jxn+1) ‖

≥ (1− λn)‖Jxn+1 − JTzn‖ − λn‖Jxn − Jxn+1‖.

It follows that

‖Jxn+1 − JTzn‖ ≤
1

(1− λn)
(‖Jxn+1 − Jun‖+ λn‖Jxn − Jxn+1‖) .
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By (3.5) and (3.6) with lim inf
n→∞

(1− λn) > 0, it is obtained that

lim
n→∞

‖Jxn+1 − JTzn‖ = 0.

Recall that J−1 is norm-to-norm uniformly continuous on bounded sets. Therefore

lim
n→∞

‖xn+1 − Tzn‖ = 0.

Note that
‖xn − Tzn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Tzn‖,

leads to
lim
n→∞

‖xn − Tzn‖ = 0.

Observe that by (3.1),

ϕ (p, zn) ≥
1

(1− λn)
(ϕ (p, un)− λnϕ (p, xn)) .

Recall that zn =: RK (Jrnxn) , by Lemma 2.9 (ii),

ϕ (zn, xn) = ϕ (RK (Jrnxn) , xn) ≤ ϕ (p, xn)− ϕ (p,RK (Jrnxn))

= ϕ (p, xn)− ϕ (p, zn)

≤ ϕ (p, xn)−
1

(1− λn)
(ϕ (p, un)− λnϕ (p, xn))

=
1

(1− λn)
(ϕ (p, xn)− ϕ (p, un))

=
1

(1− λn)

(

‖xn‖
2 − ‖un‖

2 − 2 〈p, Jxn − Jun〉
)

≤
1

(1− λn)

(

|‖xn‖
2 − ‖un‖

2|+ 2| 〈p, Jxn − Jun〉 |
)

≤
1

(1− λn)
(|‖xn‖ − ‖un‖| (‖xn‖+ ‖un‖) + 2‖p‖‖Jxn − Jun‖)

≤
1

(1− λn)
(‖xn − un‖ (‖xn‖+ ‖un‖) + 2‖p‖‖Jxn − Jun‖) .

Since lim
n→∞

‖xn − un‖ = 0 and by (3.6), observe that lim
n→∞

ϕ (zn, xn) = 0. Wherefore by Lemma 2.11,

lim
n→∞

‖zn − xn‖ = 0. (3.7)

Bearing in mind that xn → ν and lim
n→∞

‖zn − xn‖ = 0, thence zn → ν. Given that T is closed and zn → ν,

then ν is a fixed point of T. Next is to show that ν ∈ A−10. Using (3.7) and by the norm-to-norm uniform
continuity of J on bounded sets, it is obtained that

lim
n→∞

‖Jxn − Jzn‖ = 0.

For rn ≥ a, obtain that

lim
n→∞

1

rn
‖Jxn − Jzn‖ = 0,

wherefore

lim
n→∞

‖Arnxn‖ = lim
n→∞

1

rn
‖Jxn − Jzn‖ = 0.

For (s, s∗) ∈ A, the monotonicity of A gives that

〈s− zn, s
∗ −Arnxn〉 ≥ 0 for all n ∈ N.
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Letting n→ ∞ leads to
〈s− ν, s∗〉 ≥ 0.

The maximality of A ascertains that ν ∈ A−10. Next is to show that ν = RF (T )∩A−10x. Applying Lemma
2.9 gives

ϕ
(

ν,RF (T )∩A−10x
)

+ ϕ
(

RF (T )∩A−10x, x
)

≤ ϕ (ν, x) .

On account of xn+1 = RKn∩Qn
x and ν ∈ F (T ) ∩A−10 ⊂ Kn ∩Qn, apply Lemma 2.9 to obtain

ϕ
(

RF (T )∩A−10x, xn+1

)

+ ϕ (xn+1, x) ≤ ϕ
(

RF (T )∩A−10x, x
)

.

Then it can be deduced by the definition of ϕ that ϕ (ν, x) ≤ ϕ
(

RF (T )∩A−10x, x
)

and ϕ (ν, x) ≥ ϕ
(

RF (T )∩A−10x, x
)

,

thereby ϕ (ν, x) = ϕ
(

RF (T )∩A−10x, x
)

. Thus, considering that RF (T )∩A−10x is unique, the conclusion is that
ν = RF (T )∩A−10x.

The following result can be deduced from Theorem 3.3, which is the main result of this paper.

Corollary 3.4. Let K be a nonempty closed convex subset of a uniformly convex and uniformly smooth
Banach space E. Let A ⊂ E×E∗ be a maximal monotone mapping and for all r > 0, the resolvent Jr : E → E

is associated to A. Let RK : E → K be a sunny and generalized nonexpansive retraction from E onto K and
T : K → E be a closed generalized nonexpansive mapping such that F (T ) ∩ A−10 6= ∅. For each n ∈ N, the
sequence {xn} is generated as by































x1 = x ∈ K, K0 = Q0 = K,

un = J−1 (λnJxn + (1− λn)JTRK (Jrnxn)) ,

Kn = {u ∈ Kn−1 ∩Qn−1 : ϕ(u, vn) ≤ ϕ(u, xn)}

Qn = {u ∈ Kn−1 ∩Qn−1 : 〈xn − u, Jx− Jxn〉 ≥ 0}

xn+1 = RKn∩Qn
x,

where J is the duality mapping on E, {λn} is a sequence in [0, 1] such that lim inf
n→∞

(1 − λn) > 0 and {rn}

is a sequence in [a,∞) for some a > 0. Then the sequence {xn} converges strongly to RF (T )∩A−10x, where
RF (T )∩A−10 is the sunny nonexpansive retraction from K onto F (T ) ∩A−10.

Proof. By letting βn = 1 for all n ∈ N in Theorem 3.3, the desired result is obtained.

In the framework of Hilbert spaces, the main result of this paper is given as below.

Corollary 3.5. Let K be a nonempty closed convex subset of a Hilbert space H. Let A ⊂ H×H be a maximal
monotone mapping and for all r > 0, the resolvent Jr : H → H is associated to A. Let PK : H → K be a
metric projection from H onto K and T : K → H be a closed generalized nonexpansive mapping such that
F (T ) ∩A−10 6= ∅. For each n ∈ N, the sequence {xn} is generated as by











































x1 = x ∈ K, K0 = Q0 = K,

un = λnxn + (1− λn)TRK (Jrnxn) ,

vn = βnun + (1− βn)TRK (Jrnxn) ,

Kn = {u ∈ Kn−1 ∩Qn−1 : ‖u− vn‖ ≤ ‖u− xn‖}

Qn = {u ∈ Kn−1 ∩Qn−1 : 〈xn − u, x− xn〉 ≥ 0}

xn+1 = PKn∩Qn
x,

where {λn} and {βn} are sequences in [0, 1] such that lim inf
n→∞

(1 − λn) > 0 and lim
n→∞

βn = 1, while {rn} is

a sequence in [a,∞) for some a > 0. Then the sequence {xn} converges strongly to RF (T )∩A−10x, where
RF (T )∩A−10 is the metric projection from K onto F (T ) ∩A−10.

Proof. Recall that in a Hilbert space, ϕ(x, y) = ‖x − y‖2 for all x, y ∈ H and J is the identity mapping.
Therefore, the desired result readily follows from Theorem 3.3.
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4. Conclusion

PPA is a prominent method for solving nonlinear analysis and optimization problems. Its various
modifications and expansions have been considered in the literature, both in Hilbert space and Banach
spaces. A new monotone hybrid method which is amalgamated with PPA has been presented in this paper
for finding a common element of the zero point set of a maximal monotone operator and the fixed point
set of a generalized nonexpansive mapping. The required conditions on the associated parameters to obtain
a strong convergence result are established. The subdifferential of a proper, convex, and lsc function has
been already been cited as an example of a maximal monotone mapping. Real sequences which satisfy the
conditions stated in the main theorem are {λn} =

{

1
8 +

1
5n

}

and {βn} =
{

1− 1
2n

}

.

Abbreviation

lsc: lower semicontinuous. conditions stated in the main theorem are {λn} =
{

1
8 + 1

5n

}

and {βn} =
{

1− 1
2n

}

.
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