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Abstract

In this paper, our aim is to obtain the integral representation for the solution of linear Riemann-Liouville
(R-L) reaction diffusion equation of order q, where 0 < q < 1, in term of Green’s function. We have devel-
oped a generalized monotone method for non-linear weakly coupled system of R-L reaction diffusion equation
when the forcing term is the sum of increasing and decreasing functions. The generalized monotone method
yields monotone sequences which converges uniformly and monotonically to coupled minimal and maximal
solutions. Under uniqueness assumption, we prove the existence of a unique solution for the non-linear
system of R-L reaction diffusion equation.

Keywords: Eigenfunction, Non-linear weakly coupled system, Coupled upper and lower solutions.
2010 MSC: 26A33, 26A48, 34A08.

1. Introduction

Computation of explicit solution of non-linear dynamic equation is rarely possible. It is more so with
non-linear fractional dynamic equations with initial and boundary conditions. In general, the existence and
uniqueness of solution of the fractional dynamic equation has been established mostly, using some kind of
fixed point approach. See [2, 4, 5, 9, 11, 19, 20, 23] and the reference therein for the existence, uniqueness
and applications of fractional dynamic equations. The method of upper and lower solutions combined
with the monotone iterative technique not only guarantess the interval of existence but also the method is
both theoretical and computational. See [6, 7, 8, 24] for the monotonic method and generalized monotone
method for non-linear dynamic equations. In this case , we obtain a sequence of approximate solutions which
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are either monotonically increasing or monotonically decreasing if the approximation is the lower solution
or upper solution respectively. However, from practical application problems, the non-linear forcing term
will be a sum of increasing and decreasing function as in the population models and chemical combustion
models, see [16]. In order to handle such problems, a generalized monotone method has been developed in
[12, 13, 14, 15, 22].

In this work, we consider the non-linear system of R-L reaction diffusion equation where the forcing
function is the sum of increasing and decreasing functions. We develop a generalized monotone method
for the non-linear weakly coupled system of R-L reaction diffusion equation using coupled lower and upper
solutions. Initially, we have obtained a representation form for the solution of linear weakly coupled system
of R-L reaction diffusion equation using the eigen function expansion method and Green’s identity. We have
also developed the maximum principle and comparison results. These results are used to prove the sequences
developed in the generalized monotone method converge to the coupled minimal and maximal solutions of
the non-linear system of fractional diffusion equations. The convergence of the sequences is monotonic and
uniform in the weighted norm.

The rest of paper is arranged in the following way.
In section 2, definitions and basic results are discussed that plays vital role in the main results. In section

3, comparison results. These results are useful in main results proving that the sequences developed in the
generalized monotone method converge to coupled minimal and maximal solutions of the non-linear system
of fractional reactions diffusion equation. Finally under uniqueness assumption, we prove that there exists
a unique solution to the non-linear system of R-L reaction diffusion equation.

2. Preliminaries

In this section , we recall some known definitions and known results which are useful to develop our
main result. Here and throughout, the notation Γ(q) denotes the gamma function of order q.

Definition 2.1 The R-L fractional integral of u(t) of order q is defined by

D
−q
t u(t) =

1

Γ(q)

∫ t

0
(t− s)q−1u(s)ds (2.1)

where 0 < q ≤ 1

Definition 2.2 The R-L (left-sided) fractional derivative of u(t) of order q when 0 < q ≤ 1, is defined
as

D
q
tu(t) =

1

Γ(1− q)

d

dt

∫ t

0
(t− s)q−1u(s)ds, t > 0 (2.2)

Definition 2.3 The two parameter Mittag-liffler function is defined as

Eq,r(λt
q) =

∞
∑

k=0

(λtq)k

Γ(qk + r)
(2.3)

If r = q, (2.3) reduces to

Eq,q(λt
q) =

∞
∑

k=0

(λtq)k

Γq(k + 1)
(2.4)

If r = 1, the mittag-leffer function is defined as

Eq,1(λt
q) =

∞
∑

k=0

(λtq)k

Γ(qk + r)
. (2.5)
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Further, if q = r = 1, E1,1 = eλt is the exponential function.

For more details, see [1, 17, 21] In our next definition we assume p = 1− q. When 0 < q < 1, J = (0, T ]
and J0 = [0, T ].

Definition 2.4 A function φ(t) ∈ C(J,R) is a Cp continuous function, if t1−qφ(t) ∈ C(J0,R). The set
of Cp continuous functions is denoted by Cp(J,R) Further, given a function φ(t) ∈ Cp(J,R), we call the
function t1−qφ(t) the continuous extension of φ(t).
Note that any continuous function in J0 is also a Cp continuous function.

Consider the initial value problem for the linear R-L fractional differential equation of order q as

Dqu = λu+ f(t),Γ(q)u(t)t1−q |t=0 = u0, (2.6)

where λ is a real number and f ∈ C[J0,R]. The integral representation of the solution of equation (2.6) is:

u(t) = u0tq−1Eq,q(λt
q) +

∫ t

0
(t− s)q−1Eq,q[λ(t− s)q]f(s)ds. (2.7)

For details, see [3, 5, 17, 21]. The next result is a basic comparison result involving the qth order fractional
R-L derivative with respect to time.

Lemma 2.1 [6, 7]. Let m(x, t) ∈ Cp[J0,R] be such that for some t1 ∈ (0, T ], m(x, t1) = 0, and
t1−qm(x, t) ≤ 0 on [0, t1], then Dqm(x, t1) ≥ 0.

3. Auxiliary Results

In this section, we obtain a representation form for the solution of the system of linear R-L fractional
reaction diffusion equation with the fractional time derivative. We achieve this by using the eigenfunction
expansion method. Then we develop comparison results for the system of non-linear R-L fractional reaction
diffusion equation with initial and boundary conditions. The first comparison theorem is with respect to
the natural lower and upper solutions when the non-linear term is of the form Fi(x, t, u) where Fi(x, t, u)
satisfies the one sided Lipschitz condition. The second comparison theorem is relative to coupled lower and
upper solutions. In this case, we assume the non-linear term as the sum of two functions fi(x, t, u) and
gi(x, t, u), where fi(x, t, u) non-decreasing function in u, gi(x, t, u) is non-increasing function in u for (x,t)in
[0, L]× [0, T ]. In order to present our result, consider the system of linear R-L fractional diffusion equation
with initial and boundary conditions of the form

∂qui

∂tq
− k

∂2ui

∂x2
= Qi(x, t) on QT . (3.1)

ui(0, t) = Ai(t), ui(L, t) = Bi(t) in ΓT .

Γ(q)t1−qui(x, t)|t=0 = f0
i (x) x ∈ Ω

Where i = 1, 2, Ω = [0, L], J = (0, T ], QT = J × Ω, k > 0 and ΓT = (0, T )× ∂Ω.
In order for the initial boundary value problem to be compatible, we assume that f0

i (0) = Ai(0) =
f0
i (L) = Bi(0) = 0, Γ(q)t1−qui(x, t)|t=0 = f0

i (x). Here and throughout this work,we assume the initial and
boundary condition satisfy the compatibility conditions. Using the method of eigenfunction expansion on
equation(3.1), we have the solution of the form:

ui(x, t) =

∞
∑

k=0

bn(t)φn(x), (3.2)
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where the eigenfunctions of the related homogeneous problem are known to be φn(x) = sinnπx
L

and its
corresponding eigenvalues are λn = (nπ

L
)2. Using the same approach as in [10, 18]. We can compute bn(t),

where bn(t) will be the solution of the ordinary linear R-L differential equation.

Using the standard arguments, one can compute bn(t) as follows.

bn(t) = b0nt
q−1Eq,q(−kλnt

q) +

∫ t

0
(t− s)q−1Eq,q(−kλnt

q)qn(s) + k
2nπ

L2
[Ai(s)− (−1)nBi(s)]ds (3.3)

where

b0n =
2

L

∫ L

0
f0
i (y)φn(y)dy (3.4)

qn(t) =
2

L

∫ L

0
Qi(y, t)φn(y)dy. (3.5)

Therefore,

bn(t) =
2

L

∫ L

0
f0
i (y)φn(y)dyt

q−1Eq,q(−kλnt
q)

+

∫ t

0
(t− s)q−1Eq,q(−kλnt

q)
2

L

∫ L

0
Qi(y, s)φn(y)dyds

+ k
2nπ

L2

∫ t

0
(t− s)q−1Eq,q(−kλnt

q)[Ai(s)− (−1)nBi(s)]ds.

So, using bn(t) in (3.2), we can get the solution ui(x, t) of the form

ui(x, t) =

∫ L

0
tq−1[

∞
∑

k=1

2

L
Eq,q(−kλnt

q)φn(x)φn(y)]f
0
i (y)dy

+

∫ t

0

∫ L

0
[
∞
∑

k=1

2

L
(t− s)q−1Eq,q(−kλn(t− s)q)φn(x)φn(y)]Qi(y, s)dyds

+ k

∫ t

0
[
2nπ

L2
(t− s)q−1Eq,q(−kλn(t− s)q)φn(x)]Ai(s)ds

− k

∫ t

0
[
2nπ

L2
(t− s)q−1Eq,q(−kλn(t− s)q)φn(x)]Bi(s)ds.

Finally, we can write

ui(x, t) =

∫ L

0
tq−1G(x, y, t)f0

i (y)dy +

∫ t

0

∫ L

0
G(x, y, t− s)Qi(y, s)dyds

+ k

∫ t

0
Gy(x, 0, t − s)Ai(s)ds− k

∫ t

0
Gy(x,L, t− s)Bi(s)ds,

where

G(x, y, t) =

∞
∑

k=0

2

L
Eq,q(−kλnt

q)φn(x)φn(y).

This result is useful in our main result for computing the linear approximations of the generalized
monotone iterates. Here, we can find the steady state condition with homogeneous boundary conditions in
which the source term Qi(x, t) = Qi(x) is independent of time:

k
∂2ui

∂x2
+Qi(x) = 0.
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Now the form ∂2ui

∂x2 = g(x), in which g(x) = −Qi(x)
k

.
Therefore,

ui(x, t) =

∫ L

0
f0
i (y)t

q−1G(x, t; y, 0)dy +

∫ L

0
−kg(y)[

∫ t

0
G(x, t; y, s)ds]dy, (3.6)

where

tq−1G(x, t; y, s) = tq−1
∞
∑

k=1

2

L
Eq,q(−kλnt

q)φn(x)φn(y)

As t → ∞, G(x, t; y, 0) → 0 such that the effect of the initial condition t1−qui(x, t)|t=0 = f0
i (x) vanishes

as t → ∞. But, as tq−1G(x, t; y, s) → 0 as t → ∞, the steady source is still important as t → ∞ since
∫ t

0 Eq,q(−kλn(t− s)q)ds =
1−Eq,q(−kλnt

q)
k(nπ

L
)2 . Thus, as t → ∞,

ui(x, t) → ui(x) =

∫ L

0
g(y)G(x, y)dy,

where

G(x, y) = −
∞
∑

k=1

2

L
φn(x)φn(y).

Hence, we obtained the steady-state temperature distribution ui(x) by taking the limit as t → ∞ of the
time-dependent problem with a steady source Q(x) = −kg(x).
We recall lemmas regarding the Mittage-Leffler function series from.

Lemma 3.1[4] Let Eq,1(−λtq) be the Mittage-Leffler function of order q, where 0 < q ≤ 1. Then,
Eq,1(−λ1t

q)
Eq,1(−λ2tq)

< 1, where λ1, λ2 > 0 such that λ1 = λ2 + k for k > 0.

Lemma 3.2[4] Let Eq,q(−λtq) be the Mittage-Leffler function of order q, where 0 < q ≤ 1. Then,
Eq,q(−λ1t

q)
Eq,q(−λ2tq)

< 1, where λ1, λ2 > 0 such that λ1 = λ2 + k for k > 0.

Now, we show the convergence of the above solution using Lemma 3.1 and Lemma 3.2 above. We can
split the solution of (3.1)as u1i (x, t), u

2
i (x, t) and u3i (x, t) respectively as follows:

(a) u1i (x, t) is the solution of (3.1), when Qi(x, t) = 0, Ai(t) = 0 = Bi(t),
(b) u2i (x, t) is the solution of (3.1), when Ai(t) = 0 = Bi(t), f

0
i = 0,

(c) u3i (x, t) is the solution of (3.1), when Qi(x, t) = 0, f0
i = 0.

Theorem 3.1[4] u1i (x, t), u
2
i (x, t) and u3i (x, t) converge when |f0

i = 0| < N1, |Qi(x, t)| < N2, N1, N2 > 0;
|Ai(t)| < M1 and |Bi(t)| < M2, M1,M2 > 0 respectively.

Now, we consider the weekly coupled system of non-linear R-L fractional reaction diffusion equations of
the type:

∂qui

∂tq
− ki

∂2ui

∂x2
= fi(x, t, ui) + gi(x, t, ui), (x, t) ∈ QT , (3.7)

Γ(q)t1−qui(x, t)|t=0 = f0
i (x), x ∈ Ω,

ui(0, t) = Ai(t), ui(L, t) = Bi(t) on ΓT ,

Ω = [0, L], J = (0, T ], QT = J × Ω, k > 0,

ΓT = (0, T ) × ∂Ω i = 1, 2

fi, gi ∈ C2,q[Ω× J × R,R].

In this work, we study the classical solution of (3.7) ui(x, t) ∈ C
2,q
p on QT , and ui(x, t) ∈ Cp on QT . To

develop the generalized monotone method for (3.7), non-linear coupled system of R-L we need to define.
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Definition 3.1 If the functions vi(x, t), wi(x, t) ∈ C2,q[QT ,R] are called the natural lower and upper
solutions of (3.7) if

∂qvi(x, t)

∂tq
− k

∂2vi(x, t)

∂x2
≤ fi(x, t, vi(x, t)) + gi(x, t, vi(x, t)), on QT (3.8)

Γ(q)(t− t0)
1−qvi(x, t)|t=0 ≤ f0

i (x), x ∈ Ω

vi(x, 0) ≤ Ai(t), vi(L, t) ≤ Bi(t) in ΓT

and
∂qwi(x, t)

∂tq
− k

∂2wi(x, t)

∂x2
≥ fi(x, t, wi(x, t)) + gi(x, t, wi(x, t)), on QT (3.9)

Γ(q)(t− t0)
1−qwi(x, t)|t=0 ≥ f0

i (x), x ∈ Ω

wi(x, 0) ≥ Ai(t), wi(L, t) ≥ Bi(t) in ΓT .

Definition 3.2 If the functions vi(x, t), wi(x, t) ∈ C2,q[QT ,R] are called coupled lower and upper
solutions of type I if

∂qvi(x, t)

∂tq
− k

∂2vi(x, t)

∂x2
≤ fi(x, t, vi(x, t)) + gi(x, t, wi(x, t)), on QT (3.10)

Γ(q)(t− t0)
1−qvi(x, t)|t=0 ≤ f0

i (x), x ∈ Ω

vi(x, 0) ≤ Ai(t), vi(L, t) ≤ Bi(t) in ΓT ,

∂qwi(x, t)

∂tq
− k

∂2wi(x, t)

∂x2
≥ fi(x, t, wi(x, t)) + gi(x, t, vi(x, t)), on QT (3.11)

Γ(q)(t− t0)
1−qwi(x, t)|t=0 ≥ f0

i (x), x ∈ Ω

wi(x, 0) ≥ Ai(t), wi(L, t) ≥ Bi(t) in ΓT .

The next result is a comparison result relative to lower and upper solutions of (3.7) of natural type. For
that purpose, we write Fi(x, t, ui) = fi(x, t, ui) + gi(x, t, ui).

Theorem 3.2 Assume that
(i) vi(x, t), wi(x, t) ∈ C2,q[QT ,R] are natural lower and upper solutions of (3.7), respectively and Γ(q)t1−qvi(x, t)|t=0 ≤
Γ(q)t1−qwi(x, t)|t=0, vi(0, t) ≤ wi(0, t), vi(L, t) ≤ wi(L, t).
(ii)Fi(x, t, ui) satisfies the one sided Lipschitz condition

Fi(x, t, u
1
i )− Fi(x, t, u

2
i ) ≤ L(u1i − u2i ),

whenever u1i ≥ u2i and L > 0. Then vi(x, t) ≤ wi(x, t) on J × Ω.

Proof. Initially, we prove the theorem when one of the inequalities in (i) is strict. For that purpose, let
mi(x, t) = vi(x, t) − wi(x, t). We claim that mi(x, t) < 0, (x, t) ∈ Ω × J . Suppose that the conclusion is
not true, then there exists a t1 ∈ J and x1 ∈ Ω such that tq−1mi(x1, t1) < 0 on [0, t1), mi(x1, t1) = 0.

It easy to check ∂mi(x1,t1)
∂x

= 0 and ∂2mi(x1,t1)
∂x2 ≤ 0.
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Then, using Lemma 2.1 we get ∂qmi(x,t)
∂t

≥ 0
From the hypothesis, we also have

∂qmi(x1, t1)

∂t
q
1

=
∂qvi(x1, t1)

∂t
q
1

−
∂qwi(x1, t1)

∂t
q
1

< k
∂2vi(x1, t1)

∂x2
+ Fi(x1, t1, vi(x1, t1))− k

∂2wi(x1, t1)

∂x2
− Fi(x1, t1, wi(x1, t1))

< Fi(x1, t1, vi(x1, t1))− Fi(x1, t1, wi(x1, t1)) = 0

which is a contradiction. Therefore, vi(x, t) < wi(x, t) on QT .
In order to prove the theorem for the non strict inequalities, let

wi(x, t) = wi(x, t) + ǫtq−1Eq,q[2Lt
q],

vi(x, t) = vi(x, t)− ǫtq−1Eq,q[2Lt
q].

From this it follows

wi(0, t) > vi(0, t),

wi(L, t) > vi(L, t),

Γ(q)t1−qwi(x, t)|t=0 > Γ(q)t1−qwi(x, t)|t=0 > Γ(q)t1−qvi(x, t)|t=0 > Γ(q)t1−qvi(x, t)|t=0. Then,

∂wi(x, t)

∂tq
− k

∂2wi(x, t)

∂x2

=
∂wi(x, t)

∂tq
− k

∂2wi(x, t)

∂x2
+

∂

∂tq
ǫtq−1Eq,q[2Lt

q]

≥ Fi(x, t, wi(x, t)) + ǫtq−12LEq,q[2Lt
q]

= Fi(x, t, wi(x, t)) + 2Lǫtq−1Eq,q[2Lt
q]− Fi(x, t, wi(x, t)) + Fi(x, t, wi(x, t))

≥ −L(wi − wi) + Fi(x, t, wi(x, t)) + ǫ2Ltq−1Eq,q[2Lt
q]

= −Lǫtq−1Eq,q[2Lt
q] + Fi(x, t, wi(x, t)) + ǫ2Ltq−1Eq,q[2Lt

q]

= Fi(x, t, wi(x, t)) + ǫLtq−1Eq,q[2Lt
q]

> Fi(x, t, wi(x, t)) on QT .

Similarly,

∂vi(x, t)

∂tq
− k

∂2vi(x, t)

∂x2
> Fi(x, t, vi(x, t)) on QT

By the strict inequality result, vi < wi on QT . Letting ǫ → 0 we have vi ≤ wi on QT .

The next result is related to coupled lower and upper solutions of type I related to (3.7).
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Theorem 3.3 Assume that
(i) vi(x, t), wi(x, t) ∈ C2,q[QT ,R] are coupled lower and upper solutions of type I of (3.7)respectively.
(ii)Assume Fi(x, t, ui) = fi(x, t, ui)+ gi(x, t, ui), where fi is a nondecreasing function and gi is a nonincreas-
ing function respectively for (x, t) ∈ QT in u

(iii)Let fi(x, t, ui) and gi(x, t, ui) satisfy the one sided Lipschitz condition

fi(x, t, u
1
i )− fi(x, t, u

2
i ) ≤ L(u1i − u2i ),

gi(x, t, u
1
i )− gi(x, t, u

2
i ) ≥ −M(u1i − u2i ),

whenever u1i ≥ u2i and L,M > 0. Then vi(x, t) ≤ wi(x, t) on J × Ω.

Proof. Initially, we prove the theorem when one of the inequalities in (i) is strict. For that purpose,let
mi(x, t) = vi(x, t) − wi(x, t). It is easy to see that mi(x, 0) < 0 on Ω. Also, mi(0, t) < 0 and mi(L, t) <

0, t ∈ J . Suppose that the conclusion is not true, then there exists a t1 ∈ J and x1 ∈ Ω such that

tq−1mi(x1, t1) < 0 on [0, t1), mi(x1, t1) = 0. This implies vi(x1, t1) = wi(x1, t1) and
∂2mi(x1,t1)

∂x2 ≤ 0. Where

t1 > 0 and x1 ∈ (0, L). Using lemma 2.1 we get ∂qmi(x1,t1)
∂t

q
1

≥ 0.

From the hypothesis, we also have

∂qmi(x1, t1)

∂t
q
1

=
∂qvi(x1, t1)

∂t
q
1

−
∂qwi(x1, t1)

∂t
q
1

< k
∂2vi(x1, t1)

∂x2
+ fi(x1, t1, vi(x1, t1)) + gi(x1, t1, wi(x1, t1))

− k
∂2wi(x1, t1)

∂x2
− fi(x1, t1, wi(x1, t1))− gi(x1, t1, vi(x1, t1))

≤ 0

which leads to a contradiction. Therefore,vi(x, t) < wi(x, t) on QT .
In order to prove the theorem for the non strict inequalities, let

wi(x, t) = wi(x, t) + ǫ(t− t0)
q−1Eq,q[2(L+M)(t− t0)

q],

vi(x, t) = vi(x, t)− ǫ(t− t0)
q−1Eq,q[2(L+M)(t− t0)

q].

One can show vi(x, t) and wi(x, t) satisfy the hypothesis with strict inequalities. Using the strict inequality
result, vi < wi on QT . Letting ǫ → 0 we have vi ≤ wi on QT .

The next result is the maximum principle for the R-L parabolic equation in one dimensional space which
will be useful in proving the uniqueness of the solution.

Corollary 3.1 Let

∂qmi(x, t)

∂tq
− k

∂2vi(x, t)

∂x2
≤ 0 on QT ,

mi(0, t) ≤ 0,mi(L, t) ≤ 0 on ΓT ,

Γ(q)t1−qmi(x, t)|t=0 ≤ 0 on Ω.



J.A.Nanware, P.D.Kundgar, Commun. Nonlinear Anal. 1 (2023), 1-13 9

Then mi(x, t) ≤ 0 on QT .

Proof. Supposemi(x, t) has positive maximum at (x1, t1). Let mi(x1, t1) = K. Let mi(x, t) = mi(x, t)−

K. Then tq−1mi(x, t) ≤ 0 on (0, t1] and mi(x1, t1) = 0. Using lemma (2.1) we get ∂qmi(x1,t1)
∂t

q
1

≥ 0. Also

∂2mi(x1,t1)
∂x2 ≤ 0. Combining these two, we get ∂qmi(x1,t1)

∂t
q
1

− k
∂2vi(x1,t1)

∂x2 ≥ 0.

Also, we have

∂qmi(x, t)

∂tq
−K

∂2mi(x, t)

∂x2
=

∂qmi(x, t)

∂tq
−K

∂2mi(x, t)

∂x2
−K

tq−1

Γq
<

∂qmi(x, t)

∂t
− k

∂2mi(x, t)

∂x2
< 0. (3.12)

which gives a contradiction. Hence, m(x, t) ≤ 0.

The solution of the linear problem is unique which follows from this maximum principle. This maximum
principle is used to show the uniqueness of iterates and monotonicity of this iterates.

4. Main Result

In this section, we develop a generalized monotone method for the nonlinear system of R-L fractional
reaction diffusion equation (3.7) using coupled lower and upper solutions of type I. The generalized monotone
method yields monotone sequences which converge uniformly and monotonically to coupled minimal and
maximal solutions of (3.7). Further using uniqueness condition, we prove the uniqueness of the solution of
(3.7).

Theorem 4.1 (i) Let (v0i , w
0
i ) be the coupled lower and upper solutions of (3.7) such that t1−qv0i ≤ t1−qw0

i

on QT .
(ii) Suppose that fi(x, t, ui) is nondecreasing and gi(x, t, ui) is nonincreasing in (ui), i = 1, 2 on QT , respec-
tively. Then there exist monotone sequences

{

t1−qvni (x, t)
}

and
{

t1−qwn
i (x, t)

}

such that t1−qvni (x, t) →
t1−qρi(x, t) = (v1, v2) and t1−qwn

i (x, t) → t1−qγi(x, t) = (w1, w2) uniformly and monotonically on QT , where
ρi(x, t) and γi(x, t) are coupled minimal and maximal solutions of (3.7) respectively.

Proof. We construct the sequences {vni (x, t)} and {wn
i (x, t)} as follows:

∂qvni (x, t)

∂tq
− k

∂2vni (x, t)

∂x2
= fi(x, t, v

n−1
i (x, t)) + gi(x, t, w

n
i (x, t)), on QT (4.1)

Γ(q)(t)1−qvni (x, t)|t=0 = f0(x), x ∈ Ω

vni (x, 0) = A(t), vni (L, t) = B(t) in ΓT ,

and
∂qwn

i (x, t)

∂tq
− k

∂2wn
i (x, t)

∂x2
= fi(x, t, w

n−1
i (x, t)) + gi(x, t, v

n
i (x, t)), on QT (4.2)

Γ(q)(t)1−qwn
i (x, t)|t=0 = f0(x), x ∈ Ω

wn
i (x, 0) = A(t), wn

i (L, t) = B(t) in ΓT ,

It is easy to observe that v1i (x, t) and w1
i (x, t) exist and unique by the representation form of linear equa-

tion and Corollary 3.1. By induction and the assumptions on fi and gi, we can prove that the solution
vni (x, t) and wn

i (x, t) exist and unique by Corollary 3.1, for any n. Let us prove first v0i (x, t) ≤ v1i (x, t) and
w1
i (x, t) ≤ w0

i (x, t) on QT . Let ρi(x, t) = v0i (x, t)− v1i (x, t). Then
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∂qρi(x, t)

∂tq
− k

∂2ρi(x, t)

∂x2

=
∂qv0i (x, t)

∂tq
− k

∂2v0i (x, t)

∂x2
− [

∂qv1i (x, t)

∂tq
− k

∂2v1i (x, t)

∂x2
]

≤ fi(x, t, v
0
i ) + gi(x, t, w

0
i )− [fi(x, t, v

0
i ) + gi(x, t, w

0
i )] = 0

ρi(0, t) = 0, ρi(L, t) = 0 on QT and Γ(q)tq−1ρi(x, t)|t=0 = 0 on ΓT . Therefore, by Corollary 3.1, it follows
that ρi(x, t) ≤ 0 on QT and t1−qv0i (x, t) ≤ t1−qv1i (x, t) on QT .
Assume that vk−1

i (x, t) ≤ vki (x, t). Now we show vki (x, t) ≤ vk+1
i (x, t). Let ρi(x, t) = vki (x, t) − vk+1

i (x, t).
Then

∂qρi(x, t)

∂tq
− k

∂2ρi(x, t)

∂x2

=
∂qvki (x, t)

∂tq
− k

∂2vki (x, t)

∂x2
− [

∂qvk+1
i (x, t)

∂tq
− k

∂2vk+1
i (x, t)

∂x2
]

≤ fi(x, t, v
k
i ) + gi(x, t, w

k
i )− [fi(x, t, v

k+1
i ) + gi(x, t, w

k+1
i )] = 0

ρi(0, t) = 0, ρi(L, t) = 0 on QT and Γ(q)tq−1ρi(x, t)|t=0 = 0 on ΓT . Therefore, by Corollary 3.1, it follows
that ρi(x, t) ≤ 0 on QT and t1−qvki (x, t) ≤ t1−qvk+1

i (x, t) on QT .
Hence by mathematical induction, we have

t1−qv0i (x, t) ≤ t1−qv1i (x, t)...t
1−qvki (x, t) ≤ t1−qvk+1

i (x, t)...t1−qvn−1
i (x, t) ≤ t1−qvni (x, t) (4.3)

We show that w1
i (x, t) ≤ w0

i (x, t) on QT .
Let ρi(x, t) = w1

i (x, t) −w0
i (x, t). Then

∂qρi(x, t)

∂tq
− k

∂2ρi(x, t)

∂x2

=
∂qw1

i (x, t)

∂tq
− k

∂2w1
i (x, t)

∂x2
− [

∂qw0
i (x, t)

∂tq
− k

∂2w0
i (x, t)

∂x2
]

≤ fi(x, t, w
0
i ) + gi(x, t, v

0
i )− [fi(x, t, w

0
i ) + gi(x, t, v

0
i ] = 0

ρi(0, t) = 0, ρi(L, t) = 0 on QT and Γ(q)tq−1ρi(x, t)|t=0 = 0 on ΓT . Therefore, by Corollary 3.1, it follows
that ρi(x, t) ≤ 0 on QT and t1−qw0

i (x, t) ≤ t1−qw1
i (x, t) on QT .

Assume that wk
i (x, t) ≤ wk−1

i (x, t). To show that wk+1
i (x, t) ≤ wk

i (x, t).
Let ρi(x, t) = wk+1

i (x, t)− wk
i (x, t). Then

∂qρi(x, t)

∂tq
− k

∂2ρi(x, t)

∂x2

=
∂qwk+1

i (x, t)

∂tq
− k

∂2wk+1
i (x, t)

∂x2
− [

∂qwk
i (x, t)

∂tq
− k

∂2wk
i (x, t)

∂x2
]

≤ fi(x, t, w
k+1
i ) + gi(x, t, v

k+1
i )− [fi(x, t, w

k
i ) + gi(x, t, v

k
i )] = 0
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ρi(0, t) = 0, ρi(L, t) = 0 on QT and Γ(q)tq−1ρi(x, t)|t=0 = 0 on ΓT . Therefore, by Corollary 3.1, it follows
that ρi(x, t) ≤ 0 on QT and t1−qwk+1

i (x, t) ≤ t1−qvki (x, t) on QT .
Hence by mathematical induction, we have

t1−qwn
i (x, t) ≤ t1−qwn−1

i (x, t)...t1−qwk+1
i (x, t) ≤ t1−qwk

i (x, t)...t
1−qw1

i (x, t) ≤ t1−qw0
i (x, t) (4.4)

Then, we prove that v1i (x, t) ≤ w1
i (x, t). Let ρi(x, t) = v1i (x, t)− w1

i (x, t). Then from hypothesis, we get

∂qρi(x, t)

∂tq
− k

∂2ρi(x, t)

∂x2

=
∂qv1i (x, t)

∂tq
− k

∂2v1i (x, t)

∂x2
− [

∂qw1
i (x, t)

∂tq
− k

∂2w1
i (x, t)

∂x2
]

≤ fi(x, t, v
0
i (x, t)) + gi(x, t, w

0
i (x, t)) − [fi(x, t, v

0
i (x, t)) + gi(x, t, w

0
i (x, t))] = 0

ρi(x, t) = 0, ρi(L, t) = 0 on QT and Γ(q)tq−1ρi(x, t)|t=0 = 0 on ΓT . Therefore, by Corollary 3.1, it follows
that ρi(x, t) ≤ 0 on QT and t1−qv1i (x, t) ≤ t1−qw1

i (x, t) on QT . Hence,
t1−qv0i (x, t) ≤ t1−qv1i (x, t) ≤ t1−qw1

i (x, t) ≤ t1−qw0
i (x, t) on QT .

By mathematical induction and equations (4.3), (4.4) we have
t1−qv0i (x, t) ≤ ... ≤ t1−qvni (x, t) ≤ t1−qwn

i (x, t) ≤ ... ≤ t1−qw0
i (x, t) on QT for all n.

Furthermore, if t1−qv0i (x, t) ≤ t1−qui(x, t) ≤ t1−qw0
i (x, t) on QT , then for any ui(x, t) of (3.7), we establish

the following inequality by the method of induction.

t1−qv0i (x, t) ≤ ... ≤ t1−qvni (x, t) ≤ t1−qui(x, t) ≤ t1−qwn
i (x, t) ≤ ... ≤ t1−qw0

i (x, t) (4.5)

on QT for all n.
It is certainly true for n = 0, by hypothesis. Assume the inequality (4.3) to be true for n = k, that is

t1−qv0i (x, t) ≤ ... ≤ t1−qvki (x, t) ≤ t1−qui(x, t) ≤ t1−qwk
i (x, t) ≤ ... ≤ t1−qw0

i (x, t) (4.6)

on QT for all n.
Letρi(x, t) = vk+1

i (x, t)− u1i (x, t). Then from hypothesis, we get

∂qρi(x, t)

∂tq
− k

∂2ρi(x, t)

∂x2

=
∂qvk+1

i (x, t)

∂tq
− k

∂2vk+1
i (x, t)

∂x2
− [

∂qui(x, t)

∂tq
− k

∂2ui(x, t)

∂x2
]

≤ fi(x, t, v
k
i (x, t)) + gi(x, t, w

k
i (x, t)) − [fi(x, t, ui(x, t)) + gi(x, t, ui(x, t))] ≤ 0,

ρi(x, t) = 0, ρi(L, t) = 0 on Ω and Γ(q)tq−1ρi(x, t)|t=0 = 0 on ΓT . Therefore, by Corollary 3.1, it follows
that ρi(x, t) ≤ 0 on QT . Therefore t1−qvk+1

i (x, t) ≤ t1−qui(x, t) on QT . Similarly, we can show that
t1−qui(x, t) ≤ t1−qwk+1

i (x, t) on QT .
Let ρi(x, t) = u1i (x, t)− wk+1

i (x, t). Then from hypothesis, we get

∂qρi(x, t)

∂tq
− k

∂2ρi(x, t)

∂x2

=
∂qui(x, t)

∂tq
− k

∂2ui(x, t)

∂x2
− [

∂qwk+1
i (x, t)

∂tq
− k

∂2wk+1
i (x, t)

∂x2
]

≤ fi(x, t, ui(x, t)) + gi(x, t, ui(x, t))− [fi(x, t, w
k
i (x, t)) + gi(x, t, v

k
i (x, t))] ≤ 0,
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ρi(x, t) = 0, ρi(L, t) = 0 on Ω and Γ(q)tq−1ρi(x, t)|t=0 = 0 on ΓT . Therefore, by Corollary 3.1, it follows that
ρi(x, t) ≤ 0 on QT . Therefore t1−qui(x, t) ≤ t1−qwk+1

i (x, t) on QT .

Hence we constructed the monotone sequence {vni (x, t)}, {w
n
i (x, t)} of lower and upper solutions of inte-

gral representation of linear problem and an appropriate computation process, we show that the sequences
{

tq−1vni (x, t)
}

and
{

tq−1wn
i (x, t)

}

are uniformly bounded and equicontinuous. Using the Ascoli-Arzela
theorem, we obtain subsequences of

{

tq−1vni (x, t)
}

and
{

tq−1wn
i (x, t)

}

which converge uniformly and mono-
tonically on QT . Since the sequences

{

tq−1vni (x, t)
}

and
{

tq−1wn
i (x, t)

}

are monotone, the entire sequence
{

tq−1vni (x, t)
}

and
{

tq−1wn
i (x, t)

}

converges to t1−qρi(x, t) and t1−qρi(x, t) respectively. From this it follows
that

t1−qv0i (x, t) ≤ t1−qv1i (x, t) ≤ ... ≤ t1−qvni (x, t) ≤ ... ≤ t1−qρi(x, t) ≤ t1−qui(x, t)

≤ t1−qγi(x, t) ≤ ... ≤ t1−qwn
i (x, t) ≤ ... ≤ t1−qw0

i (x, t) on QT .

Consequently, ρi(x, t) and γi(x, t) are coupled minimal and maximal solutions of (3.7) since

t1−qv0i (x, t) ≤ t1−qρi(x, t) ≤ t1−qui(x, t) ≤ t1−qγi(x, t) ≤ t1−qw0
i (x, t) on QT .

Since fi(x, t, ui) and gi(x, t, ui) satisfy the one sided Lipschitz condition, we prove the uniqueness of the
solution of (3.7). The next result is precisely this.

Theorem 4.2 Let all the assumptions of theorem 4.1 hold. Further, let f(x, t, ui) and g(x, t, ui)satisfy
the one sided Lipschitz condition of the form

f(x, t, u1i )− f(x, t, u2i ) ≤ L1(u
1
i − u2i ),

g(x, t, u1i )− g(x, t, u2i ) ≥ −L2(u
1
i − u1i ),

whenever u1i ≥ u2i and L1, L2 > 0. Then the solution ui(x, t) of (3.7) exists and is unique.

Proof. We have already proved (ρi, γi) are coupled minimal and maximal solutions of (3.7) on QT .
Hence it is enough to show that γi(x, t) ≤ ρi(x, t) on QT .
It is known from theorem(4.1) that γi(x, t) ≤ ρi(x, t) on QT .
Let p(x, t) = γi(x, t)− ρi(x, t). By the hypothesis, we get

∂qp(x, t)

∂tq
− k

∂2p(x, t)

∂x2

=
∂qγi(x, t)

∂tq
− k

∂2γi(x, t)

∂x2
− [

∂qρi(x, t)

∂tq
− k

∂2ρi(x, t)

∂x2
]

≤ f(x, t, γi(x, t)) + g(x, t, ρi(x, t)) − [f(x, t, ρi(x, t)) + g(x, t, γi(x, t))]

≤ t1−qL1|γi − ρi|+ t1−qL2|γi − ρi|

≤ (L1 + L2)|p|,

p(x, t) = 0, p(L, t) = 0 on Ω and Γ(q)tq−1p(x, t)|t=0 = 0 on ΓT . Therefore, by Corollary 3.1, it follows that
p(x, t) ≤ 0. This proves that γi(x, t) = ρi(x, t) = u(x, t) on QT and proof is complete.

5. Conclusion

In this work, initially we have obtained the maximal principle and comparison theorem relative to the
non-linear weakly coupled system of R-L fractional reaction diffusion equation of (3.7) on QT . Using the
comparison result as a tool, we have to developed a generalized monotone method for the R-L fractional
reaction diffusion equation of (3.7). The generalized monotone method yields monotone sequence which
converge uniformly and monotonically to coupled minimal and maximal solutions of (3.7). Under the
uniqueness assumption, we have proved that the unique solution of ui(x, t) of (3.7) exist and unique.
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