Communications in Nonlinear Analysis

Publisher

CNA

Research Group of Nonlinear Analysis and Applications

Some Inequalities for the Polar Derivative of a Polynomial Having S-Fold Zeros at the Origin

M. H. Gulzar*, B. A. Zargar, Rubia Akhter
Department of Mathematics, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India

Abstract

Let $P(z)$ be a polynomial of degree n having all its zeros in $|z| \leq 1$ then for all $\left(\alpha_{i}\right)_{i=1}^{t} \in \mathbb{C}$ with $\left|\alpha_{i}\right| \geq 1,1 \leq$ $i \leq t<n$, it was proved by Jain[V. K. Jain, Generalization of an inequality involving maximum moduli of a polynomial and its polar derivative, Bull Math Soc Sci Math Roum Tome. 98, 6774 (2007)] that

$$
\max _{|z|=1}\left|D_{\alpha_{t}} \ldots D_{\alpha_{2}} D_{\alpha_{1}} P(z)\right| \geq \frac{n_{t}}{2^{t}}\left[A_{\alpha_{t}} \max _{|z|=1}|P(z)|+\left(2^{t} \prod_{i=1}^{t}\left|\alpha_{i}\right|-A_{\alpha_{t}}\right) \min _{|z|=1}|P(z)|\right]
$$

where $n_{t}=n(n-1) \ldots(n-t+1)$ and $A_{\alpha_{t}}=\left(\left|\alpha_{1}\right|-1\right)\left(\left|\alpha_{2}\right|-1\right) \ldots\left(\left|\alpha_{t}\right|-1\right)$.
In this paper, we generalize this and some other results.
Keywords: s-fold zeros, Polar Derivative, Inequalities, maximum modulus.
2010 MSC: 30A10, 30C10, 30D15.

1. Introduction

Let \mathcal{P}_{n} denote the space of all complex polynomials $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ of degree at most n. A famous result known as Bernstein's inequality [5] states if $P \in \mathcal{P}_{n}$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \leq n \max _{|z|=1}|P(z)| \tag{1.1}
\end{equation*}
$$

This result is best possible and equality holds for the polynomial having all zeros at the origin. If $P(z)$ has all zeros in $|z| \leq 1$ then it was proved by P. Turan [15] that

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{2} \max _{|z|=1}|P(z)| . \tag{1.2}
\end{equation*}
$$

[^0]Inequality (1.2) is best possible and equality holds for polynomials which have all zeros on $|z|=1$. As a refinement of (1.2) Aziz and Dawood [2] proved that if $P(z)$ has all its zeros in $|z| \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{2}\left\{\max _{|z|=1}|P(z)|+\min _{|z|=1}|P(z)|\right\} \tag{1.3}
\end{equation*}
$$

The equality in (1.3) holds for $P(z)=\alpha z^{n}+\beta$ where $|\beta| \leq|\alpha|$.
Inequality (1.2) was generalised by Malik [12] who proved that if $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+k} \max _{|z|=1}|P(z)| \tag{1.4}
\end{equation*}
$$

The result is sharp and equality holds for $P(z)=(z+k)^{n}$.
Inequality (1.4) was generalized by Aziz and Shah [4] by proving that if $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$ with s-fold zeros at the origin, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n+k s}{1+k} \max _{|z|=1}|P(z)| \tag{1.5}
\end{equation*}
$$

The result is sharp and the extremal polynomial is $P(z)=z^{s}(z+k)^{n-s}, 0 \leq s \leq n$.
Let $D_{\alpha} P(z)$ be an operator that carries $n^{t h}$ degree polynomial $P(z)$ to the polynomial

$$
D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z), \quad \alpha \in \mathbb{C}
$$

of degree at most $(n-1) . D_{\alpha} P(z)$ generalizes the ordinary derivative $P^{\prime}(z)$ in the sense that

$$
\lim _{\alpha \rightarrow \infty} \frac{D_{\alpha} P(z)}{\alpha}=P^{\prime}(z)
$$

Now corresponding to a given $n^{\text {th }}$ degree polynomial $P(z)$, we construct a sequence of polar derivatives

$$
\begin{aligned}
& D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z) \\
& D_{\alpha_{k}} D_{\alpha_{k-1}} \ldots D_{\alpha_{1}} P(z)=(n-k+1) D_{\alpha_{k-1} \ldots} \ldots D_{\alpha_{1}} P(z) \\
&+\left(\alpha_{k}-z\right)\left(D_{\alpha_{k-1}} \ldots D_{\alpha_{1}} P(z)\right)^{\prime} \quad \text { for } \quad k=2,3, \ldots, n .
\end{aligned}
$$

The points $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}, k=1,2, \ldots, n$, may be equal or unequal. Like the $k^{t h}$ ordinary derivative $P^{(k)}(z)$ of $P(z)$, the $k^{t h}$ polar derivative $D_{\alpha_{k}} D_{\alpha_{k-1}} \ldots D_{\alpha_{1}} P(z)$ of $P(z)$ is a polynomial of degree at most $n-k$.

As an extension of (1.1) for the polar derivative Aziz and Shah [3] used polar derivative and established that if $P(z)$ is a polynomial of degree n, then for every real or complex number α with $|\alpha|>1$ and for $|z| \geq 1$,

$$
\begin{equation*}
\left|D_{\alpha} P(z)\right| \leq n\left|\alpha z^{n-1}\right| \max _{|z|=1}|P(z)| \tag{1.6}
\end{equation*}
$$

Aziz [1] extended (1.6) to the $j^{\text {th }}$ polar derivative and proved that if $P(z)$ is a polynomial of degree n then for all $\left(\alpha_{i}\right)_{i=1}^{t} \in \mathbb{C}$ with $\left|\alpha_{i}\right| \geq 1$ for all $i=1,2, \ldots, t(t<n)$ then for $|z| \geq 1$,

$$
\max _{|z|=1}\left|D_{\alpha_{t} \ldots D_{\alpha_{2}}} D_{\alpha_{1}} P(z)\right| \leq n(n-1) \ldots(n-t+1)\left|\alpha_{1} \alpha_{2} \ldots \alpha_{t}\right||z|^{n-t} \max _{|z|=1}|P(z)|
$$

W. M. Shah [14] extended (1.2) to the polar derivative and proved that if $P \in \mathcal{P}_{n}$ and has all zeros in $|z| \leq 1$, then for $|\alpha| \geq 1$

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \geq \frac{n(|\alpha|-1)}{2} \max _{|z|=1}|P(z)| \tag{1.7}
\end{equation*}
$$

As an extension of (1.7) to the $j^{t h}$ polar derivative, Jain [10] proved that if $P(z)$ has all its zeros in $|z| \leq 1$, then for all $\left(\alpha_{i}\right)_{i=1}^{t} \in \mathbb{C}$ with $\left|\alpha_{i}\right| \geq 1,1 \leq i \leq t<n$,

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha_{t}} \ldots D_{\alpha_{2}} D_{\alpha_{1}} P(z)\right| \geq \frac{n_{t}}{2^{t}}\left[A_{\alpha_{t}} \max _{|z|=1}|P(z)|+\left(2^{t} \prod_{i=1}^{t}\left|\alpha_{i}\right|-A_{\alpha_{t}}\right) \min _{|z|=1}|P(z)|\right] . \tag{1.8}
\end{equation*}
$$

where

$$
\begin{equation*}
n_{t}=n(n-1) \ldots(n-t+1) \quad \text { and } \quad A_{\alpha_{t}}=\left(\left|\alpha_{1}\right|-1\right)\left(\left|\alpha_{2}\right|-1\right) \ldots\left(\left|\alpha_{t}\right|-1\right) . \tag{1.9}
\end{equation*}
$$

This result is best possible and extremal polynomial is $P(z)=(z-1)^{n}$ with $\alpha_{i} \geq 1,1 \leq i \leq t<n$.

2. Preliminaries

For the proof of these Theorems, we need the following Lemmas. The first Lemma is due to Laguerre [11].

Lemma 2.1. If all the zeros of an $n^{\text {th }}$ degree polynomial $P(z)$ lie in a circular region C and if none of the points $\left(\alpha_{i}\right)_{i=1}^{t}$ lie in the region C then each of the polar derivatives $\left(D_{\alpha_{i}}\right)_{i=1}^{t}, t<n$ has all its zeros in region C.

Lemma 2.2. Let A and B be any two complex numbers, then
(i) If $|A| \geq|B|$ and $B \neq 0$, then $A=v B$ for all complex numbers v with $|v|<1$.
(ii) Conversely, if $A \neq v B$ for all complex number v with $|v|<1$, then $|A| \geq|B|$.

Lemma(2.2) is due to Xin Li [16]
Lemma 2.3. If $P(z)=a_{0}+a_{1} z+\sum_{j=2}^{n} a_{j} z^{j}$ is a polynomial of degree n, having no zeros in $|z|<k, \quad k \geq 1$, then

$$
\frac{k\left|a_{1}\right|}{\left|a_{0}\right|} \leq n
$$

This Lemma is due to Gardner et al. [7]
Lemma 2.4. If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n, having all its zeros in $|z| \leq k, \quad k \leq 1$, then

$$
\frac{\left|a_{n-1}\right|}{\left|a_{n}\right|} \leq n k
$$

Proof. Since $P(z)$ has all zeros in $|z| \leq k, \quad k \leq 1$, therefore $q(z)=z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)}=\overline{a_{n}}+\overline{a_{n-1}} z+\ldots+\overline{a_{1}} z^{n-1}+\overline{a_{0}} z^{n}$, is a polynomial of degree at most n, which does not vanish in $|z|<\frac{1}{k}, \quad \frac{1}{k} \geq 1$. Apply Lemma 2.3 to $q(z)$, we get the desired result.

Lemma 2.5. If $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k \leq 1$ with s-fold zeros at the origin then for every $\alpha \in \mathbb{C}$ with $|\alpha| \geq k$,

$$
\left|D_{\alpha} P(z)\right| \geq \frac{(|\alpha|-k)(n+k s)}{1+k}|P(z)|
$$

where $0 \leq s \leq n$.
The above Lemma is due to Dewan et al. [6]

3. Main Result

The main aim of this paper is to obtain inequalities similar to (1.8) for the polynomial having s-fold zeros at the origin.

Theorem 3.1. If $P(z)$ is a polynomial of degree n having all zeros in $|z| \leq k, k \leq 1$ with s-fold zeros at origin then for all $\left(\alpha_{i}\right)_{i=1}^{t} \in \mathbb{C}$ with $\left|\alpha_{i}\right| \geq k, 1 \leq i \leq t<n$,

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha_{t}} \ldots D_{\alpha_{2}} D_{\alpha_{1}} P(z)\right| \geq \frac{A_{\alpha_{t}}^{k}}{(1+k)^{t}} \prod_{i=0}^{t-1}[(n-i)+k(s-i)] \max _{|z|=1}|P(z)| \tag{3.1}
\end{equation*}
$$

where $A_{\alpha_{t}}^{k}=\left(\left|\alpha_{1}\right|-k\right)\left(\left|\alpha_{2}\right|-k\right) \ldots\left(\left|\alpha_{t}\right|-k\right)$ and $0 \leq s \leq n$.
Proof. If $\left|\alpha_{j}\right|=k$ for at least one $j, 1 \leq j \leq t$, then result is trivial. Therefore, we assume that $\left|\alpha_{j}\right|>k$ for all $j ; 1 \leq j \leq t$. We will prove the result by mathematical induction. The result is true for $t=1$ by Lemma 2.5 that means if $\left|\alpha_{1}\right|>k$, then

$$
\begin{equation*}
\left|D_{\alpha_{1}} P(z)\right| \geq \frac{\left(\left|\alpha_{1}\right|-k\right)(n+k s)}{1+k}|P(z)| \tag{3.2}
\end{equation*}
$$

Now for $t=2$, since $D_{\alpha_{1}} P(z)=\left(n a_{n} \alpha_{1}+a_{n-1}\right) z^{n-1}+\ldots+\left(n a_{0}+\alpha_{1} a_{1}\right)$, and $\left|\alpha_{1}\right|>k$, then $D_{\alpha_{1}} P(z)$ will be a polynomial of degree $(n-1)$. If it is not true, then the coefficient of z^{n-1} must be equal to zero, which implies

$$
n a_{n} \alpha_{1}+a_{n-1}=0
$$

i.e,

$$
\left|\alpha_{1}\right|=\frac{\left|a_{n-1}\right|}{n\left|a_{n}\right|}
$$

Applying Lemma 2.4, we get

$$
\left|\alpha_{1}\right|=\frac{\left|a_{n-1}\right|}{n\left|a_{n}\right|} \leq k
$$

But this contradicts the fact that $\left|\alpha_{1}\right|>k$. Hence, the polynomial $D_{\alpha_{1}} P(z)$ must be of degree $(n-1)$.
Also $P(z)$ has all zeros in $|z| \leq k, k \leq 1$ with s-fold zeros at origin, so $P(z)=z^{s} h(z)$ where $h(z)$ is a polynomial of degree $n-s$ having all zeros in $|z| \leq, k \leq 1$. Now $D_{\alpha_{1}} P(z)=z^{s} D_{\alpha_{1}} h(z)+t \alpha_{1} z^{s-1} h(z)$. Hence $D_{\alpha_{1}} P(z)$ is a polynomial of degree $n-1$ having all zeros in $|z| \leq k$ with $(s-1)$ fold zeros at origin. By Lemma 2.5 we have for $\left|\alpha_{2}\right|>k$

$$
\begin{equation*}
\left|D_{\alpha_{2}}\left(D_{\alpha_{1}} P(z)\right)\right| \geq \frac{[(n-1)+k(s-1)]}{1+k}\left(\left|\alpha_{2}\right|-k\right)\left|D_{\alpha_{1}} P(z)\right| \tag{3.3}
\end{equation*}
$$

Using (3.2) we have

$$
\begin{equation*}
\left|D_{\alpha_{2}} D_{\alpha_{1}} P(z)\right| \geq \frac{(n+k s)[(n-1)+k(s-1)]}{(1+k)^{2}}\left(\left|\alpha_{1}\right|-k\right)\left(\left|\alpha_{2}\right|-k\right)|P(z)| \tag{3.4}
\end{equation*}
$$

This implies result is true for $t=2$. Assume that the result is true for $t=q<n$; so for $|z|=1$, we have

$$
\begin{align*}
&\left|D_{\alpha_{q}} \ldots D_{\alpha_{2}} D_{\alpha_{1}} P(z)\right| \geq \frac{(n+k s)[(n-1)+k(s-1)] \ldots[(n-q+1)+k(s-q+1)]}{(1+k)^{q}} \times \tag{3.5}\\
&\left(\left|\alpha_{1}\right|-k\right)\left(\left|\alpha_{2}\right|-k\right) \ldots\left(\left|\alpha_{q}\right|-k\right)|P(z)|
\end{align*}
$$

and we will prove that the result is true for $t=q+1<n$. According to above procedure, one can conclude that $D_{\alpha_{q}} \ldots D_{\alpha_{2}} D_{\alpha_{1}} P(z)$ will be a polynomial of degree $(n-q)$ for all $\left(\alpha_{i}\right)_{i=1}^{t} \in \mathbb{C}$ with $\left|\alpha_{i}\right| \geq k ; 1 \leq i \leq q<n$ and has all zeros in $|z| \leq k, k \leq 1$ with $(s-q)$ fold zeros at origin. Therefore, for $\left|\alpha_{q+1}\right|>k$, by applying Lemma 2.5 to $D_{\alpha_{q} \ldots D_{\alpha_{2}} D_{\alpha_{1}} P(z) \text {, we get }}$

Using (3.5) in (3.6) we have for $|z|=1$

$$
\begin{align*}
& \mid D_{\alpha_{q+1}} D_{\alpha_{q} \ldots D_{\alpha_{2}} D_{\alpha_{1}} P(z) \mid \geq}^{(n+k s)[(n-1)+k(s-1)] \ldots[(n-q+1)+k(s-q+1)][(n-q)+k(s-q)]} \times \\
& \frac{(1+k)^{q+1}}{\left(\left|\alpha_{q+1}\right|-k\right)\left(\left|\alpha_{q}\right|-k\right) \ldots\left(\left|\alpha_{2}\right|-k\right)\left(\left|\alpha_{1}\right|-k\right)|P(z)| .} \tag{3.7}
\end{align*}
$$

This implies result is true for $t=q+1$.

If $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{t}=\alpha$, then by dividing both sides of (3.1) by $|\alpha|^{t}$ and letting $|\alpha| \rightarrow \infty$, we get the following result.

Corollary 3.2. If $P(z)$ is a polynomial of degree n having all zeros in $|z| \leq k, k \leq 1$ with s-fold zeros at origin, then

$$
\max _{|z|=1}\left|P^{(t)}(z)\right| \geq \frac{\prod_{i=0}^{t-1}[(n-i)+k(s-i)]}{(1+k)^{t}} \max _{|z|=1}|P(z)| .
$$

where $0 \leq s \leq n$.
For $k=1$, Theorem 3.1 reduces to the following result which is generalization of (1.8).
Corollary 3.3. If $P(z)$ is a polynomial of degree n having all zeros in $|z| \leq 1$ with s-fold zeros at origin then for all $\left(\alpha_{i}\right)_{i=1}^{t} \in \mathbb{C}$ with $\left|\alpha_{i}\right| \geq 1,1 \leq i \leq t<n$,

$$
\max _{|z|=1}\left|D_{\alpha_{t}} \ldots D_{\alpha_{2}} D_{\alpha_{1}} P(z)\right| \geq \frac{A_{\alpha_{t}}}{2^{t}} \prod_{i=0}^{t-1}[(n-i)+(s-i)] \max _{|z|=1}|P(z)|
$$

where $A_{\alpha_{t}}$ is defined in (1.9) and $0 \leq s \leq n$.
Theorem 3.4. If $P(z)$ is a polynomial of degree n having all zeros in $|z| \leq k, k \leq 1$ with s-fold zeros at origin then for all $\left(\alpha_{i}\right)_{i=1}^{t} \in \mathbb{C}$ with $\left|\alpha_{i}\right| \geq k, 1 \leq i \leq t<n$,

$$
\begin{aligned}
\max _{|z|=1}\left|D_{\alpha_{t}} \ldots D_{\alpha_{2}} D_{\alpha_{1}} P(z)\right| & \geq \frac{A_{\alpha_{t}}^{k}}{(1+k)^{t}} \prod_{i=0}^{t-1}[(n-i)+k(s-i)] \max _{|z|=1}|P(z)| \\
& +k^{-n}\left\{n_{t} \prod_{i=1}^{t}\left|\alpha_{i}\right|-\frac{A_{\alpha_{t}}^{k}}{(1+k)^{t}} \prod_{i=0}^{t-1}[(n-i)+k(s-i)]\right\} m
\end{aligned}
$$

where $m=\min _{|z|=k}|P(z)|, 0 \leq s \leq n, n_{t}$ is defined in (1.9) and $A_{\alpha t}^{k}$ is defined in Theorem 3.1.

Proof. Let $m=\min _{|z|=k}|P(z)|$. If $P(z)$ has a zero on $|z|=k$, then $m=0$ and the result follows from Theorem 3.1. So we suppose that all the zeros of $P(z)$ lie in $|z|<k$, with s-fold zeros at origin, so that $m>0$. Now $m \leq|P(z)|$ for $|z|=k$. Since all zeros of $P(z)$ lie in $|z|<k$ with s-fold zeros at origin, by Rouche's Theorem all zeros of the polynomial $T(z)=P(z)-\lambda m\left(\frac{z}{k}\right)^{n}$ lie in $|z|<k$ with s-fold zeros at origin with $|\lambda|<1$. Applying Theorem 3.1 to the polynomial $T(z)$, we get for all $\left(\alpha_{i}\right)_{i=1}^{t} \in \mathbb{C}$ with $\left|\alpha_{i}\right| \geq k, 1 \leq i \leq t<n$ on $|z|=1$,

$$
\left|D_{\alpha_{t}} \ldots D_{\alpha_{2}} D_{\alpha_{1}} T(z)\right| \geq \frac{A_{\alpha_{t}}^{k}}{(1+k)^{t}} \prod_{i=0}^{t-1}[(n-i)+k(s-i)]|T(z)| .
$$

Equivalently,

$$
\begin{gathered}
\left.\left|D_{\alpha_{t} \ldots D_{\alpha_{2}} D_{\alpha_{1}}\left(P(z)-\lambda m\left(\frac{z}{k}\right)^{n}\right) \left\lvert\, \geq \frac{A_{\alpha_{t}}^{k}}{(1+k)^{t}} \prod_{i=0}^{t-1}[(n-i)+k(s-i)]\right.}\right| P(z)-\lambda m\left(\frac{z}{k}\right)^{n} \right\rvert\, .
\end{gathered}
$$

Or

$$
\begin{align*}
\left|D_{\alpha_{t}} \ldots D_{\alpha_{2}} D_{\alpha_{1}} P(z)-\lambda m n_{t} \alpha_{1} \alpha_{2} \ldots \alpha_{t} \frac{z^{n-t}}{k^{n}}\right| & \geq \frac{A_{\alpha_{t}}^{k}}{(1+k)^{t}} \prod_{i=0}^{t-1}[(n-i)+k(s-i)] \tag{3.8}\\
& \left|P(z)-\lambda m\left(\frac{z}{k}\right)^{n}\right| .
\end{align*}
$$

By Lemma 2.1, the polynomial $R(z)=D_{\alpha_{t}} \ldots D_{\alpha_{2}} D_{\alpha_{1}} T(z) \neq 0$ for $|z|>k$ that is for every λ with $|\lambda|<1$ and $|z|>k$, the polynomial $R(z)=D_{\alpha_{t}} \ldots D_{\alpha_{2}} D_{\alpha_{1}} P(z)-\lambda m n_{t} \alpha_{1} \alpha_{2} \ldots \alpha_{t} \frac{z^{n-t}}{k^{n}} \neq 0$. Thus by (ii) of Lemma 2.2, we have for $|z|>k$

$$
\begin{equation*}
\left|D_{\alpha_{t}} \ldots D_{\alpha_{2}} D_{\alpha_{1}} P(z)\right| \geq \frac{m}{k^{n}} n_{t} \prod_{i=1}^{t}\left|\alpha_{i}\right||z|^{n-t} \tag{3.9}
\end{equation*}
$$

Taking a relevant choice of argument of λ in (3.8) which is possible by (3.9) we get

$$
\begin{aligned}
& \left|D_{\alpha_{t}} \ldots D_{\alpha_{2}} D_{\alpha_{1}} P(z)\right|-|\lambda| \frac{m}{k^{n}} n_{t} \prod_{i=1}^{t}\left|\alpha_{i}\right||z|^{n-t} \geq \\
& \frac{A_{\alpha_{t}}^{k}}{(1+k)^{t}} \prod_{i=0}^{t-1}[(n-i)+k(s-i)]|P(z)| \\
& -|\lambda| \frac{A_{\alpha_{t}}^{k}}{(1+k)^{t}} \prod_{i=0}^{t-1}[(n-i)+k(s-i)] m \frac{|z|^{n}}{k^{n}} .
\end{aligned}
$$

Which on simplification gives for $|z|=1$,

$$
\begin{align*}
\left|D_{\alpha_{t}} \ldots D_{\alpha_{2}} D_{\alpha_{1}} P(z)\right| & \geq \frac{A_{\alpha_{t}}^{k}}{(1+k)^{t}} \prod_{i=0}^{t-1}[(n-i)+k(s-i)] \max _{|z|=1}|P(z)| \tag{3.10}\\
& +|\lambda| k^{-n}\left\{n_{t} \prod_{i=1}^{t}\left|\alpha_{i}\right|-\frac{A_{\alpha_{t}}^{k}}{(1+k)^{t}} \prod_{i=0}^{t-1}[(n-i)+k(s-i)]\right\} m
\end{align*}
$$

Making $|\lambda| \rightarrow 1$, the desired result follows.

If $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{t}=\alpha$, then by dividing both sides of (3.1) by $|\alpha|^{t}$ and letting $|\alpha| \rightarrow \infty$, we get the following result.
Corollary 3.5. If $P(z)$ is a polynomial of degree n having all zeros in $|z| \leq k, k \leq 1$ with s-fold zeros at origin, then

$$
\begin{aligned}
\max _{|z|=1}\left|P^{(t)}(z)\right| & \geq \frac{\prod_{i=0}^{t-1}[(n-i)+k(s-i)]}{(1+k)^{t}} \max _{|z|=1}|P(z)| \\
& +k^{-n}\left\{n_{t}-\frac{\prod_{i=0}^{t-1}[(n-i)+k(s-i)]}{(1+k)^{t}}\right\} m
\end{aligned}
$$

where $m=\min _{|z|=k}|P(z)|, 0 \leq s \leq n$ and n_{t} is defined in (1.9).
For $t=1$ Theorem 3.4 reduces to the following result which is refinement of a result of Dewan et al [6].
Corollary 3.6. If $P(z)$ is a polynomial of degree n having all zeros in $|z| \leq k, k \leq 1$ with s-fold zeros at origin then for all $\alpha \in \mathbb{C}$ with $|\alpha| \geq k$, we have for $|z|=1$

$$
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \geq \frac{(|\alpha|-k)}{(1+k)}(n+k s) \max _{|z|=1}|P(z)|+k^{-n}\left\{n|\alpha|-\frac{|\alpha|-k}{(1+k)}(n+k s)\right\} m
$$

where $m=\min _{|z|=k}|P(z)|$ and $0 \leq s \leq n$.

4. Acknowledgement

The research of second and third author is financially supported by NBHM, Government of India, under the research project $02011 / 36 / 2017 / \mathrm{R} \& D-\mathrm{II}$

References

[1] A. Aziz, Inequalities for the polar derivative of a polynomial, J. Aprox. Theory, 55 (1998), 183-193 . 1
[2] A. Aziz and Q. M. Dawood, Inequalities for a polynomial and its derivative, J. Approx. Theory, 54 (1998), 306-313. 1
[3] A. Aziz and W. M. Shah, Inequalities for the polar derivative of a polynomial, Indian J. Pure Appl. Math., 29 (1998), 163-173. 1
[4] A. Aziz and W. M. Shah, Inequalities for a polynomial and its derivative, Math. Inequal. and Applics., 7 (2004), 379391. 1
[5] S. Bernstein, Sur la limitation des derivees des polnomes., C. R. Acad. Sci. Paris, 190 (1930), 338-341. 1
[6] K. K. Dewan, Abdullah Mir, Inequalities for the polar derivative of a polynomial, Journal of Interdisciplinary Mathematics, 10 (2007), 525-531. 2, 3
[7] R. B. Gardner, N. K. Govil, A. Weems, Some results concerning rate of growth of polynomials, East J. Approx. 10 (2004), 301312. 2
[8] M. H. Gulzar, B. A. Zargar, Rubia Akhter, Inequalities for the polar derivative of a polynomial, J. Anal, 28 (2020), 923-929.
[9] M. H. Gulzar, B. A. Zargar, Rubia Akhter, Some inequalities for the polar derivative of a polynomial, Kragujevac J. Math., 47 (2023), 567-576.
[10] V. K. Jain, Generalization of an inequality involving maximum moduli of a polynomial and its polar derivative, Bull Math Soc Sci Math Roum Tome. 98 (2007), 6774.1
[11] E. Laguerre, Euvres, 2nd edn, vol. 1. Chelsea, New York, pp. 48-66. 2
[12] M. A. Malik, On the derivative of a polynomial, J. London. Math. Soc. 1 (1969), 57-60. 1
[13] Q.I.Rahman and G.Schmeisser, Analytic theory of polynomials, 2002, Oxford Science Publications.
[14] W. M. Shah, A generalization of a theorem of P. Turan, J. RAmanujan Math. Soc.,1 (1996), 29-35. 1
[15] P. Turan, Über die ableitung von polynomem, Compositio Mathematica, 7 (1939), 89-95. 1
[16] Xin Li, A comparison inequality for rational functions, Proc. Am. Math. Soc. 139 (2011), 1659-1665. 2

[^0]: *Corresponding author
 Email addresses: gulzarmh@gmail.com (M. H. Gulzar), bazargar@gmail.com (B. A. Zargar), rubiaakhter039@gmail.com (Rubia Akhter)

