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Abstract

Let P(z) be a polynomial of degree n having all its zeros in |z| < 1 then for all (o;)!_; € C with |a;| > 1,1 <
i <t < mn, it was proved by Jain[V. K. Jain, Generalization of an inequality involving maximum moduli of
a polynomial and its polar derivative, Bull Math Soc Sci Math Roum Tome. 98, 6774 (2007)] that

lr?‘a)f’Dat Doy Doy P(2)] > 2t

Aq, maxyp ) + <2tH|aZ| at) min | P(z)|

where ny =n(n —1)...(n —t + 1) and Ay, = (|ag] — 1)(|az] — 1)...(Jag| — 1).
In this paper, we generalize this and some other results.
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1. Introduction

n
Let P,, denote the space of all complex polynomials P(z) = z ;27 of degree at most n. A famous

result known as Bernstein’s inequality [5] states if P € P, then

|m‘a>1<\P( 2)| <n‘m|§><!P( z)|- (1.1)

This result is best possible and equality holds for the polynomial having all zeros at the origin. If P(z) has
all zeros in |z| < 1 then it was proved by P. Turan [15] that

gl‘wf\P’( =3 l‘fn|a>§|P( z)- (1.2)
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Inequality (1.2) is best possible and equality holds for polynomials which have all zeros on |z| = 1. As a
refinement of (1.2) Aziz and Dawood [2] proved that if P(z) has all its zeros in |z| < 1, then

max | P'(z)| > n {max |P(z)| + min ]P(z)\} (1.3)
|z|=1 2 |)z=1 |z|=1
The equality in (1.3) holds for P(z) = az" + 8 where |3] < |a|.
Inequality(1.2) was generalised by Malik [12] who proved that if P(z) is a polynomial of degree n having
all its zeros in |z| < k,k < 1, then
n
P'(2)| > — P(z)]. 1.4
max [P (z)] 2 7 max|P(z)] (1.4)
The result is sharp and equality holds for P(z) = (z + k)™.

Inequality (1.4) was generalized by Aziz and Shah [4] by proving that if P(z) is a polynomial of degree
n having all its zeros in |z| < k, k < 1 with s-fold zeros at the origin, then

glg\P’(Z)! > T g maxIPE)l (1.5)

The result is sharp and the extremal polynomial is P(z) = 2°(z + k)" %,0 < s < n.
Let Do P(2) be an operator that carries nt" degree polynomial P(z) to the polynomial

DoP(z) =nP(z) + (a — 2)P'(2), a€C
of degree at most (n — 1). D, P(z) generalizes the ordinary derivative P’(z) in the sense that

lim LQP(Z)

a—00 «

= P'(2)

Now corresponding to a given n'” degree polynomial P(z), we construct a sequence of polar derivatives

Do P(z) =nP(z)+ (o — 2)P'(2)

DayDay_,...Da, P(2) =(n — k +1)Da,_,...Da, P(2)
+ () — 2)(Day_y Doy P(2))" for k=2,3,..,n.

The points oy, ag, ..., a4, k = 1,2, ...,n, may be equal or unequal. Like the k*" ordinary derivative P*)(z)
of P(2), the k' polar derivative Dy, Dy, _,..-Da, P(2) of P(z) is a polynomial of degree at most n — k.

As an extension of (1.1) for the polar derivative Aziz and Shah [3] used polar derivative and established
that if P(z) is a polynomial of degree n, then for every real or complex number a with |o| > 1 and for
2> 1,

|DoP(2)| < njaz"! lm‘ax |P(2)] (1.6)
z|=1
Aziz [1] extended (1.6) to the j'* polar derivative and proved that if P(z) is a polynomial of degree n
then for all (a;)!_; € C with |a;| > 1 for all i = 1,2,...,¢(¢t < n) then for |z] > 1,

|m|ax |Day Doy Doy P(2)| < n(n —1)...(n — t + 1)|arag...aq||2]" ‘m|ax |P(z)].
z|=1 z|=1

W. M. Shah [14] extended (1.2) to the polar derivative and proved that if P € P, and has all zeros in
|z] <1, then for |a| > 1

n(lal —1)
g1|1>1<|DaP(Z)I > flrg‘gclP(Z)l- (L.7)
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As an extension of (1.7) to the j** polar derivative, Jain [10] proved that if P(z) has all its zeros in |z| < 1,
then for all (o;)!_; € C with |oy| > 1,1 <i <t < n,

t

Aq P 2! il — Aq, | min |P
 max| (Z)I+< []leul ) min | P(z)|

|| el

n
max | Dy, ... Day Do, P(2)| > o1
|z|=1 2

. (1.8)

where
ng=n(n—1)..(n—t+1) and A, = (Ja1| —1)(Jaz| —1)...(Joz| — 1). (1.9)

This result is best possible and extremal polynomial is P(z) = (z — 1)" with ; > 1,1 <i <t < n.

2. Preliminaries

For the proof of these Theorems, we need the following Lemmas. The first Lemma is due to Laguerre
[11].

Lemma 2.1. If all the zeros of an n'* degree polynomial P(2) lie in a circular region C' and if none of the
points ()i, lie in the region C then each of the polar derivatives (Da,;)_q, t < n has all its zeros in region
C.

Lemma 2.2. Let A and B be any two complex numbers, then
(i) If |A| > |B| and B # 0, then A = vB for all complex numbers v with |v| < 1.
(ii) Conversely, if A # vB for all complex number v with |v| < 1, then |A| > |B].

Lemma(2.2) is due to Xin Li [16]

n .
Lemma 2.3. If P(2) = ap+a1z+ ) a;2’ is a polynomial of degree n, having no zeros in |z| < k, k>1,
j=2
then
k‘aﬂ

|ag|

<n.

This Lemma is due to Gardner et al. [7]

n .
Lemma 2.4. If P(2) = ) aj2’ is a polynomial of degree n, having all its zeros in |z| <k, k <1, then
§=0

|an—1]

< nk.
|an|

Proof. Since P(z) has all zeros in |z| < k, k < 1, therefore ¢(z) = 2"P (1) = @y+@,_12+...+a12" " +agz",
is a polynomial of degree at most n, which does not vanish in |z| < %, % > 1. Apply Lemma 2.3 to ¢(z),
we get the desired result. O

Lemma 2.5. If P(z) is a polynomial of degree n having all its zeros in |z| < k < 1 with s-fold zeros at the
origin then for every a € C with |a| > k,

(la] = k)(n+ ks)
1+k

|DaP(2)] =

[P(2)]
where 0 < s < n.

The above Lemma is due to Dewan et al. [6]
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3. Main Result

The main aim of this paper is to obtain inequalities similar to (1.8) for the polynomial having s-fold
zeros at the origin.

Theorem 3.1. If P(z) is a polynomial of degree n having all zeros in |z| < k,k < 1 with s-fold zeros at
origin then for all (a;)i_; € C with |oy| > k,1 <i <t <n,

max |Dq, ... Doy Doy P(2)

|2|=1

i) + k(s — 1)) max | P()]. (3.1)

k)t |z|=1

where Ak = (Jan| — k)(Jaa| — k)...(Jae| — k) and 0 < s < n.

Proof. If |oj| = k for at least one j,1 < j <, then result is trivial. Therefore, we assume that |o;| > k for
all j;1 < j <t. We will prove the result by mathematical induction. The result is true for ¢t = 1 by Lemma
2.5 that means if |a;| > k, then

(laa| = K)(n + ks)

D,, P >
D, P(2)] = 2

|P(2)] (32)
Now for t = 2, since Do, P(2) = (nayaq + an—1)2""* + ... + (nao + ara1) , and |ag| > k, then D,, P(z) will
be a polynomial of degree (n — 1). If it is not true, then the coefficient of 2"~ must be equal to zero, which

implies

nanoy + ap—1 =0,

ie,
| = an—1]
n|an|
Applying Lemma 2.4, we get
|041‘ — ’an—1| S k
n|ay|

But this contradicts the fact that |a1| > k. Hence, the polynomial D,, P(z) must be of degree (n — 1).

Also P(z) has all zeros in |z| < k,k < 1 with s-fold zeros at origin, so P(z) = 2°h(z) where h(z) is
a polynomial of degree n — s having all zeros in |z| <,k < 1. Now Dy, P(z) = 2°Dqy, h(2) + tay2°~th(z).
Hence D,, P(z) is a polynomial of degree n — 1 having all zeros in |z| < k with (s — 1) fold zeros at origin.
By Lemma 2.5 we have for |as| > k

1D (D, P 2 DR D 0 i, P (33

Using (3.2) we have

(n+ks)[(n—1)+k(s—1)]
(14 k)2

[ D Doy P(2)] = (laa| = k) (2| = K)|P(2)]- (3.4)

This implies result is true for ¢ = 2. Assume that the result is true for t = ¢ < n; so for |z| = 1, we have
(n+ ks) [(n—1)+k(s—1)]...[(n—q+1)+/’<:(s—q+1)]><

(1+ k) (3.5)
(laa| = K)(laa| = k)...(Jog| = F)[P(2)]

|Da,... Doy Doy P(2)] >
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and we will prove that the result is true for t = ¢+ 1 < n. According to above procedure, one can conclude
that Dy, ... Doy Do, P(z) will be a polynomial of degree (n—q) for all (a;)!_; € C with |oy| > k;1<i<g<n
and has all zeros in |z| < k,k < 1 with (s — ¢) fold zeros at origin. Therefore, for |ag+1| > k, by applying
Lemma 2.5 to Dq,...Da, Do, P(2), we get

n—q)+ k(s —q)]
1+k

Doyt {Day---DayDa, P(2)} | > ( (Jags1| = k)| Doy -.-Day Do, P(2)] (3.6)

Using (3.5) in (3.6) we have for |z| =1

|Day.y Doy Day Doy P(2)] >
(n+ks)[(n—1)+k(s—1)]...[((n—qg+1)+k(s—qg+1)][(n—q) +k(s—q)]
X (3.7)
(14 k)att
(lagia] = F)(ag| = k). (Joz| = k) (laa| = F)[P(2)].
This implies result is true for ¢t = ¢ + 1.
O
If ay = ag = ... = a4 = «, then by dividing both sides of (3.1) by |a|' and letting |a| — oo, we get the

following result.

Corollary 3.2. If P(z) is a polynomial of degree n having all zeros in |z| < k,k < 1 with s-fold zeros at
origin, then

Tt — i) + k(s — )

PO(z)| > =2 P
‘m|a>1<| (2)] = A5 h) gl"cvli\ (2)].

where 0 < s < n.
For k =1, Theorem 3.1 reduces to the following result which is generalization of (1.8).

Corollary 3.3. If P(z) is a polynomial of degree n having all zeros in |z| < 1 with s-fold zeros at origin
then for all (ay)i_; € C with |oy] > 1,1 <i <t < n,

t—1

Ao ,
2 | Do Doy Do P(2)| 2 5t 11—+ (s =) max| P(2)]
- i=0

where Ag, is defined in (1.9) and 0 < s < n.

Theorem 3.4. If P(z) is a polynomial of degree n having all zeros in |z| < k,k < 1 with s-fold zeros at
origin then for all (o;)!_; € C with |a;| > k,1 <1i <t <n,

max | Do, - Doy Doy P(2)] 2 7% H i) + k(s — )] ‘rg'mlilp( 2)|

”{ntH|ai|— o Ky —l—ks—z)]}m
i=1

where m = n‘nn |P(2)], 0 < s < n, ny is defined in (1.9) and AL is defined in Theorem 3.1.
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Proof. Let m = lrr‘un |P(2)]. If P(z) has a zero on |z| = k,then m = 0 and the result follows from Theorem
3.1. So we suppose that all the zeros of P(z) lie in |z| < k, with s-fold zeros at origin, so that m > 0. Now

m < |P(z)| for |z| = k. Since all zeros of P(z) lie in |z| < k with s-fold zeros at origin, by Rouche’s Theorem
all zeros of the polynomial T(z) = P(z) — Am (£)" lie in |z| < k with s-fold zeros at origin with [A| < 1.
Applying Theorem 3.1 to the polynomial T'(z), we get for all (a;)i_; € C with |oy| > k,1 <i <t <non
2] =1,

ab
Do Dy Den T(2) 2 (7 H}[(n—in(s—i)HT(Z)!-
Equivalently,
n Akl
Day- Doy Do, <P(z)—)\m (%) ) 2 e g[(n—i)—i—k(s—i)]
[P = (7)']
Or
Lt Akl
‘Dat...DQQDOqP(z)—)\mntalag...at | > (1+a;€)ti_H0[(n—i)+k(s—i)] .

)P(z) —Am (%)n .

By Lemma 2.1, the polynomial R(z) = D,,...Day Do, T(2) # 0 for |z| > k that is for every A\ with || < 1
and |z| > k, the polynomial R(z) = D,,...DayDq P( ) — Amniai ... kn 0. Thus by (77) of Lemma
2.2, we have for |z| > k

|Dg, ... Doy Doy, P2 nt H ||| 2|7 (3.9)
Taking a relevant choice of argument of A in (3.8) which is possible by (3.9) we get

|Day---Day Day P(2)] — ’)‘| ntH|aZ||z|" t>

Ak t—1

(1 +a;€)t Z:HO[(n - 7’) + k<s - Z)”P(Z)’
k t—1 n
Y (1{1#&%)15 Tt — i) + k(s — z)]m|k|n.

1=0

Which on simplification gives for |z| =1,

[ Doy Day Doy P(2) i+ k ; H §) + k(s — )] max | P(2))
(3.10)
Ak t—1
+ [NET" {nt I el - q f;)t [Ti(n =) + k(s - i)]} m
=1 =0

Making |A| — 1, the desired result follows. O
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If o = ag = ... = ay = «, then by dividing both sides of (3.1) by |a|* and letting |a| — oo, we get the
following result.

Corollary 3.5. If P(z) is a polynomial of degree n having all zeros in |z| < k,k < 1 with s-fold zeros at
origin, then

o tli[:[(n — i) + k(s —1)]
max [P (2)] = A5k max [P(2)]
TLin — 1) + k(s — 1)
+ k" dn, - =9 m

(1+ k)t

where m = |n‘1112 |P(2)], 0 < s <n and n; is defined in (1.9).

For ¢t = 1 Theorem 3.4 reduces to the following result which is refinement of a result of Dewan et al [6].

Corollary 3.6. If P(z) is a polynomial of degree n having all zeros in |z| < k,k < 1 with s-fold zeros at
origin then for all o € C with || > k, we have for |z] =1

(la| — k) —n ol =k
|I?|i)1( |DoP(2)] > W(n + ks) Irilli)f |P(2)| + & {na\ — m(n + ks)} m

where m = |H\m£ |P(2)] and 0 < s <n.
zZl=
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