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Abstract

In this paper we propose a new iterative scheme, called the AF iteration process, for approximating the
unique solution of a mixed type Volterra-Fredholm functional nonlinear integral equation. We prove in the
sense of Berinde [8] that our new iterative scheme converges at a rate faster than some of the leading iterative
schemes in the literature which have been employed recently to approximate the unique solution of a mixed
type Volterra Fredholm functional nonlinear integral equation. We also prove that our new iterative method
converges strongly to the unique solution of a mixed type Volterra Fredholm functional nonlinear integral
equation. In addition, we give data dependence result for the solution of the nonlinear integral equation
which we are considering with the help of our new iterative scheme. Our results improve and unify some
well known results in the existing literature.
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1. Introduction

Through out this paper, let N denote the set of all positive integers and let ® denote the set of real
numbers. Let T be a nonempty closed convex subset of a real Banach space E. A mapping T : T — T is
called contraction if there exists a constant 9 € (0,1) such that |Tz — Ty|| < 9|z —y||, Vz,y € T.

It well known that integral equations cover many mathematical models of various phenomena in physics,
economics, biology, engineering and even mathematics and other related fields of applied science. The
demonstrative examples of such models can be found in the literature (see for example, [3] [7], [9], [12] [20],
[22], [25], [34], [33] and the references there in). Many problems of applied science and engineering are often
reduced to Volterra—Fredholm integral equations (see for example, [2], [19], [26] and the references there in).
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Analytical solutions of integral equations either do not exist or are difficult to compute (see [9], [26]).
Eventually, an exact solution is computable, but the required calculation may be tedious, or the resulting
solution may be difficult to interpret. Due to this, it is required to obtain an efficient numerical or iterative
solution [6]. There are numerous results in the literature regarding the numerical solution of integral
equations (see for example, [5], [13], [17], [23], [28], [30] [37]).

On the other hand, fixed point theory has become the most interesting branch of nonlinear analysis. It
is well known that several mathematical and real-world problems are naturally formulated as a fixed point
problem, that is, a problem for finding a point x in a domain of an appropriate mapping 1" such

Tz = . (1.1)

A point x satisfying the equation (1.1) is called a fixed point of the mapping 7. Furthermore, fixed point
theory has been effectively applied in several areas including differential equations, integral equations, matrix
equations, convex minimization, as well as for finding the zeros of contraction mappings. Fixed point theory
has continually been studied by many authors ( see for example [1], [27], [36] and the references there in). It
is well known that the contraction-type conditions are very indispensable in the study of fixed point theory.

Overtime, especially recently, there have been many papers devoted to the study of nonlinear integral
equations such as Volterra—Fredholm integral equations and their properties. Procedures for approximating
their solutions numerically have been developed via collocation methods, CAS wavelets, Taylor expansion
methods, block-pulse functions, linear programming, etc, (see for example, [10], [11], [12], [14], [11], [21],
[29] and the references therein).

As part of the beauty of fixed point theory, many researchers in nonlinear analysis have come up with sev-
eral iteration schemes for solving functional nonlinear integral equations. Many iterative processes have been
constructed since Picard iteration scheme failed to converge to the fixed point of nonexpansive mappings.

Recently, many authors have employed different iterative schemes to solving the following mixed type
Volterra-Fredholm functional nonlinear integral equation which was considered by Craciun and Serban [12]:

1 m vy U,
z(t)=F <t,x(t),/q e K(t,s,x(s))ds,/ / H(t,s,x(s))ds) , (1.2)
ul Um, ul Um
where [u1;v1] X+ X [t U] is an interval in R, K, H = [ug;01] X+ X [ U X [ 01] X+« X [gn; O] X R —
R continuous functions and F : [u1;v1] X - -+ X [tm; vm] X B2 — R. The following iterative schemes which are
known as normal S-iterative scheme [35], M iterative scheme [39], Gordian and Uddin iterative scheme [15]
respectively, have been used by Gursoy [18], Okeke and Abbas [32], Gordian and Uddin [15] respectively, to
approximate the unique solution of the Volterra-Fredholm functional nonlinear integral equation (1.2):

ap €T,
b = (1 —rp)an + rpTany, Vn > 1; (1.3)
an+1 = Tbna

mo €Y,

cn = (1 —rp)my, +rp,Tmy,
On =Tey,

Myy1 = Ty,

Vn > 1; (1.4)

do € T,

Uy = Tdy,

Un = (1 - Tn)un + rTup,
dn+1 = Tvna

Vn > 1. (1.5)
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It is no more a surprise that multi-steps iteration processes perform better than single step and two
steps iteration processes respectively. Glowinski and Le-Tallec [16] used a multi step iterative process to
solve elasto-viscoplasticity, liquid crystal and eigenvalue problems. They established that three-step iterative
scheme performs better than one-step (Mann) and two-step (Ishikawa) iterative schemes. Haubruge et al.
[24] studied the convergence analysis of the three-step iterative processes of Glowinski and Le-Tallec [16] and
used the three-step iteration to obtain some new splitting type algorithms for solving variational inequalities,
separable convex programming and minimization of a sum of convex functions. They also proved that three-
steps iteration processes also lead to highly parallelized algorithms under certain conditions.

Many researchers have recently been active in constructing multi-steps iteration schemes to obtain faster
rate of convergence (see [18], [39] and the references there in). Hence, we see that multi-steps iteration
processes play pivotal role in nonlinear analysis and gives faster convergence rate.

Motivated by the above results, we introduce the following four steps iterative scheme, called the AF
iterative scheme, for approximating the solution of the mixed type Volterra-Fredholm functional nonlinear
integral equation (1.2):

0 €Y,

zn = Tx,,

wp, = Tz, Vn > 1. (1.6)
Yn = Twp,

Tn+l1 = (1 - 7nn)yn + TnTyru

It is our purpose in this paper to show that AF iterative scheme (1.6) converges faster than iterative
schemes (1.3)-(1.5) in the sense of Berinde [8]. Furthermore, we prove that AF iterative scheme (1.6)
converges strongly to the unique solution of the mixed type Volterra-Fredholm functional nonlinear integral
equation (1.2). In addition, we give the data dependence result for the solution of the equation (1.2) via
AF iterative scheme (1.6). Our result improve and unify the corresponding results in [12, 15, 18, 32], and
several others in the existing literature.

2. Preliminaries

The following definitions, lemmas and theorem will be useful in proving our main results.

Definition 2.1 (see Berinde [8]). Let {1, }5%, and {n,}5>, be two sequences of real numbers converging
to p and 7 respectively. Then we say that {p,}22, converges faster than {n,}° if

n=oo |, —nl|

(2.1)

Definition 2.2 (see Berinde [8]). Let {&,}22, and {(,}72 be two fixed point iteration procedure sequences
that converge to the same point p. If ||, — p|| < py, and ||, — p|| < np, for all n € N, where {u,}72, and
{mn}22 are two sequences of positive numbers (converging to zero). Then we say that {£,}7°, converges
faster than {(,}02 to p if {pn}2, converges faster than {n,}°° .

Lemma 2.3. Let {p,} and 1, be two nonnegative real sequences satisfying the following inequalities:
Pn+1 < (1 - Tn)pn + anrw (22)

where T, € (0,1) for alln € N, > 7, = 00 and ¥, > 0 for all n € N, then
n=0

0 < limsup p,, < limsup ¢,. (2.3)

n—oo n—oo

Theorem 2.4 (see [12]). We assume that the following conditions are satisfied:
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(B1) K,H € C([u;v1] X +++ X [Up; U] X [ug;01] X -+ X [up; o] X R);
(Bs) F € ([u;v1] X =+ X [um;vm] x R3);
(Bs) there exists nonnegative constants c, 3,7 such that
|E(t, f1,91,h1) — F(t, f2,92,h2)| < alfi = fo + Blgr — g2| +v[h1 — hal,
for all t € [ug;vr] X -+ X [um; V], f1,91, 01, fo, g2, ho € Ry
(By) there exist nonnegative constants Ly and Ly such that
|K(t’8af) _K(t’sag)| < LK|f _g|,
|H(t785f)_H(t?Sag)| SLH|f_g|a
fOT all t,S € [ul;vl] X X [um;vm]’f,g € §R;

(Bs) oo+ (BLg +vLg) (v —uy) -+ (U — upy) < 1.
Then, the nonlinear integral equation (1.2) has a unique solution p € C([ug;v1] X -+ X [Up; Up])-

3. Rate of Convergence

In this section, we prove that the AF iterative process (1.6) converges at a rate faster than all of normal
S-iterative process (1.3), M iterative process (1.4) and Garodia and Uddin iterative process (1.5) in the sense

of Berinde [8].

Theorem 3.1. Let T be a nonempty closed convex subset of a Banach space E and T : T — Y be a
contraction mapping with contraction constant ¥ € (0,1) such that F(T) # 0. If {x,} is the sequence
defined by (1.6), then {x,} converges faster than all the other three processes.

Proof. For any p € F(T), from (1.6), we have

lzn —pll = [Tz, —pll
< dzn —p
and
lwn —pll = [Tz —p|
< Jzn -l
< Pl|lzn —pl)
also,
lyn =2l = | Twn —pll
< wy, —pl
< Pllzn —pll.

Since {r,} is a sequence in (0,1), then we can always find a constant r» € R such that r,, < r < 1 for all
n € N. So,

[#ns1 =pl = [[(1=7rn)yn +rTyn — p
< (I =7)llyn = pll + ol Tyn — pl|
< (I =7m)llyn —pll + ra?yn — pll
= (1-=Q1Q=9)ra)llyn —pll
< PL= 1=z —p
< (- (1 =)z — pl.
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Let
By = 92" (1 — (1 — 0)r)"||z1 — pl|. (3.1)
Now, from (1.3), we have
[bn —pll = (1 =rp)an +rpTan —pl|
< (I =ra)llan = pll + rallTan — p
< (I =ra)llan = pll + rpdlan — p
= (1= =)ra)llan - pll
So,
lantr =pll = [[Tb — pl|
< Jbn = pll
< 91 = (1 =9)rn)llan —pll
< (1= (1 =9)r)"ar - pl|.
Let
Ap = 0"(1 = (1 = D)r)"[lar —p (3.2)
Again, from (1.4), we get
len —pll = (1= rn)mn + roTmn, — pl|
< @ =ra)lma = pll + 7ol Tmn — p
< (X =rn)llmn = pll + rad|ma —p|
= (1= @1 =)ra)llmn - pl
and
16n =2l = lTen = pll
< Ven —pll
< I = (1 =d)rn)[[ma —pll
So,
[mnir —pll = [|T6n —p
< J)6n = pll
< 91— (1= 9)ra)llmn — pl
< 9= (1= 9)r)" ma — pl.
Set
tn = 9*"(1 = (1= 9)r)" [m1 — p| (3-3)

Now, using (1.5), we get

lun —pll = Tdn —pl
|dn — pl|

IN
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and
lon =pll = (I = ra)un +raTun — pf
< (L =ra)llun = pll + 7l Tun — pll
< (1 =ra)llun = pll + rnd|un = p|
= (1= =9)rp)llun —pll
< I = (A =)ra)lldn - pll-
So,
ldnt1 =pll = [[Tvn —p
< Do —p
< P11 = (1= 0)ra)lldn — pl
< 91— (1= 9)r)"ldr — pll.
Set
wp =92 (1 — (1 —9)r)"||dy — pl|. (3.4)
Now we compute the rate of convergence of our iterative scheme (1.6) as follows:
(i) Observe that
by 931 — (1 —9)r)" ||y — -
b _ (0= (=) s =l el .

(i)

(iii)

Moo (L= (1= flar—pll " e —p

Thus, {z,} converges faster to p than {a,,}. This implies that, the AF iterative process (1.6) converges
faster to p than the normal S-iterative process (1.3).

Also,
b _ (1= (1= ) s =l _ s~
th (1= (1= 0)r)"|m1 — pll [[m1 — pl|

— 0 as n — oo. (3.6)

Thus, {z,} converges faster to p than {m,, }. This implies that, the AF iterative process (1.6) converges
faster to p than the normal M iterative process (1.4).

Finally, we see that

B _ 00— (L= )"~ pl _ s o]
e ) T A [ ¥ P

— 0 as n — oo. (3.7)

Thus, {z,} converges faster to p than {d,,}. This implies that, the AF iterative process (1.6) converges
faster to p than all of Garodia and Uddin iterative process (1.5). This completes the prove.

O

4. Convergence result

In this section, we prove strong convergence theorem of a sequence generated by AF iteration process
(1.6) for the mixed type Volterra-Fredholm functional nonlinear integral equation defined by (1.2) in a real
Banach space. And also, we give data dependence result for the solution of the mixed type Volterra-Fredholm
functional nonlinear integral equation (1.2) with the help of our new iterative scheme (1.6).
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Theorem 4.1. Assume that all the conditions (By) — (Bs) in Theorem 2.4 are satisfied. Let {x,} be
[ee]
defined by AF iteration process (1.6) with real sequence r, € [0,1], satisfying »_ r, = co. Then (1.2) has

n=1
a unique solution and the AF iteration process (1.6) converges strongly to the unique solution of the mized
type Volterra—Fredholm functional nonlinear integral equation (1.2), say p € C([u1;v1] X+ X [tm; Vm])-

Proof. We now consider the Banach space E = C([u1;v1] X -+ X [um;vml,| - |c), where || - ||c is the
Chebyshev’s norm. Let {z,} be the iterative sequence generated by AF iterative scheme (1.6) for the
operator A : £ — FE define by

Aw)(t) = (m /ql qutsx ds/ /Htsx )d> (41)

Our intention is to prove that x,, — p as n — oco. Now, by using (1.6), (1.2), (4.1) and the assumptions
(B1)—(Bs5), we have that

lzn =2l = [A(za)(t) -

— P <t Tt /u - " Kt s, 0n(s ))ds,/vl---/vm H(t,s,:cn(s))ds>
—F(tp /ql mKtsp / / H(t, 5, p(s )d>|
alan(t) - p(t)] + /

" Kt 5, 2 (s)) ds—/ql " Kt 5, p(s))ds|

—1—7\/ / H(t,s,zn(s ds—/ / H(t,s,p(s))ds|

alza(t) — p(t)] + B / . / Kt 5, 20(s)) — K (8 5,p(s))|ds

IN

IN

—i—’y/ / H(t,s,xn(s)) — H(t,s,p(s))|ds
alea(t) - p(t)] + B / o / i’" Liclwn(s) - p(s)lds

ﬂ/vl.../: Litlan(s) — p(s)|ds

allzy, — pll + AL, (vi — ui) Lk ||zn — pl|
AL (v — wi) Ly ||z — pl|
= |a+ (BLk +vLu)IGZ (v — wi)]||lzn — pl- (4.2)

IN

IN
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lwn —pll = |A(zn)(t) —
= |F <t zn(t / K t, s, zn(s))ds / " H(t,s,zn(s))ds>
q1 qm Ull "
—F<tp / K(t,s,p(s / / H(t,s,p(s d>|
a
< alz(t) !+5!/
qm q1 qm
K(t,s,zn(s) ds—/ K(t,s,p(s))ds|
—i—'y]/ / H(t,s,zn(s ds—/ / H(t,s,p(s))ds|
q1 Qm
< alealt) P01+ 8 [ [ I 20060 — K pla)ls
vy [ / H(t.5,20(5)) — Hlt,sp(5))|ds
qm
< alzal) =01+ [ [ Liclen(s) = o)l
+’y/ / Li|zn(s) = p(s)lds
< allzn = pll + AL (vi — wi) Lic || 2n — pl|
L (vi — wi) ||z —
= la+ (BLx + L)L, (vi — wi)]l|lzn — pl|- (4.3)

Substituting (4.2) into (4.3) we obtain

[|wn,

=l < (fa+ (BLx + L)Ly (v — w)])?[lan — pll- (4.4)
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Also,
lyn —pll = [A(wn)(t) — A(p)(2)]
q1 qdm U1 Um
— IF (t,wn@), [ [ K wae)as, / / H(t,s,wn<s>>ds>
qll q:l V1
—F(tp / K(t,s,p(s / / H(t,s,p(s d8>|
0
< awa(t) !+ﬁ\/
qm q1
K(t,s,wy(s) ds—/ K(t s,p(s))ds]
—i—7|/ / H(t,s,wy(s ds—/ / H(t,s,p(s))ds|
< alza(t) \+5/ / K (t,s,wn(s)) — K(t,5,p(s))lds
—{—7/ / |H (t,s,wy(s H(t,s,p(s))|ds
< alwy(t) ]—i—ﬁ/ / Li|wn(s) — p(s)|ds
—{—7/ / Ly|wy(s) — p(s)|ds
< oflwn —pll + B, (v — wi) Lk ||wn = pl|
"’J)/Hz:l(vz - uz)LHHwn pH
= la+ (BLx +yLu)ILL, (vi — wi)]llwn — pl|. (4.5)
Substituting (4.4) into (4.5) we obtain
lyn = pll < ([ + (BLK + L) (0 = ug)])? || — p]|- (4.6)
Finally,
Hxn—I—l _pH < (1 - rn)‘yn(t) p(t)’ + 7nn‘A(yn)( ) - A(p)(t)’
= (L=ra)lyn(t) — p(t)]
q1
—i—rn\F(tyn / / K(t,s,yn(s ds/ / H(t,s,yn(s
q1 qm
—F(tp / Ktsp / / H(t,s,p(s ds>|
Z’; qm
< (o) PO + ralnd =01 r [ [T (o) - ploas
+7°n7/ / LH’yn - ’dS
u1l Um
< {1=rQ@—[a+ (BLx + yLa)ILZ, (vi — w)]) Hlyn — pll- (4.7)

substituting (4.6) into (4.7) we obtain

|zt =pll < ([ + (BLi + yLa)I (v — u;)])°

AL =rn(1 = o+ (BLk + L) (vi — wi)]) }Hlzn — pll-

(4.8)
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Since from condition (Bs) we have [a + (BLx + yLg)II, (v, — u;)] < 1, it follows that ([ + (BLk +
YL )T, (v; — u;)])? < 1. Thus, (4.8) reduces to

[2nsr =pl < {1 =7ra(l = [or+ (BLi +yLE)IT (v = wi) D Hizn = pll-

(4.9)
From (4.9), we have the following inequalities:
[ent —pl < {1 =r(l = [+ (BLx + v L)L (vi — ui)]) |z — pll
lzn =Pl < {1 =ra(l = [+ (BLx + v L2 (vi — wi))}Hlzn-1 — p
ey —pll < {1 =ro(l = [+ (BLk + L) (vi — wi)]) }Hlzo — pll. (4.10)
From (4.10), we have
[znsr =2l < llwo = plE—o {1 =& (1 = [a + (BLx + L)Ly (vi — wi)])} -
(4.11)

Since 7, € [0,1] for all £ € N and recalling from assumption (Bs) that [a + (BLx +vLg)II", (v; —u;)] < 1,
then we have

1—Tk(1— [Oé—i—(,@LK—i-’yLH) ?ll(vi —ui) < 1. (412)
We recall the inequality 1 —x < e™* for all = € [0,1], thus from (4.11), we have
|Zns1 —p|| < |mo — plle” Alot Bl LTI, (vi—ua)])) ko 7 (4.13)
Taking the limit of both sides of the above inequalities, we have lim ||z, — p|| = 0. Hence, (1.6) converges
n—o0

strongly to the unique solution of the mixed type Volterra-Fredholm functional nonlinear integral equation
(1.2). O

We now turn our attention to proving the data dependence of the solution for the integral equation (1.2)
with help of AF iteration process (1.6).

Let E be as in the proof of Theorem 4.1 and T, T : E — E be two operators defined by:

T)(t) = <t:c /ql mKts:r: ))ds,/ujl---[LZMH(t,s,x(s))ds>,
T(z)(t) = <tm /q1 qutsm ds/ /Htsm )d>

where K, K, H and H € C([u1;v1] X -+ X [t U] X [u1;01] X -+ X [t U] X R).

(4.14)

(4.15)

Theorem 4.2. Let F, K and H be as defined in Theorem j.1. Let {x,} be an iterative sequence generated
by AF iteration process (1.6) associated with T. Let {a,} be the an iterative sequence generated by

Ty € F,

Zn = T:En,

Wy, = Ty, Vn > 1. (4.16)
Yn = T'wp,

i'n-l—l - (1 - 7nn)yNn + TnTme

where E is defined as in the proof of Theorem 4.1 and r,, € [0,1] is a real sequence satisfying
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(D1) % <7y, forallmn >1;
(e o]

(D3) > r, =oc. In addition, suppose that;
n=1

(D3) there exist nonnegative constants @1 and w2 such that |K(t,s, f) — K(t,s, f)| < @1 and |H(t,s, f) —
H(t,s, f)] <2, for all f € R and t,s € [ur;v1] X -+ X [Un; V).

If p is the solution of (4.14) and also p the solution of (4.15), then we have

T(Be1 + vp2) I (v; — w;) (4.17)

—ll < .
Ip =7l = 1 —[a+ (BLk + L), (v — u;)

Proof. Using (1.6), (4.14), (4.15), (4.16), conditions (D;) — (D3) and assumptions (B;) — (Bs), we obtain

lzn — Znll = [ Tzn — Tan

:]F<tmn /q1 mKtsxn / /m tsxn(s))ds>
—F(tmn /ql mf(tsmn / /ﬁtsxn ))ds>y

< a|xn(t)—fn(t)|+5|/ql...
qu(tsxn( ds—/q1 mf((tsfn( ))ds]|
—|—7|/ / H(t,s,xn(s ds—/ / H(t,s,a,(s))ds|
< afon(®) =01+ 8 [ [T s 0) — K0
+|K (t,s,8(s)) — K(t,s,2,(s))])ds
—|—7/ / (|H(t,s,xn(s)) — H(t,s,2n(s))| +
HH(t, 5,3, (s)) — H(t, s, 7n(s))|)ds
< afen) =@+ 8 [ [ (Lkloals) - (o) + or)ds
by [ [ Wnlen(s) = )] + s
< allzn — Tl + B(Lkl|vn — Tall + 1)L (v — u;)

+y(Ll|lzn — Tl + ©2) T (vi — u;)
= [a+ (BLk +vLa) (v — w))||@n — 2|
+(Be1 + vp2) Iy (v; — ;). (4.18)
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lwon = @ull = ||T20 = T2

— IF (t ot /ql mK t,5,2n(s))ds, /ml/: H(t,s,zn(s))ds>
_F <t it /ql mf( £ s, 2n(s))ds, /ul/u: fl(t,s,z}(s))ds) |

< a\zn@)—z;(t)wm/ql...
" K (5,20 (s))ds —/ql mf{(t 5, 50 (5))ds|
—i—’y!/ / H(t,s,z,(s ds—/ / H(t,s,7,(s))ds|
< alz(t) = Z(t)| + 8 : qm(|K(ta5,Zn(5))—K(t,s,in(sm
—i—]K(z;,ls, zn(izz — R’(:s, z}l(:;n)])ds
+ L ([H(t,s,2n(s)) — H(t, s, Zn(s))| +

+|H(t,5,2,(s)) — H(t, s, 2,(5))|)ds

< alen(t) — At \+/3/ / (Liclon(s) — Za(s)| + o1)ds
oy / / (Lt (s) — Za(s)] + p2)ds
Ul Um
< allzn = Znll + B(Lkllzn — Znll + ©1)ILL (v — i)

Y (Lallzn — Zull + @2) T2 (v — u;)
= [a+ (BLk + L)L, (v — ug)]l|2n — 20|
+(Ber + )G (v — u;). (4.19)

Putting (4.18) into (4.19) we obtain

lwn —@nll < ([ + (BLx + L) (v — w;)])? |20 — Za
Fla+ (BLx + L)L (vi — ug)|(Bpr + vo2) Iy (vi — ui)
+(Bp1 + vp2) Iy (v; — ;). (4.20)

From (4.20) and assumption (Bs) we obtain

lwn — @]l < ((a+ (BLk + yLa)IT (v — u)])?[|an — 20|
+2(Be1 + vp2) L (vi — wi). (4.21)
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lyn — nll = HTwn—TwnH

— P (t wn(t /ql mK t, 5, wn(s))ds, /ml/u:n H(t,s,wn(s))ds>

_F (t i (¢ /ql mf( 5,160 (5))ds, /ul/u: ﬁ(t,s,wn(s))ds> |

alwa(t) — ()] + B / .

qm

IN

dm

K (t, 5, wn(s))ds —/ql R (t, 5,1 (5))ds|

ﬂ\/ /Htswn ds—/ /Htswn s))ds|

< alwa(t) - wa(t)] + 8 / / K s wl5)) — K (t 5,10 (s)|
1K (5, @n(s)) — K(t, 5, 15(5))])ds
—i—’y/ / yH t,s,wn(8)) — H(t, s, wn(s))] +
FIH(t, 5, @n(s)) — H(t, 5,100 (s))])ds

< afwn(t) — wn(t \+5/ / (Li|wn(s) = wn(s)] + ¢1)ds
o [ - I (L) 15 (5) + o)

< allwn — ]l + B(Eicllwn — | + 1)L, (01— )

Y (Lp l|wn — W || + 02) T (v — ;)
= [a+ (BLix + L)L, (vi — ug)]l|wn — wy|
+(Ber + ) IEL (v — u;). (4.22)

Putting (4.21) into (4.22)

lyn =Gl < (o + (BLi + L) (vi — wi)])? ||z — Znll
o+ (BLk +vLp)IGZ, (vi — ui)|(Be1 + yp2) I (v — u;)
+2(Bp1 + )Ly (vi — uy). (4.23)

From (4.23) and assumption (Bs) we obtain

1Y — Gl < (lo+ (BLi + vLg)I ) (v — w)])? |2 — Tl
+3(Bp1 + )L (v — w). (4.24)

Finally
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1 = Znaill < (1= r)lyn(t) = Ga (@] + 70| T(ya) (1) = T(5) (1))
= (L=rn)lyn(t) = yn(t)]

q1 qm
—|—7“n|F<tynt/ K(t,s,yn(s / / H(t, s, yn( ))d>
q1 (Im
—F(tyn / Ktsyn ds/ / H(t,s,yn( ))d)]

< (1= r)lyn(®) — ()]
ey (t) = Ga(®)] + / / (Liclya(s) — G (s)] + @1)ds
+Tn7/ / LH‘yn - yNn(s)‘ + 902)d3

< (1= ra(l— [a+ (8L + AL (0 — )} lym — ]

+rn(Bpr + 1p2) L (v — wq). (4.25)
Putting (4.24) into (4.25) we obtain

[#n1 = Zpgall < {1 =7l = o+ (BLx + L)L (vi — ui)])}
([ + (BLx + L) (v — i) ||z — |
+rn(Ber + vp2) L (vi — wi) + 3(Ber + vp2) I, (vi — wi).
(4.26)

Since from assumption (Bjs) we have [a + (8Lx + vLg)II"(v; — w;)] < 1, it follows that (o + (BLk +
YL )T (v; — u;)])® < 1, thus (4.26) becomes

|Zns1 — Znall < {1 =701 —[a+ (BLk +vLy)IG2 ) (v — ug)]) Hzn — Zn |
+rn(Ber + ) ITL ) (vi — u;) + 3(Be1 + vp2) I (v — wi).
(4.27)

From our assumption % < 7y, we have that
l—r, <rp=1=1—1r,+r, <r,+1r,=2"r,.
Thus, we have from (4.27) that

[Znt1 = Zpall < {1 —rp(1 = o+ (BLk +vLa)ILZy (vi — w)]) Hlzn — Zn|
+ra(Ber + )T (v; — ;)
+3(1 — 1 + 1) (Beor + vp2) I (v — w4).
{1 =7l —[a+ (BLx + L)y (vi — u)]) Hlzn — 20|
+7rn(Ber + vp2) I (vi — wi)
= {1—r(1—[a+ (BLrg +vLa)IZ, (v; — wi)]) Hwn — 20|

+7rn(1 = [+ (BLk + L)Ly (vi — w;)])

T(Be1 + vp2) I, (vi — )
) (1 —[a+ (BLk 4+ yLg)II? | (v; — uz‘)) ' (4.28)

IN
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For all n > 1, from (4.28) put

pn = |lzn =20l
Tn — Tn(l - [a + (/BLK + VLH) z’rll(vi - ul)]) € (07 1)7
T(Ber + vp2) I (v — wy)

Un = T+ (BLx + AL (o =) =

Therefore, all the conditions of Lemma 2.3 are satisfied. Hence, we obtain that

- T(Bpr + ) I, (v — wi)
= 1—[a+ (BLk + L), (v — w;)

(4.29)

|Zn — Znl|
O

Remark 4.3. Since our new iteration process converges at a rate faster than some of the iterative methods
in the existing literature which have been used to obtain the solution of the mixed type Volterra-Fredholm
functional nonlinear integral equation (1.2). Hence, our new iterative scheme is an efficient method for
solving (1.2). Hence, our results improves and unify the corresponding results in [12, 15, 18, 32] and several
others in the existing literature.
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