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Abstract

The aim of this article is to present a new framework for studying measures of noncompactness in G-
metric spaces. First, we introduce the concept of Ω-distance space as an Ω-measure of non-compactness on
G-metric spaces. Finally, we use our main result to characterize G-metric completeness.
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1. Introduction and Preliminaries

Measures of non-compactness is a function that determines how non-compact a set is. In 1930 Ku-
ratowski [14] developed and explored the first measure of non-compactness, the function α. Darbo [6], an
Italian mathematician, used the Kuratowski measure in 1955 to examine a class of operators (condensing
operators) whose features can be described as being intermediate between those of contraction and compact
mappings. Goldenstein et al [7] established the Hausdorff measure of non-compactness (χ) in 1957 (and
later investigated by Goldenstein and Markus [8], and Measure of non-compactness β by Istratescu [9] in
1972). A relevant measure of noncompactness in a given space is one that satisfies some requirement for
relative compactness and can be stated by a simple formula. In some spaces, the Hausdorff measure of
noncompactness satisfies these requirements. However, developing an useful measure of noncompactness
in desirable spaces is not an easy process. Several authors explored an axiomatic method to construct a
broad concept of measure of noncompactness in order to overcome this hurdle. For further information on
measures of noncompactness, see [3, 4, 10, 11, 15, 16, 17].

We take an axiomatic approach to this concept in this work, which includes the most significant
definitions. Let N represent the set of natural numbers, R the set of real numbers, and R

+ the set of
nonnegative real numbers.
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If (X, d) is a metric space and T its subset. P (X) denotes the set of all subsets of space X, whereas T̄
and δ(T ) signify the closure and diameter of T , respectively.

Definition 1.1. [5] Let (X, d) be a metric space. The function φ: P (X)−→[0,∞) is said to be measure of
non-compactness if it satisfies the following conditions:

1. φ(T )=∞ if and only if T is unbounded;

2. φ(T ) = φ(T̄ );

3. φ(T ) = 0, then T is totally bounded;

4. if T ⊆ R, then φ(T ) ≤ φ(R);

5. if X is complete, and {Sn} is a sequence of nonempty closed subsets of X such that Sn+1 ⊆ Sn for all

n ∈ N and lim
n→∞

φ(Sn)=0, then
∞⋂

n=1

(Sn) is a nonempty compact subset of X.

Definition 1.2. A set T in a metric space (X, d) is said to be totally bounded if for every ǫ>0 it can be
covered by a finite number of open balls of radius ǫ.

The Kuratowski measure of non-Compactness is defined as follows [5, 6, 18, 21]

Definition 1.3. Let (X, d) be a metric space. Kuratowski measure of non-compactness of a bounded set
T ⊆ X, denoted by α(T ), is the infimum of all ǫ>0 such that T can be covered by a finite number of sets
whose diameter is less than ǫ.

Theorem 1.4. (Kuratowski[14]) Let (X, d) be a complete metric space, and let {Sn} be a sequence of
nonempty closed and bounded subsets of X such that Sn+1⊆Sn for all n ∈ N and limn→∞ α(Sn)=0. Then,
∞⋂

n=1

Sn is a nonempty and compact subset of X.

.

In 2005, Mustafa and Sims[20] introduced the notion of a G-metric space as generalization of the
usual metric space. In this paper, we introduce the notion of Ω-measure of non-compactness on G-metric
space with respect Ω-distance in the sense of saadati et al[22], which is a generalization of the concept of a
ω-distance due to Kada et al. [12].

Definition 1.5. [22] Let X be a non-empty set and let G : X ×X ×X → R+ be a function satisfying the
following axioms:

(i) If G(x, y, z) = G(y, z, x) = G(z, x, y) = 0 if x = y = z

(ii) G(x, x, y) > 0 for all x, y ∈ X, where x 6= y,

(iii) G(x, x, z) ≤ G(x, y, z) for all x, y, z ∈ X, with z 6= y,

(iv) G(x, y, z) = G(p{x, y, z}), where p is permutation of x, y, z (symmetry),

(v) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X(rectangle inequality).

Then the function G is called a generalized metric, or more specifically G-metric on X, and the pair (X,G)
is called G-metric space.

Definition 1.6. [20] Let (X,G) be a G-metric space and let (xn) be a sequence of points of X. We say that
(xn) is G-convergent to x if for any ǫ > 0, there exists k ∈ N such that G(x, xn, xm) < ǫ for all n,m ≥ k.



Asif Hussain Jan, Tanweer Jalal, Commun. Nonlinear Anal. 1 (2023), 1-7 3

Definition 1.7. [20] Let (X,G) be a G-metric space. A sequence (xn) is called G-Cauchy sequence if,
for each ǫ > 0 there exists a positive integer m∗ ∈ N such that G(xn, xm, xl)<∈ for all n,m, l ≥m∗ i.e
G(x, xn, xl) −→ 0 as n,m, l −→ ∞.

Definition 1.8. [20] A G-metric space (X,G) is said to be G-complete if every G-Cauchy sequence in (X,G)
is G-convergent in X.

Definition 1.9. [20] Let (X,G) be a G-metric space and let {Fn} be a descending sequence (F1 ⊇ F2 ⊆
F3 ⊇ ...) of nonempty G-closed subsets of X such that sup{G(x, y, z) : x, y, z ∈ Fn} → 0 as n → ∞, then
(X,G) is G-complete if and only if ∩∞

n=1Fn consists of exactly one point.

Definition 1.10. [20] A G-metric space is said to be compact G-metric space if it is G-complete and
G-totally bounded.

Definition 1.11. [22] Let (X,G) be a G-metric space. Then K : X × X × X to R
+ is said to be an

Ω-distance on X if the following conditions are satisfied:

(i) K(x, y, z) ≤ K(x, a, a) +K(a, y, z) for all x, y, z, a ∈ X,

(ii) for any x, y ∈ X,K(x, y, .),K(x, ., y) : X → [0,∞) are lower semi-continuous.

(iii) for each ǫ > 0, there exists δ > 0 such that K(x, a, a) ≤ δ and K(a, y, z) ≤ δ imply G(x, y, z) ≤ ǫ.

Example 1.12. [22] Let (X, d) be a metric space and G : X ×X ×X to R
+ defined by

G(x, y, z) = max{d(x, y), d(y, z), d(x, z)}

for all x, y, z ∈ X. Then Ω = G is an Ω-distance on X.

2. Main Results

We will generalize Arandjelovic,s [1, 19] axiomatic definition of noncompactness measures on G-metric
spaces with a Ω-distance. The notions of diameter and Kuratowski measure of noncompactness are then
generalised in this setting, demonstrating that they are indeed Ω-measures of noncompactness. In addition,
we present a new characterization of G-metric completeness.

Definition 2.1. Let (X,G) be a G-metric space with an Ω-distanceK, let T be its subset. ThenK-diameter
of set T , denoted by δK(T ), is defined by

δK(T ) = sup
x,y,z∈T

K(x, y, z) (i)

If the above supremum exists and is finite, we say that set T is K-bounded otherwise T is K-unbounded.

Definition 2.2. Let (X,G) be a G-metric space with an Ω-distance K. The function φ : P (x) → [0,∞)
(where P(x) is the partitive set of X) is said to be Ω-measure of non-compactness if it satisfies the following
conditions:
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1. φ(T ) = ∞ if and only if T is K-unbounded;

2. φ(T ) = φ(T̄ );

3. if φ(T ) = 0, then T is totally bounded;

4. if T ⊆ R, then φ(T ) ≤ φ(R);

5. if X is complete and {Sn} is a sequence of non-empty compact subset of X such that Sn+1 ⊆ Sn for

all n ∈ N and lim
n→∞

φ(Sn) = 0, then
∞⋂

n=1

(Sn) is a non-empty compact subset of X.

Now, we introduce the first Ω-measure of noncompactness.

Theorem 2.3. If (X,G) is a G-metric space with an Ω-distance K, then δK(T ) is an Ω-measure of non
compactness on X.

Proof. It suffices to show that the function δK satisfies all the conditions in Definition (2.2).

1. This is obvious from Definition (2.1).

2. Since T ⊆ T̄ , Definition (2.1) implies that δK(T ) ≤ δK(T̄ ), the converse inequality must be proved.
Assume that δK(T ) < δK(T̄ ). Then there exists x, y, z ∈ T such that δ(T ) < K(x, y, z). Since
x, y, z ∈ T̄ , there are three sequences {xn}, {yn} and {zn} in T that converge to x, y and z respectively.
We get by using K ′s Lower-semicontinuity with respect to both variables:
δK(T ) < K(x, y, z) ≤ lim

n→∞
infK(xn, y, z) ≤ lim

n→∞
inf lim

n→∞
infK(xn, ym, zl) ≤ δK(T )

whhich is a contradiction.

3. Assume that T is a subset ofX, with δK(T ) = 0. According to the Definition (2.1),K(x, y, z) = 0 for all
x, y, z ∈ T . If T has four distinct points x, y, z and a, then we have K(x, y, z) = 0 and K(a, y, z) = 0.
By Definition (1.11) K(x, y, z) ≤ K(x, a, a) + K(a, y, z) i.e K(x, a, a) = 0. So K(x, y, z) = 0 and
K(a, y, z) = 0, by Defintion (1.5) x = y = z, a contradiction. Hence T is either an empty set or a
singleton. In both cases, T is totally bounded.

4. Evident again by definition (2.1).

5. Let {Sn} be a decreasing sequence of subsets and S be the intersection. We have δK(S) ≤ δK(Sn) → 0
by (4) because S ⊆ Sn for all n ∈ N. As a result, δK(S) = 0, implying that S is either empty or a
singleton set according to (3). Let us choose a point xn ∈ S for all n ∈ N. We will show that the
sequence {xn} converges to a point x ∈ S, implying that S = {x}. Indeed, for all m,n, l ∈ N with
m,n, l > N0(N0 ∈ N),K(xn, xm, xl) ≤ δK(Sn) → 0 as n → ∞ which by Definition (1.7) implies that
{xn} is a cauchy sequence in X, so it converges to a point x ∈ X because X is complete. It is easy to
see that x ∈ Sn for all n ∈ N and therefore x ∈ S. Hence S = {x}, which is non-empty and compact.

Now, we introduce the Kuratowski K-measure of non-compactness.

Definition 2.4. let (X,G) be a G-metric space with an Ω-distance K, and let T be its subset. Then we
define Kuratowski K-measure of non-compactness of set T , denoted by αK(T), as the infimum of all ǫ > 0
such that T can be covered by a finite number of subsets in X whose K-diameter is less tha ǫ.

The following properties are the consiquences of Definition (2.4).

Lemma 2.5. Let T, T1 and T2 be bounded subsets of a complete G-metric space (X, d) with an Ω-distance.
Then
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1. αK(T ) = 0 if and only if T̄ is compact, (regularity),

2. αK(T ) = αK(T̄ ), (invariance under the passage of closure),

3. T1 ⊂ T2, implies αK(T1) ≤ αK(T2), (monotonicity),

4. αK(T ∪ T1 ∪ T2) = max{αK(T ), αK(T1), αK(T2)},(maximum property),

5. αK(T ∩ T1 ∩ T2) ≤ min{αK(T ), αK(T1), αK(T2)}.

Proof. (1) and (3) are follows from Definition (2.4). Since T ⊆ T̄ , it is evidently αK(T ) ≤ αK(T̄ ). Let ǫ > 0,
Zi be a bounded subset of X with δK(Zi) < ǫ for i = 1, 2, 3, ..., n, and T ⊂ ∪n

i=1
Zi. Then T̄ ⊂ ¯∪n

i=1
Zi =

∪n
i=1

Z̄i. Since δK(Zi) = δK(Z̄i), we conclude that αK(T ) ≤ αK(T̄ ). This proves (2). From (3), we have
αK(T ) ≤ αK(T ∪ T1 ∪ T2) αK(T1) ≤ αK(T ∪ T1 ∪ T2) and αK(T2) ≤ αK(T ∪ T1 ∪ T2), and so

max{αK(T ), αK(T1), αK(T2)} ≤ αK(T ∪ T1 ∪ T2). (ii)

Let max {αK(T ), αK(T1), αK(T2)} = z and ǫ > 0. By Definition (2.4) we know that T, T1 and T2 can be
covered by finite number of subsets of diameter smaller than z + ǫ. Obviously, the union of these covers is
a finite cover of T ∪ T1 ∪ T2. Hence, we have αK(T1 ∪ T2) < z + ǫ, and now we obtain (4) from (ii). From
T ∩T1∩T2 ⊂ T1, T ∩T1∩T2 ⊂ T1 and T ∩T1∩T2 ⊂ T2 we obtain αK(T ∩T1∩T2) ≤ αK(T ), αK(T ∩T1∩T2) ≤
αK(T1) and αK(T ∩T1∩T2) ≤ αK(T2). Hence αK(T ∩T1∩T2) ≤ min{αk(T ), αK(T1), αK(T2)}. This proves
inequality (5) and hence the proof is completed.

Next theorem is the generalization of Theorem (1.4) on G-metric spaces.

Theorem 2.6. Let (X, d) be a complete G-metric space, and let {Sn} be a sequence of nonempty closed and

bounded subsets of X such that Sn+1⊆Sn for all n ∈ N and limn→∞ αK(Sn)=0. Then,
∞⋂

n=1

Sn is a nonempty

and compact subset of X.

Proof. Let S∞ = ∩∞
n=1Sn be subset of X. Clearly S∞ is a closed subset of X. Since S∞ ⊂ Sn for all

n = 1, 2, ..., we get from (1) and (3) of Lemma(2.5) that S∞ is a compact set. Now we show S∞ is
nonempty. Let xn ∈ Sn(n = 1, 2, 3, ...) and Xn = {xi : i ≥ n} for n = 1, 2, 3, .... Since Xn ⊂ Sn, we obtain
from (1), (3), and (4) of above Lemma(2.5) that

αK(X1) = αK(Xn) ≤ αK(Sn) (iii)

for each n. The assumption of our theorem and (iii) together αK(X1) = 0, hence X1 is a relatively compact
set. Thus the sequence (xn) has a convergent subsequence (xkn) with x = limxkn ∈ X, say. Since (Sn) is
closed in X, we get x ∈ (Sn) for all n = 1, 2, ..., that is, x ∈ S∞. This completes the proof.

Theorem 2.7. If (X,G) is a G-metric space with an Ω-distance K, then αK(T ) is a Ω-measure of non-
compactness.

Proof. Again we shall show that αK satisfies all conditions of definition 2.2.

1. This trivially follows from Definition (2.4).

2. It follows from (2) of Lemma (2.5).

3. Let Q be a subset of X such that δK(T ) = 0. Fix an arbitrary ǫ > 0 and choose δ = δ(
ǫ

2
) in

definition. Let Tj be any element of the covering of Q corresponding to δ in definition, so δK(Tj) < δ.
It follows then for every x, y, z, a ∈ Tj we have K(x, a, a) < δ,K(a, y, z) < δ. This inturn implies

G(x, y, z) ≤
ǫ

2
< ǫ by Definition (1.11), which means that δ(Tj) < ǫ i.e, diameter of every component

in the covering of T is less than ǫ. Since ǫ > 0 was arbitrary, we conclude that set T is totally bounded
(see[20] Definition 11).
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4. Obvious by definition (2.4).

5. Let {Sn} be the sequence as defined in (5) of Definition (2.2) and let S be its intersection. Then S

is closed because every Sn is closed. Since S ⊆ Sn for every n ∈ N, we have αK(S) ≤ αK(Sn) → 0
when n → ∞. So, αK(S) = 0, which implies that S is totally bounded set. But S is complete, so S is
actually relatively compact. It is also closed, which means that compact. That S is nonempty can be
shown same way as in the proof Theorem (2.6).

3. Characterizations of G-metric completeness

Cantor’s intersection theorem is well recognised for defining metric completeness. Similar results in the
setting of so-called partial metric space have recently been reported (see [23]).

The topic of describing metric completeness using non-compactness measures has long been open
(see[2]). Suzuki and Takahashi [24] are also notable for defining metric completeness using a generalised
Banach,s fixed point theorem on metric spaces with a ω-distance. The metric completeness was defined by
Aleksadar Kostic[13] using the ω measure of non-compactness. As a result of these findings, we wonder if
G-metric completeness can be described using the Ω-measure of non-compactness proposed in this study.
In the next theorem, we will give a positive answer.

Theorem 3.1. Let (X,G) be a G-metric space with an Ω-distance K. Then following conditions are
equivalent:

1. X is complete.

2. Every sequence (Sn) of non-empty closed subsets in X such that Sn+1 ⊆ Sn for all n ∈ N and
lim δK(Sn) = 0 has a singleton intersection.

3. Every sequence {Sn} of non-empty closed subsets in X such that Sn+1
⊆ Sn for all n ∈ N and

limδK(Sn) = 0 has a compact intersection.

Proof. The following chain of implications will be demonstrated.

(1) =⇒ (3):
Part (5) of the Theorem (2.7) demonstrate this.

(3) =⇒ (2):
Assume that the sequence {Sn} fulfills the requirements in (2). Since by Definition (2.1), αK(Sn) ≤ δK(Sn)
for all n ∈ N, it is clear that the sequence Sn also satisfies the conditions under (3), making its intersection
S is a non-empty and compact subset of X. Also δK(S) = 0, which can only happen if S is singleton.

(2) =⇒ (1):
Assume that (2) is true and X is not complete. Then in X , there is a cauchy sequence {xn} that is not
convergent. The set S={xn : n ∈ N} is simply demonstrated to be bounded and closed. Suppose X is a
G-metric space.

Define the mapping K : X ×X ×X → R
+ by

K(x, y, z) = max{d(x, y), d(x, z), d(y, z)} (iv)

Then, by above example, K ia an Ω-distance on X. Let Sn = {xk : k ≥ n} for all n ∈ N. Then we have
that every Sn is a non-empty closed subset of X such that Sn+1 ⊆ Sn for all n ∈ N and lim

n→∞
δK(Sn) =

lim
n→∞

sup
n,m≥l

K(xn, xm, xl)
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= lim
n→∞

sup
n,m≥l

max{d(xn, xm), d(xm, xl),d(xn, xl)}=0,

since {xn} is Cauchy. But then by (2), we obtain that
∞⋂

n=1

Sn = {x}, which is impossible because {xn}

would then converge to x.
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