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Abstract

Equations of Hammerstein type cover large variety of areas and are of much interest to a wide audience due
to the fact that they have applications in numerous areas. Suitable conditions are imposed to obtain a strong
convergence result for nonlinear integral equations of Hammerstein type with monotone type mappings. A
technique which does not involve the assumption of existence of a real constant whose calculation is unclear
has been used in this study to obtain the strong convergence result. Moreover, our technique is applied to
show the forced oscillations of finite amplitude of a pendulum as a specific example of nonlinear integral
equations of Hammerstein type. Numerical example is given for the illustration of the convergence of the
sequences of iteration. These are done to demonstrate to our readers that this approach can be applied to
problems arising in physical systems.
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1. Introduction

The concept of monotone operators which was introduced in the 1960s has been successfully applied by
many researchers to the equation of Hammerstein type. A nonlinear integral equation of Hammerstein type
on Ω (see, e.g., Hammerstein [? ]) is one of the form

u(x) +

∫
Ω
k(x, y)f(y, u(y))dy = h(x), (1.1)
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where dy stands for a σ-finite measure on the measure space Ω, the kernel k is defined on Ω × Ω, f is a
real-valued function defined on Ω × R and is in general nonlinear, h is a given function on Ω and u is the
unknown function defined on Ω. Let X be a real Banach space, X∗ its dual, F : X → X∗ a nonlinear
mapping of X into X∗ and K : X∗ → X a nonlinear mapping of X∗ into X. The abstract form of Eq. (1.1)
is given by

u+KFu = 0, (1.2)

where u ∈ X (see, e.g, Aibinu and Chidume [? ], Chidume and Bello [? ], Chidume and Yekini ([? ], Daman
[? ], Diop et al. [? ]). Hammerstein equations cover a large variety of areas and are of much interest to a
wide audience due to the fact that they have applications in numerous areas. Several problems that arise
in differential equations (ordinary and partial), for instance, elliptic boundary value problems whose linear
parts possess Green’s function can be transformed into the Hammerstein integral equations. Equations of
the Hammerstein type play a crucial role in the theory of optimal control systems and in automation and
network theory (see, e.g., Dolezale [? ]). Assuming existence, approximating a solution of Au = 0, where
A : X → X∗ is of monotone-type has been a recent subject of interest to the researchers (see, e.g, Aibinu
and Mewomo [? ? ], Aibinu et al. [? ], Chidume et al. [? ], Chidume and Bello [? ], Chidume and Idu
[? ]). Strong convergence theorems were established for nonlinear Hammerstein equation Eq. (1.2) under
the assumption of existence of a real constant whose calculation is unclear (see e.g, Chidume and Bello [?
], Chidume and Djitte [? ], Chidume and Idu [? ], Chidume and Ofoedu [? ], Chidume and Zegeye [? ],
Diop et al. [? ]).

In this paper, the goal is to establish a strong convergence theorem for nonlinear Hammerstein equation
Eq. (1.2), using a technique which does not require the assumption of existence of a real constant whose
calculation is unclear. This study considers nonlinear integral equations of Hammerstein type with (p, η)-
strongly monotone mapping, p > 1, and η ∈ (1,∞). Let E be a Banach space with dual E∗ and define
X := E × E∗. Let p > 1, η1, η1 ∈ (1,∞) and suppose F : E → E∗ is a (p, η1)-strongly monotone mapping
and K : E∗ → E is a (p, η2)-strongly monotone mapping such that D(K) = R(F ) = E∗. An arbitrary
mapping A : X → X∗, is defined in term of F and K. Suitable conditions are imposed to show that A is
a (p, η)-strongly monotone mapping with η = min {η1, η2} and to obtain a strong convergence result. The
forced oscillations of finite amplitude of a pendulum is shown as a specific example of nonlinear integral
equations of Hammerstein type. Numerical examples are also given for the illustration of the convergence
of the sequences of iteration. These show the application of our results in solving the problems which occur
in physical sciences.

2. Preliminaries

Definition 2.1. Let E be a real Banach space and S := {x ∈ E : ‖x‖ = 1}. E is said to have a G âteaux
differentiable norm if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2.1)

exists for each x, y ∈ S. A Banach space E is said to be smooth if for every x 6= 0 in E, there is a unique
x∗ ∈ E∗ such that ‖x∗‖ = 1 and 〈x, x∗〉 = ‖x‖, where E∗ denotes the dual of E. E is said to be uniformly
smooth if it is smooth and the limit (2.1) is attained uniformly for each x, y ∈ S.

Definition 2.2. The modulus of convexity of a Banach space E, δE : (0, 2]→ [0, 1] is defined by

δE(ε) = inf

{
1− ‖x+ y‖

2
: ‖x‖ = ‖y‖ = 1, ‖x− y‖ > ε

}
.

E is uniformly convex if and only if δE(ε) > 0 for every ε ∈ (0, 2]. A normed linear space E is said to be
strictly convex if

‖x‖ = ‖y‖ = 1, x 6= y ⇒ ‖x+ y‖
2

< 1.

It is well known that a space E is uniformly smooth if and only if E∗ is uniformly convex.
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Definition 2.3. Let X and Y be Banach spaces and A : X → Y be a mapping. A is uniformly continuous
if for each ε > 0, there exists δ > 0 such that

∀ x, y ∈ X with ‖x− y‖ < δ we have ‖Ax−Ay‖ < ε.

Let ψ(t) be a function on the set R+ of nonnegative real numbers such that:

(i) ψ is nondecreasing and continuous;

(ii) ψ(t) = 0 if and only if t = 0.

A is said to be uniformly continuous if it admits the modulus of continuity ψ such that

‖A(x)−A(y)‖ ≤ ψ(‖x− y‖) ∀ x, y ∈ X.

The modulus of continuity ψ has some useful properties which are listed below (for instance, see e.g, Altomare
et al. [? ], pp. 266-269, Forster [? ], Ipatov [? ]):

(a) Modulus of continuity is subadditive: For all real numbers t1 ≥ 0, t2 ≥ 0, we have

ψ(t1 + t2) ≤ ψ(t1) + ψ(t2).

(b) Modulus of continuity is monotonically increasing: If 0 ≤ t1 ≤ t2 holds for some real numbers t1, t2,
then

0 ≤ ψ(t1) ≤ ψ(t2).

(c) Modulus of continuity is continuous: The modulus of continuity ψ : R+ → R+ is continuous on the
set positive real numbers, in particular, the limit of ψ at 0 from above is

lim
t→0

ψ(t) = 0.

Definition 2.4. A set B is said to be compact if every open cover of B has a finite subcover. That is, if
{Un}∞n=1 is a collection of open sets such that B ⊆

⋃∞
n=1 Un, then there is a finite subcollection {Unk

}Kk=1

such that B ⊆
⋃K
k=1 Unk

.

Definition 2.5. Let ν : [0,∞) → [0,∞) be a continuous, strictly increasing function such that ν(t) → ∞
as t→∞ and ν(0) = 0 for any t ∈ [0,∞). Such a function ν is called a gauge function. A duality mapping
associated with the guage function ν is a mapping JEν : E → 2E

∗
defined by

JEν (x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖ν(‖x‖), ‖f‖ = ν(‖x‖)} ,

where 〈., .〉 denotes the duality pairing. For p > 1, let ν(t) = tp−1 be a gauge function. JE : E → 2E
∗

is
called a generalized duality mapping from E into 2E

∗
and is given by

JE(x) =
{
f ∈ E∗ : 〈x, f〉 = ‖x‖p, ‖f‖ = ‖x‖p−1

}
.

JE is uniformly continuous on bounded subsets of E. For p = 2, the mapping JE2 is called the normalized
duality mapping. In a Hilbert space, the normalized duality mapping is the identity map.

The following results about the generalized duality mappings are well known and have been established
in a number of works (see e.g., Alber and Ryazantseva [? ], p. 36, Cioranescu [? ], p. 25-77, Xu and Roach
[? ], Zǎlinescu [? ]). Let E be a Banach space, then,

(i) E is smooth if and only if JE is single-valued;

(ii) If E is reflexive, then JE is onto;
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(iii) If E has uniform Gâteaux differentiable norm, then JE is norm-to-weak∗ uniformly continuous on
bounded sets;

(iv) E is uniformly smooth if and only if JE is single valued and uniformly continuous on any bounded
subset of E;

(v) If E is strictly convex, then JE is one-to-one, that is, ∀ x, y ∈ E, x 6= y ⇒ JE(x) ∩ JE(y) = ∅;

(vi) If E and E∗ are strictly convex and reflexive, then JE
∗

is the generalized duality mapping from E∗ to
E and JE

∗
is the inverse of JE ;

(vii) If E is uniformly smooth and uniformly convex, the generalized duality mapping JE
∗

is uniformly
continuous on any bounded subset of E∗;

(viii) If E and E∗ are strictly convex and reflexive, for all x ∈ E and f ∈ E∗, the equalities JEJE
∗
f = f

and JE
∗
JEx = x hold.

Definition 2.6. Let C be a nonempty subset of E and A be a mapping from C into itself. Then,

(i) A is nonexpansive provided ‖Ax−Ay‖ ≤ ‖x− y‖ for all x, y ∈ C;

(ii) A is firmly nonexpansive type (see e.g., Kohsaka and Takahashi [? ]) if
〈
Ax−Ay, JEAx− JEAy

〉
≤〈

Ax−Ay, JEx− JEy
〉

for all x, y ∈ C.

Definition 2.7. Let E be a smooth Banach space and A : E → E∗, be a mapping with x, y ∈ E. A is said
to be monotone

〈x− y,Ax−Ay〉 ≥ 0.

A is called strongly monotone if

〈x− y,Ax−Ay〉 ≥ k‖x− y‖2,

where k is a positive constant (Alber and Ryazantseva [? ], page 25). Let p > 1, A is said to be (p, k)-strongly
monotone if

〈x− y,Ax−Ay〉 ≥ k‖x− y‖p,

for a constant k > 0 (Chidume and Djitte [? ] and Chidume and Shehu [? ]).

Remark 2.8.

According to definition of Chidume and Djitte [? ] and Chidume and Shehu [? ], a strongly monotone
mapping is referred to as a (2, k)-strongly monotone mapping.

A is called maximal monotone if it is monotone and its graph is not properly contained in the graph of
any other monotone mapping. As a result of Rockafellar [? ], it follows that A is maximum monotone if it
is monotone and the range of (JE + tA) is all of E∗ for some t > 0. Let E be a reflexive smooth strictly
convex space and A be a mapping such that the range of (JE + tA) is all of E∗ for some t > 0 and let x ∈ E
be fixed. Then for every t > 0, there corresponds a unique element xt ∈ D(A) such that

JEx = JExt + tAxt. (2.2)

Therefore, the resolvent of A is defined by JAt x = xt. In other words, JAt = (JE+tA)−1JE and A−10 = F (JAt )
for all t > 0, where F (JAt ) denotes the set of all fixed points of JAt . The resolvent JAt is a single-valued
mapping from E into D(A) (Kohsaka and Takahashi [? ]).

Definition 2.9. Alber [? ] introduced the functions φ : E × E → R, defined by

φ(x, y) = ‖x‖2 − 2
〈
x, JE2 y

〉
+ ‖y‖2, for all x, y ∈ E, (2.3)
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where JE2 is the normalized duality mapping from E to E∗. Let E be a smooth real Banach space and
p, q > 1 with 1

p + 1
q = 1. Aibinu and Mewomo [? ] introduced the functions φp : E × E → R, defined by

φp(x, y) =
p

q
‖x‖q − p

〈
x, JEy

〉
+ ‖y‖p, for all x, y ∈ E

and Vp : E × E∗ → R, defined as

Vp(x, x
∗) =

p

q
‖x‖q − p 〈x, x∗〉+ ‖x∗‖p ∀ x ∈ E, x∗ ∈ E∗,

where JE is the generalized duality mapping from E to E∗.

Remark 2.10. We have the following remarks follow from Definition 2.9 (Alber [? ], Aibinu and Mewomo
[? ]):

(i) For all x, y ∈ E,
(‖x‖ − ‖y‖)p ≤ φp(x, y) ≤ (‖x‖+ ‖y‖)p. (2.4)

(ii) It is obvious that

Vp(x, x
∗) = φp(x, J

E∗
x∗) ∀ x ∈ E, x∗ ∈ E∗. (2.5)

Definition 2.11. Let E be a topological real vector space and T a multivalued mapping from E into 2E
∗
.

Cauchy-Schwartz’s inequality is given by

| 〈x, y∗〉 | ≤ 〈x, x∗〉
1
2 〈y, y∗〉

1
2 , (2.6)

for any x and y in D(T ) and any choice of x∗ ∈ Tx and y∗ ∈ Ty (Zarantonello [? ]).

In the sequel, we shall need the lemmas whose proofs have been established (See e.g, Alber [? ], Aibinu
and Mewomo [? ]).

Lemma 2.12. Let E be a strictly convex and uniformly smooth real Banach space and p > 1. Then

Vp(x, x
∗) + p

〈
JE

∗
x∗ − x, y∗

〉
≤ Vp(x, x∗ + y∗) (2.7)

for all x ∈ E and x∗, y∗ ∈ E∗.

Lemma 2.13. Let E be a smooth uniformly convex real Banach space and p > 1 be an arbitrarily real
number. For d > 0, let Bd(0) := {x ∈ E : ‖x‖ ≤ d}. Then for arbitrary x, y ∈ Bd(0),

‖x− y‖p ≥ φp(x, y)− p

q
‖x‖q, where

1

p
+

1

q
= 1.

Lemma 2.14. Let E be a reflexive strictly convex and smooth real Banach space and p > 1. Then

φp(y, x)− φp(y, z) ≥ p
〈
z − y, JEx− JEz

〉
= p

〈
y − z, JEz − JEx

〉
for all x, y, z ∈ E. (2.8)

Lemma 2.15. Let E be a real uniformly convex Banach space. For arbitrary r > 0, let Br(0) :=
{x ∈ E : ‖x‖ ≤ r}. Then, there exists a continuous strictly increasing convex function

g : [0,∞)→ [0,∞), g(0) = 0,

such that for every x, y ∈ Br(0), jE(x) ∈ JE(x), jE(y) ∈ JE(y), we have
〈
x− y, jE(x)− jE(y)

〉
≥ g(‖x−y‖)

(See Xu [? ]).
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Lemma 2.16. Let {an} be a sequence of nonnegative real numbers satisfying the following relations:

an+1 ≤ (1− αn)an + αnσn + γn, n ∈ N,

where

(i) {α}n ⊂ (0, 1),

∞∑
n=1

αn =∞;

(ii) lim sup {σ}n ≤ 0;

(iii) γn ≥ 0,
∞∑
n=1

γn <∞.

Then, an → 0 as n→∞ (See Xu [? ]).

Lemma 2.17. Let E be a smooth uniformly convex real Banach space and let {xn} and {yn} be two sequences
from E. If either {xn} or {yn} is bounded and φ(xn, yn) → 0 as n → ∞, then ‖xn − yn‖ → 0 as n → ∞
(See Kamimura and Takahashi [? ]).

Lemma 2.18. For a real number p > 1, let X,Y be real uniformly convex and uniformly smooth spaces.

Let Z := X × Y with the norm ‖z‖Z =
(
‖u‖pX + ‖v‖pY

) 1
p for arbitrary z := (u, v) ∈ Z. Let Z∗ := X∗ × Y ∗

denotes the dual space of Z. For arbitrary z = (u, v) ∈ Z, define the map JZ : Z → Z∗ by

JZ(z) = JZ(u, v) =
(
JX(u), JY (v)

)
,

such that for arbitrary z1 = (u1, v1), z2 = (u2, v2) in Z, the duality pairing 〈., .〉 is given by〈
z1, J

Z(z2)
〉

=
〈
u1, J

X(u2)
〉

+
〈
v1, J

Y (v2)
〉
.

Then (see Chidume and Idu [? ]),

(i) Z is uniformly smooth and uniformly convex,

(ii) JZ is single-valued duality mapping on Z.

3. Main Result

Definition 3.1. Let E be a real smooth Banach space with dual space E∗. Let X := E × E∗ and define
∧p : X ×X → R by

∧p(x1, x2) = φp(u1, u2) + φp(v1, v2) ∀ x1, x2 ∈ X,

where respectively x1 = (u1, v1) and x2 = (u2, v2).

We first give and prove the following lemmas which are useful in establishing our main results.

Lemma 3.2. Let E be a uniformly smooth and uniformly convex real Banach space with the dual E∗. Let
p > 1, η1, η1 ∈ (1,∞) and suppose F : E → E∗, K : E∗ → E are respectively (p, η1)-strongly monotone and
(p, η2)-strongly monotone mappings such that D(K) = R(F ) = E∗. For a real number p > 1, let X := E×E∗

with norm ‖x‖X :=
(
‖u‖pE + ‖v‖pE∗

) 1
p ∀ x = (u, v) ∈ X and the dual is denoted by X∗ := E∗ ×E. Define a

mapping A : X → X∗ by

Ax = (Fu− v,Kv + u) , ∀ x = (u, v) ∈ X. (3.1)

Then A is a (p, η)-strongly monotone mapping, where η := min {η1, η2}.
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Proof. Let x1 = (u1, v1), x2 = (u2, v2) ∈ X. We have Ax1 = A(u1, v1) = (Fu1 − v1,Kv1 + u1) and
Ax2 = A(u2, v2) = (Fu2 − v2,Kv2 + u2) such that

Ax1 −Ax2 = (Fu1 − Fu2 − (v1 − v2),Kv1 −Kv2 + (u1 − u2)) .

Since F and K are strongly monotone with η1 and η2, respectively as constants of strong monotonicity, we
obtain,

〈x1 − x2, Ax1 −Ax2〉 = 〈u1 − u2, Fu1 − Fu2 − (v1 − v2)〉
+ 〈Kv1 −Kv2 + (u1 − u2), v1 − v2〉

= 〈u1 − u2, Fu1 − Fu2〉+ 〈u1 − u2,−(v1 − v2)〉
+ 〈v1 − v2,Kv1 −Kv2〉+ 〈v1 − v2, u1 − u2〉

≥ η1‖u1 − u2‖p + η2‖v1 − v2‖p

≥ min {η1, η2} (‖u1 − u2‖p + ‖v1 − v2‖p)
= η‖x1 − x2‖p.

Hence, A is a (p, η)-strongly monotone mapping.

Lemma 3.3. Let A : B → R be continuous and B be compact subset of E. Then there exists some T ∈ R
such that |A(x)| < T for all x ∈ B.

Proof. For contradiction suppose that A is unbounded. By definition of continuity, the set

Un = A−1 ((−n, n)) = {x : |A(x)| < n}

is open. Then

R =
∞⋃
n=1

(−n, n)⇒ B ⊆
∞⋃
n=1

A ((−n, n)) =
∞⋃
n=1

Un.

For x ∈ B, A(x) ∈ Un for some n, which implies that |A(x)| < n. However B is compact, therefore there is
a finite subcollection {Unk

}Kk=1 which is still a cover for k. Define

T := max {n1, n2, ..., nK} ,

and notice that for any x ∈ B, it must be that

A(x) ∈ Unk
for some k ≤ K ⇒ |A(x)| < nk ≤ T.

Hence, A is bounded.

Lemma 3.4. Let E be a uniformly smooth and uniformly convex real Banach space with the dual E∗. Let
p > 1, η1, η1 ∈ (1,∞) and suppose F : E → E∗ is a continuous (p, η1)-strongly monotone mapping such that
the range of (JE + t1F ) is all of E∗ and K : E∗ → E is a continuous (p, η2)-strongly monotone mapping
such that the range of (JE

∗
+ t2K) is all of E for some t1, t2 > 0 with D(K) = R(F ) = E∗. Let X := E×E∗

with norm ‖x‖X :=
(
‖u‖pE + ‖v‖pE∗

) 1
p ∀ x = (u, v) ∈ X and define a mapping A : X → X∗ by

Ax = (Fu− v,Kv + u) , ∀ x = (u, v) ∈ X. (3.2)

Then A is a continuous (p, η)-strongly monotone mapping such that the range of (JX + tA) is all of X∗ for
some t > 0, where η := min {η1, η2} .
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Proof. We show that R(JX + tA) = X∗ for some t > 0. Without loss of generality, let t0 be such that
0 < t0 < 1. Since F is such that R(JE + t0F ) = E∗ and by the strict convexity of E, we obtain for every
u ∈ E, there exists a unique ut0 ∈ E such that

JEu = JEut0 + t0Fut0 .

Define JEt0u := ut0 , in other words, define a single-valued mapping JEt0 : E → D(F ) by JEt0 = (JE+t0F )−1JE ,
where D(F ) is the domain of F. Such a JEt0 is called the resolvent of F. Similarly, since K is such that
R(JE

∗
+ t0K) = E and by strict convexity of E∗, define the resolvent JE

∗
t0 : E∗ → D(K) by JE

∗
t0 =

(JE
∗

+ t0K)−1JE
∗
, where D(K) is the domain of K. It is known that (JE + t0F ) and (JE

∗
+ t0K) are

bijections (see e.g, Chuang [? ]). It can be easily verified that if E is a smooth, strictly convex and reflexive
Banach space and F : E → E∗ is a monotone mapping with R(JE + tF ) = E∗, then for each t > 0, the
resolvent JEt of F defined by

JEt u =
{
z ∈ E : JEu = JEz + tFz

}
=
{(
JE + tF

)−1
JEu

}
for all u ∈ E is a firmly nonexpansive type mapping. Indeed, for each u, v ∈ E, t > 0 and for every

JEt u, J
E
t v ∈ E,

JEu−JE(JE
t u)

t ,
JEv−JE(JE

t v)
t ∈ F and by the monotonicity of F , we have〈

JEt x− JEt v,
JEu− JE(JEt u)

t
− JEv − JE(JEt v)

t

〉
≥ 0.

Such that 〈
JEt u− JEt v, JE(JEt x)− JE(JEt v)

〉
≤
〈
JEt x− JEt v, JEu− JEv

〉
.

Therefore, for h := (h1, h2) ∈ X, define G : X → X by

Gx =
(
JE

∗
t0 (h2 + t0v), JEt0 (h1 − t0u)

)
, ∀ x = (u, v) ∈ X.

By the Lipschitz continuity property of JE , we have

‖Gx1 −Gx2‖ ≤ t0‖x1 − x2‖ ∀ x1, x2 ∈ X.

Therefore G is a contraction. So by the Banach contraction mapping principle, G has a unique fixed point
x∗ := (u∗, v∗) ∈ X, that is Gx∗ = x∗ or equivalently u∗ = J∗Kt0 (h2 + t0v

∗) and v∗ = (JFt0 (h1 − t0u∗). These
imply (JX + t0A)x = h. Therefore, R(JX + t0A) = X∗. For t ≥ 1, it is obtained by similar analysis that
R(JX + tA) = X∗ (see e.g., Chidume and Shehu [? ]). Recall that A is (p, η)-strongly monotone by Lemma
3.2. Then A is an (p, η)-strongly monotone mapping with R(JX + tA) = X∗ for some t > 0.

Next is to give our main theorem.

Theorem 3.5. Let E be a uniformly smooth and uniformly convex real Banach space with the dual E∗. Let
p > 1, η1, η1 ∈ (1,∞) and suppose F : E → E∗ is a continuous (p, η1)-strongly monotone mapping such that
the range of (JE + t1F ) is all of E∗ and K : E∗ → E is a continuous (p, η2)-strongly monotone mapping
such that the range of (JE

∗
+ t2K) is all of E for some t1, t2 > 0 with D(K) = R(F ) = E∗. For arbitrary

u1 ∈ E and v1 ∈ E∗, let {un} and {vn} be the sequences defined iteratively by

un+1 = JE
∗ (
JEun − λn

(
Fun − vn + θn(JEun − JEu1)

))
, n ∈ N, (3.3)

vn+1 = JE
(
JE

∗
vn − λn

(
Kvn + un + θn(JE

∗
vn − JE

∗
v1)
))

, n ∈ N, (3.4)

where JE : E → E∗ is the generalized duality mapping with the inverse, JE
∗

: E∗ → E and the real sequences
{λn}∞n=1 ⊂ (0, 1) and {θn}∞n=1 in (0, 1

2) are such that,
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(i) lim
n→∞

θn = 0;

(ii)

∞∑
n=1

λnθn =∞; λn = o(θn);

(iii) lim
n→∞

((θn−1/θn)− 1) /λnθn = 0.

Suppose that 0 = u+KFu has a solution in E. Then the sequence {un} converges strongly to the solution
of u+KFu = 0.

Proof. Let X := E × E∗ with norm ‖x‖pX := ‖u‖pE + ‖v‖pE∗ ∀ x = (u, v) ∈ X. Define the sequence {xn}
in X by xn := (un, vn). Let u∗ ∈ E be a solution of u + KFu = 0. Observe that setting v∗ := Fu∗ and
x∗ := (u∗, v∗), we have that u∗ = −Kv∗.

We divide the proof into two parts.
Part 1: We prove that {xn} is bounded. Let p > 1 with 1

p + 1
q = 1 and u∗ ∈ E be a solution of the equation

0 = u + KFu. It suffices to show that φp(x
∗, xn) ≤ r, ∀ n ∈ N. The proof is by induction. Let r > 0 be

sufficiently large such that:

r ≥ max

{
φp(x

∗, x1), 4MQ,
4p

q
‖x‖q

}
, (3.5)

where M > 0 and Q > 0 are arbitrary but fixed. For n = 1, we have by construction that φp(x
∗, x1) ≤ r for

real p > 1. Assume that φp(x
∗, xn) ≤ r for some n ≥ 1. From inequality (2.4), we have ‖xn‖ ≤ r

1
p + ‖x∗‖ for

real p > 1. The next task is to show that φp(x
∗, xn+1) ≤ r. Let B := {z ∈ E : φp(x

∗, z) ≤ r} . JE is known
to be uniformly continuous on bounded subsets of E and F is bounded on B (Lemma 3.3). Define

M1 := sup
{
‖Fun − vn + θn(JEun − JEu1)‖ : θn ∈ (0, 1), un ∈ B

}
+ 1.

Let ψ1 denotes the modulus of continuity of JE
∗

and observe that JE
∗
(JEun) = un. Then

‖un − un+1‖ = ‖xn − JE
∗
(JEun − λn

(
Fun − vn + θn(JEun − JEu1)

)
)‖

= ‖JE∗
(JExn)− JE∗

(JExn − λn
(
Fun − vn + θn(JEun − JEu1)

)
)‖

≤ ψ1

(
|λn|‖Fun − vn + θn(JEun − JEu1)‖

)
≤ ψ1 (|λn|M1)

≤ ψ1 (sup {|λn|M1 : λn ∈ (0, 1)}) . (3.6)

The sup {|λn|M1} exists and it is a real number different from infinity due to the boundedness of F and
uniform continuity of JE on bounded subsets of E. Let Q1 =: ψ1 (sup {|λn|M1}) . Similarly, let ψ2 be the
modulus of continuity of JE : E → E∗ on bounded subsets of E and observe that JE(JE

∗
vn) = vn. Define

M2 := sup
{
‖Kvn + un + θn(JE

∗
vn − JE

∗
v1)‖ : θn ∈ (0, 1), vn ∈ B

}
+ 1,

then

‖vn − vn+1‖ ≤ ψ2 (sup {|λn|M2 : λn ∈ (0, 1)}) . (3.7)

Let Q2 =: ψ2 (sup {|λn|M2}) and define M := M1 + M2 and Q := Q1 + Q2. Let η := min {η1, η2} , by
applying Lemma 2.12 with y∗ := λn

(
Fun − vn + θn(JEun − JEu1)

)
and by using the definition of un+1, we
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compute as follows,

φp(u
∗, un+1) = φp

(
u∗, JE

∗ (
JEun − y∗

))
= Vp

(
u∗, JEun − λn

(
Fun − vn + θn(JEun − JEu1)

))
≤ Vp(u

∗, JEun)

−pλn
〈
JE

∗
(JEun − y∗)− u∗, Fun − vn + θn(JEun − JEu1)

〉
= φp(u

∗, un)− pλn
〈
un − u∗, Fun − vn + θn(JEun − JEu1)

〉
−pλn

〈
JE

∗
(JEun − y∗)− un, Fun − vn + θn(JEun − JEu1)

〉
.

By Schwartz inequality and by applying inequality (3.6), we obtain

φp(u
∗, un+1) ≤ φp(u

∗, un)− pλn
〈
un − u∗, Fun − vn + θn(JEun − JEu1)

〉
+ pλnM1Q1

= φp(u
∗, un)− pλn 〈un − u∗, Fun − Fu∗〉 (since u∗ ∈ N(F ))

−pλn 〈un − u∗, v∗ − vn〉 − pλnθn
〈
un − u∗, JEun − JEu1

〉
+ pλnM1Q1.

By Lemma 2.14, p
〈
un − u∗, JEu1 − JEun

〉
≤ φp(u∗, u1)− φp(u∗, un). Consequently,

p
〈
un − u∗, JEu1 − JEun

〉
≤ φp(u

∗, u1). Therefore, using (p, η1)-strongly monotonicity property of F, we
have,

φp(u
∗, un+1) ≤ φp(u

∗, un)− pη1λn‖un − u∗‖p − pλn 〈un − u∗, v∗ − vn〉
+pλnθnp 〈un − u∗, Ju1 − Jun〉+ pλnM1Q1

≤ φp(u
∗, un)− pλn‖un − u∗‖p − pλn 〈un − u∗, v∗ − vn〉

+pλnθnφp(u
∗, u1) + pλnM1Q1

≤ φp(u
∗, un)− pλn

(
φp(u

∗, un)− p

q
‖u∗‖q

)
− pλn 〈un − u∗, v∗ − vn〉

+pλnθnφp(u
∗, u1) + pλnM1Q1

= (1− pλn)φp(u
∗, un) + pλn

p

q
‖u∗‖q − pλn 〈un − u∗, v∗ − vn〉

+pλnθnφp(u
∗, u1) + pλnM1Q1. (3.8)

Similarly,

φp(v
∗, vn+1) = φp

(
v∗, JE

(
JE

∗
vn − λn

(
Kvn + un + θn(JE

∗
vn − JE

∗
v1)
)))

= Vp

(
v∗, JE

∗
vn − λn

(
Kvn + un + θn(JE

∗
vn − JE

∗
v1)
))

≤ Vp(v
∗, JE

∗
vn)− pλn

〈
JE(JE

∗
vn − λn

(
Kvn + un + θn(JE

∗
vn − JE

∗
v1)
)

)− v∗, y∗
〉

(by Lemma (2.12) where y∗=Kvn + un + θn(JE
∗
vn − JE

∗
v1)

= φp(v
∗, vn)− pλn 〈vn − v∗, y∗〉

−pλn
〈
JE(JE

∗
vn − λn

(
Kvn + un + θn(JE

∗
vn − JE

∗
v1)
)

)− vn, y∗
〉
.

By Schwartz inequality and by applying inequality (3.7), we obtain

φp(v
∗, vn+1) ≤ φp(v

∗, vn)− pλn
〈
vn − v∗,Kvn + un + θn(JE

∗
vn − JE

∗
v1)
〉

+ pλnM2Q2

= φp(v
∗, vn)− pλn 〈vn − v∗,Kvn −Kv∗〉 (since v∗ ∈ N(K))

−pλn 〈vn − v∗, un − u∗〉 − pλnθn
〈
vn − v∗, JE

∗
vn − JE

∗
v1

〉
+ pλnM2Q2.
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By Lemma 2.14, p
〈
vn − v∗, JE

∗
v1 − JE

∗
vn
〉
≤ φp(v∗, v1)− φp(v∗, vn). Consequently,

p
〈
vn − v∗, JE

∗
v1 − JE

∗
vn
〉
≤ φp(v

∗, v1). Therefore, using (p, η2)-strongly monotonicity property of K, we
have,

φp(v
∗, vn+1) ≤ φp(v

∗, vn)− pη2λn‖vn − v∗‖p − pλn 〈vn − v∗, un − u∗〉
+pλnθn

〈
vn − v∗, J−1v1 − J−1vn

〉
+ pλnM2Q2

≤ φp(v
∗, vn)− pη2λn‖vn − v∗‖p + pλn 〈un − u∗, vn − v∗〉

+pλnθnφp(v
∗, v1) + pλnM2Q2

≤ φp(v
∗, vn)− pλn

(
φp(v

∗, vn)− p

q
‖v∗‖q

)
+ pλn 〈un − u∗, vn − v∗〉

+pλnθnφp(v
∗, v1) + pλnM2Q2

= (1− pλn)φp(v
∗, vn) + pλn

p

q
‖v∗‖q + pλn 〈un − u∗, vn − v∗〉

+pλnθnφp(v
∗, v1) + pλnM2Q2. (3.9)

Adding (3.8) and (3.9) gives

∧p(x∗, xn+1) ≤ (1− pλn)∧p(x∗, xn) + pλn
p

q
‖x∗‖q + pλnθn∧p(x∗, x1) + pλnMQ

≤ (1− pλn) r + pλn
r

4
+ pλn

r

2
+ pλn

r

4

=

(
1− pλn + p

λn
4

+ p
λn
2

+ p
λn
4

)
r = r.

Hence, ∧p(x∗, xn+1) ≤ r. By induction, ∧p(x∗, xn) ≤ r ∀ n ∈ N. Thus, from inequality (2.4), {xn} is
bounded.

Part 2: We now show that {xn} converges strongly to a solution of Ax = 0. Observe that u∗ in E is a
solution of u+KFu = 0 if and only if x∗ = (u∗, v∗) is a solution of Ax = 0 in X for v∗ = Fu∗ ∈ E∗, since
Ax = (Fu− v,Kv + u) with x := (u, v) . This implies that

Fu∗ − v∗ = 0,

Kv∗ + u∗ = 0.

We recall that (p, η)-strongly monotone implies monotone and it is given that the range (JBp + tA) is all of
X∗ for all t > 0. By Kohsaka and Takahashi [? ], since X is a reflexive smooth strictly convex space, we
obtain for every t > 0 and x ∈ X, there exists a unique xt ∈ X such that

JXx = JXxt + tAxt. (3.10)

Define JXt x := xt, in other words, define a single-valued mapping JXt : E → D(A) by JXt = (JX + tA)−1JX .
Such a JXt is called the resolvent of A. Setting t := 1

θn
and by the result of Aoyama et al. [? ] and Reich [?

], for some (u1, v1) := x1 ∈ X, there exists in X a unique sequence

(yn, zn) :=

(
JX +

1

θn
A

)−1

JX (u1, v1) (3.11)

with (yn, zn)→ (u∗, v∗) := x∗ ∈ A−1(0), where A (yn, zn) = (Fyn − zn,Kzn + yn) . It can be obtained that

θn
(
JEyn − JEu1

)
+ Fyn − zn = 0, (3.12)

θn

(
JE

∗
zn − JE

∗
v1

)
+Kzn + yn = 0, (3.13)
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where {yn} and {zn} are known to be bounded since they are convergent sequences. Therefore, it is required
to show that un → yn and vn → zn as n→∞. Following the same arguments as in part 1, we obtain,

φp(yn, un+1) ≤ φp(yn, un)− pλn
〈
un − yn, Fun − vn + θn(JEun − JEu1)

〉
+ pλnM1Q1 and (3.14)

φp(zn, vn+1) ≤ φp(zn, vn)− pλn
〈
vn − zn,Kvn + un + θn(JE

∗
vn − JE

∗
v1)
〉

+ pλnM2Q2. (3.15)

By the (p, η1)-strong monotonicity of F and using Lemma 2.15 and Eq. (3.12), we obtain,〈
un − yn, Fun − vn + θn(JEun − JEu1)

〉
=

〈
un − yn, Fun − vn + θn(JEun − JEyn + JEyn − JEu1)

〉
= θn

〈
un − yn, JEun − JEyn

〉
+
〈
un − yn, Fun − vn + θn(JEyn − JEu1)

〉
= θn

〈
un − yn, JEun − JEyn

〉
+ 〈un − yn, Fun − vn − (Fyn − zn)〉

≥ θng(‖un − yn‖) + 〈un − yn, Fun − Fyn〉+ 〈un − yn, zn − vn〉
≥ θng(‖un − yn‖) + η1‖un − yn‖p + 〈un − yn, zn − vn〉 (since F is (p, η1)-strongly monotone and by Lemma 2.15)

≥ 1

p
θnφp(yn, un) + 〈un − yn, zn − vn〉 .

Therefore, the inequality (3.14) becomes

φp(yn, un+1) ≤ (1− λnθn)φp(yn, un)− pλn 〈un − yn, zn − vn〉+ pλnM1Q1. (3.16)

By the (p, η2)-strong monotonicity of K and using Lemma 2.15 and Eq. (3.13), we obtain,〈
vn − zn,Kvn + un + θn(JE

∗
vn − JE

∗
v1)
〉

=
〈
vn − zn,Kvn + un + θn(JE

∗
vn − JE

∗
zn + JE

∗
zn − JE

∗
v1)
〉

= θn

〈
vn − zn, JE

∗
vn − JE

∗
zn

〉
+
〈
vn − zn,Kvn + un + θn(JE

∗
zn − JE

∗
v1)
〉

= θn

〈
vn − zn, JE

∗
vn − JE

∗
zn

〉
+ 〈vn − zn,Kvn + un − (Kzn + yn)〉

≥ θng(‖vn − zn‖) + 〈vn − zn,Kvn −Kzn〉+ 〈vn − zn, un − yn〉
≥ θng(‖vn − zn‖) + η2‖vn − zn‖p + 〈vn − zn, un − yn〉 (since K is (p, η2)-strongly monotone and by Lemma 2.15)

≥ 1

p
θnφp(zn, vn) + 〈vn − zn, un − yn〉 .

Therefore, the inequality (3.15) becomes

φp(zn, vn+1) ≤ (1− λnθn)φp(zn, vn)− pλn 〈vn − zn, un − yn〉+ pλnM2Q2. (3.17)

Observe that by Lemma 2.14, we have

φp(yn, un) ≤ φp(yn−1, un)− p
〈
yn − un, JEyn−1 − JEyn

〉
= φp(yn−1, un) + p

〈
un − yn, JEyn−1 − JEyn

〉
≤ φp(yn−1, un) + ‖JEyn−1 − JEyn‖‖un − yn‖, (3.18)

and similarly

φp(zn, vn) ≤ φp(zn−1, vn)− p
〈
zn − vn, JE

∗
zn−1 − JE

∗
zn

〉
= φp(zn−1, vn) + p

〈
vn − zn, JE

∗
zn−1 − JE

∗
zn

〉
≤ φp(zn−1, vn) + ‖JE∗

zn−1 − JE
∗
zn‖‖vn − zn‖. (3.19)
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Let R > 0 such that ‖u1‖ ≤ R, ‖yn‖ ≤ R for all n ∈ N. Since {θn}∞n=1 is a decreasing sequence, it is
known that θn−1 ≥ θn. Therefore,

θn−1 − θn
θn

=
θn−1

θn
− 1 ≥ 0.

From Eq.(3.12), one can obtain that

JEyn−1 − JEyn +
1

θn
(Fyn−1 − zn−1 − (Fyn − zn)) =

θn−1 − θn
θn

(
JEu1 − JEyn−1

)
.

By taking the duality pairing of each side of this equation with respect to yn−1 − yn and by the strong
monotonicity of A, we have〈

JEyn−1 − JEyn, yn−1 − yn
〉

+ 〈zn − zn−1, yn−1 − yn〉 ≤
θn−1 − θn

θn
‖JEu1 − JEyn−1‖‖yn−1 − yn‖,

which gives,

‖JEyn−1 − JEyn‖ ≤
(
θn−1

θn
− 1

)
‖JEyn−1 − JEu1‖. (3.20)

Similarly, for R > 0 such that ‖v1‖ ≤ R, ‖zn‖ ≤ R for all n ∈ N, we obtain from Eq.(3.13) that

‖JE∗
zn−1 − JE

∗
zn‖ ≤

(
θn−1

θn
− 1

)
‖JE∗

zn−1 − JE
∗
v1‖. (3.21)

Using (3.18) and (3.20), the inequality (3.16) becomes

φp(yn, un+1) ≤ (1− λnθn)φp(yn−1, un) + C1

(
θn−1

θn
− 1

)
− pλn 〈un − yn, zn − vn〉+ pλnM1Q1, (3.22)

for some constant C1 > 0 and using (3.19) and (3.21), the inequality (3.17) becomes

φp(zn, vn+1) ≤ (1− λnθn)φp(zn−1, vn) + C2

(
θn−1

θn
− 1

)
− pλn 〈vn − zn, un − yn〉+ pλnM2Q2, (3.23)

for some constant C2 > 0. Adding (3.22) and (3.23) gives

∧(wn, xn+1) ≤ (1− λnθn) ∧ (wn−1, xn) + C

(
θn−1

θn
− 1

)
+ pλnMQ,

where wn := (yn, zn) and C := C1 +C2 > 0. By Lemma 2.16, φ(wn−1, xn)→ 0 as n→∞ and using Lemma
2.17, we have that xn − wn−1 → 0 as n → ∞ (See e.g, Chidume and Djitte [? ]). Since wn → x∗ ∈ N(A),
we obtain that xn → x∗ as n→∞. But xn = (un, vn) and x∗ = (u∗, v∗), this implies that un → u∗ which is
the solution of the Hammerstein equation.

Corollary 3.6. Let H be a Hilbert space, p > 1 and η1, η2 ∈ (1,∞). Suppose F : H → H is a continuous
(p, η1)-strongly monotone mapping such that the range of (I+t1F ) is all of H and K : H → H is a continuous
(p, η2)-strongly monotone mapping such that the range of (I + t2K) is all of H for some t1, t2 > 0. Let {un}
and {vn} be the sequences in H defined iteratively for arbitrary points u1, v1 ∈ H by

un+1 = un − λn(Fun − vn)− λnθn(un − u1), n ∈ N, (3.24)

vn+1 = vn − λn(Kvn + un)− λnθn(vn − v1), n ∈ N, (3.25)

where the real sequences {λn}∞n=1 ⊂ (0, 1) and {θn}∞n=1 in (0, 1
2) are such that,
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(i) lim
n→∞

θn = 0;

(ii)

∞∑
n=1

λnθn =∞; λn = o(θn);

(iii) lim
n→∞

((θn−1/θn)− 1) /λnθn = 0.

Suppose that 0 = u+KFu has a solution in E. Then the sequence {un} converges strongly to the solution
of u+KFu = 0.

Proof. Take E := H and X := H × H, the result follows from Theorem 3.5. This is true since uniformly
smooth and uniformly convex spaces are more general than the Hilbert spaces.

4. Application

An illustration is given to show the application of our results in the physical system. The forced oscil-
lations of finite amplitude of a pendulum is shown as a specific example of nonlinear integral equations of
Hammerstein type. This is to convince our readers about the application of our results in solving real life
problems, arising in physical phenomena.

Example 4.1. Let us consider the forced oscillations of finite amplitude of a pendulum (see, e.g., Pascali
and Sburlan [? ], Chapter IV, p. 164). Consider an inhomogeneous differential equation given by{

v′′(t) + a2sin v(t) = z(t), t ∈ [0, 1],

v(0) = v(1) = 0.
(4.1)

The amplitude of oscillation v(t) is a solution of the problem, where the driving force z(t) is periodic and
odd. The constant a 6= 0 depends on the length of the pendulum and on gravity.

We begin by computing the Green function for the 2nd order equation,

v′′(t) = 0, v(0) = v(1) = 0. (4.2)

Let L denotes the differential operator andM, the manifold which denotes the differential equation together
with the associated boundary conditions. For x ∈ [0, 1], we denote by x−, the values of t ∈ [0, x) and by x+,
the values of t ∈ (x, 1]. For t 6= x, the Green function is simply a homogeneous solution of the differential
equation. However at t = x we expect some singular behavior. The interested readers may read further
for the algorithm for constructing the Green function, G(t, x) for nth order equations (see, e.g., Aibinu and
Chidume [? ]). For n = 2, the algorithm for computing G(t, x) is given as below:

(i) L (G(., x)) (t) = 0 for 0 ≤ t < x and for x < t ≤ 1;

(ii) G(., x) is in M;

(iii) G(., x) is a continuous function;

(iv) ∂G(t,x)
∂t /

t=x+
− ∂G(t,x)

∂t /
t=x−

= 1
c2(x) (where c2(x) is the coefficient of the second order term).

A pair of solutions to the homogeneous equation v′′ = 0 are 1 and t. Therefore, the general solution is
given by

v(t) = a1 + a2t,

where a1 and a2 are constants. From condition (i), we seek the Green function in the form

G(t, x) =

{
A+Bt, 0 ≤ t ≤ x,
C +Dt, x < t ≤ 1,

(4.3)
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where A,B,C and D are functions of the parameter x. Condition (ii) requires that G(., x) be inM. Therefore,
we evaluate G(0, x) = 0 and G(1, x) = 0, which give,

A = 0 and C +D = 0. (4.4)

By condition (iii), G(., x) is a continuous function.

G(t, x)|t→x+ = G(t, x)|t→x− ⇒ (C −A) + (D −B)x = 0.

Since A = 0 (from (??)), we have,
C + (D −B)x = 0. (4.5)

Condition (iv) requires that Gt|t=x+ −Gt|t=x− = 1 (since c2(x) = 1). Thus,

D −B = 1 (4.6)

Solving ((??), (??) and (??)) for the three unknowns, gives B = x− 1, C = −x and D = x.
By substituting for the values of A,B,C and D in Eq.(4.3), we obtain

G(t, x) =

{
t(x− 1), 0 ≤ t ≤ x,
x(t− 1), x < t ≤ 1.

(4.7)

Equivalently, the Green function for the given boundary value problem is the triangular function given by

−G(t, x) =

{
t(1− x), 0 ≤ t ≤ x,
x(1− t), x < t ≤ 1.

(4.8)

Eq.(4.1) is equivalent to the nonlinear integral equation

v(t) = −
∫ 1

0
G(t, x)

[
z(x)− a2sin v(x)

]
dx. (4.9)

Take
∫ 1

0 G(t, x)z(x)dx = g(t) and v(t) + g(t) = u(t), then Eq.(??) can be written as the integral equation

u(t) +

∫ 1

0
G(t, x)f(x, u(x))dx = 0, (4.10)

where f(x, u(x)) = a2sin [u(x)− g(x)]. Eq.(??) is a homogeneous integral equation of Hammerstein type.

5. Numerical Illustration

Numerical example is given to depict the convergence of the sequences {un} and {vn} which are defined in
the main theorem. Let E be a Hilbert space. Then the duality map becomes the identity map. Consequently,
the sequences (3.3) and (3.3) reduce to

un+1 = un − λn (Fun − vn + θn(un − u1)) , n ∈ N, (5.1)

vn+1 = vn − λn (Kvn + un + θn(vn − v1)) , n ∈ N, (5.2)

from arbitrary u1 and v1 in E.

In particular, let E = R2 with the usual norm, then E∗ = R2. Let F =

(
7 9
−9 25

)
, K =

(
3 −2
2 5

)
with ǔ =

(
u1

u2

)
and v̌ =

(
v1

v2

)
. Then Fǔ = (7u1 + 9u2, − 9u1 + 25u2) nad Kv̌ = (3v1 − 2v2, 2v1 + 5v2) .

Therefore 〈Fǔ, ǔ〉 ≥ 7‖ǔ‖2 and 〈Kv̌, v̌〉 ≥ 3‖v̌‖2. Thus for p = 2, F is a (p, η1)-strongly monotone mapping
and K is a (p, η2)-strongly monotone mapping with η1 = 7 and η2 = 3, respectively. Take {λn} =

{
1
n

}
and

{θn} =
{

1
n+1

}
, numerical results are given for the solution of Hammerstein integral equation by Matlab

2015a while the tolerance 10−4 is being used.



M. O. Aibinu, S. C. Thakur, S. Moyo, Commun. Nonlinear Anal. 1 (2023), 1–18 16

Table 1: Numerical values of ||un+1 − un|| for nth iterations

Iteration
||un+1 − un||

(u1 = (1, 1), v1 = (1, 1)) (u1 = (1, 1/2), v1 = (1/4, 1)) (u1 = (4,−5), v1 = (−7, 3))
(n) e+04 e+03 e+03

1 0.0017 0.0103 0.0610
2 0.0130 0.0848 0.3039
3 0.0610 0.4167 1.0488
4 0.1938 1.3594 2.6901
5 0.4470 3.1870 5.2733
6 0.7767 5.6002 8.0423
7 1.0380 7.5473 9.6402
8 1.0775 7.8854 9.1093
9 0.8695 6.3964 6.7588
10 0.5410 3.9983 3.8921
11 0.2549 1.8913 1.7018
12 0.0879 0.6546 0.5438
13 0.0208 0.1558 0.1185
14 0.0030 0.0224 0.0152
15 0.0002 0.0013 0.0007
16 0.0000 0.0000 0.0000
17 0.0000 0.0000 0.0000
18 0.0000 0.0000 0.0000
19 0.0000 0.0000 0.0000
20 0.0000 0.0000 0.0000

Figure 1: Numerical results
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6. Conclusion

The iterative algorithm for the solution of nonlinear integral equations of Hammerstein type with mono-
tone mappings has been considered. The strong convergence of the sequences of iteration to the solution
of nonlinear integral equations of Hammerstein type is obtained without the assumption of existence of a
real constant whose calculation is unclear. This shows the efficacy of the technique which has been used in
this study in getting rid of the assumption of existence of a real constant whose calculation is unclear and
how some results which were obtained in Hilbert space can be extended to a general Banach space (See e.g,
Chidume and Djitte [? ]). An illustration is given to convince our readers about the application of our re-
sults in solving some real life problems which is common in physical sciences. The forced oscillations of finite
amplitude of a pendulum was shown as a specific example of nonlinear integral equations of Hammerstein
type. The numerical example portrays the convergence of the sequences {un} and {vn} .
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